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Abstract

This thesis presents an extensive study of the kinematics of parallel manipu-
lators. The latter are considered here as a subset of a more general class of kinematic
chains called complex kinematic chains which are defined as chains in which there exists at
least one link having a degree of connectivity greater than or equal to three. The degree of
connectivity of a link is defined here as the number of rigid bodies fhat are directly attached

to this link by kinematic pairs.

The first portion of the thesis is devoted to the study of simple kinematic
chains which are the basic elements from which complex kinematic chains, and hence
parallel manipulators, are constructed. The analysis of complex kinematic chains is then
pursued through their graph representation and through thé derivation of the associated
Jacobian matrix. The three types of singularities pertaining to this class of kinematic
chains are identified using the latter concept. They are illustrated with some examples.
This also leads to an unambiguous definition of parallel manipulators based on their graph

representation.

Parallel manipulators are then analyzed in detail. The analysis includes the
solution of the direct and inverse kinematic problems, the velocity and acceleration inver-
sions and an investigation of the singularities. Theée problems are discussed in a general
framework before special cases are introduced. The kinematic design optimization of par-
allel manipulators is then undertaken using some performance criteria such as symmetry,
workspace, local dexterity and global dexterity. A new performance index called global

conditioning index (GCl) is also defined.

Finally, the kinematic inversion of redundant parallel manipulators is approached
as a local dexterity maximization problem. The concept of trajectory map is introduced

and an algorithm for the generation of smooth trajectories is given.




Résumé

Cette thése présente une étude détaillée de la cinématique des manipulateurs a
architecture parallele. Ces manipulateurs constituent en fait un sous-ensemble d'une classe
plus générale de chaines cinémafiques que I'on appelle chaines cinématiques complexes, ces
derniéres étant définies comme les chaines cinématiques possédant au moins un membre
dont le degré de connectivité est supérieur ou égal a trois. Le degré de connectivité d'un
membre est défini ici comme le nombre de membres lui étant directement attachés par des

liaisons cinématiques.

La premiére partie de la thése traite des chaines cinématiques simples, celles-ci
étant les éléments de base a partir desquels les chaines cinématiques complexes et, par
conséquent, les manipulateurs paralléles sont construits. Cette section permet d'introduire
des concepts importants tels que la mobilité des mécanismes. I'optimisation de la qualité

de transmission et I'identification des différentes configurations ou ramifications.

L'analyse des chaines cinématiques complexes est alors entreprise grice au
concept de graphe associé et de matrice Jacobienne associée. Cette dernidre méthode
permet d’identifier les trois types de singularités pouvant étre rencontrées dans les chaines
cinématiques complexes. Des exemples sont fournis afin d'illustrer ces trois catégories. De
plus, I'approche basée sur la théorie des graphes conduit 3 une définition non équivoque des

manipulateurs parali¢les en tant que sous-ensemble des chaines cinématiques complexes.

Les manipulateurs paralléles sont ensuite analysés de facon approfondie. Cette
analyse inclut la solution des problémes cinématiques direct et inverse de méme que la
dérivation des relations inverses de vitesse et d'accélération. Une étude des singularités est
également présentée. Ces problémes sont d'abord discutés dans un contexte général, puis
des cas particuliers sont introduits. Les manipulateurs considérés sont de type: plan a 3
degrés de liberté, sphérique & 3 degrés de liberté, spatial 3 3 degrés de liberté et spatial a

6 degrés de liberté.




L'optimisation cinématique des manipulateurs paralléles est alors entreprise en
utilisant des criteres de performance tels que la symétrie, le volume de travail, la dextérité
locale et la dextérité globale. Un nouvel indice de performance appelé indice de condition
global est également défini. Des solutions optimales sont obtenues pour les cas particuliers

de manipulateurs mentionnés au paragraphe précédent.

Finalement, l'inversion cinématique des manipulateurs paralléles redondants est
considérée comme un probléme de maximisation de la dextérité locale. Le concept de carte
de trajectoire est introduit et un algorithme permettant de générer des trajectoires continues

est donné.
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The author claims the originality of the ideas expressed in this thesis. The

following contributions are of particular interest:

(i)

(ii)

(iii)

(iv)

the graphical representation of the mobility regions of planar and spherical four-

bar linkages

the optimization of planar and spherical four-bar linkages as minimum-defect

linkages using the orthogonal-decomposition method

the solution of the branch identification problem for wrist-partitioned manipu-

lators using the eigenvalues of the Jacobian matrix

a general method to determine the degree-of-freedom of complex kinematic

chains based on their topology and geometry

a classification of all possible singularities encountered in complex kinematic

chains in three different groups

a complete kinematic analysis and singularity analysis of four types of parallel

manipulators

the definition of a new performance index (Giobal conditioning index) for the

optimization of the global dexterity of serial or parallel manipulators
a workspace and dexterity optimization of four types of parallel manipulators

an algorithm for the kinematic inversion of redundant parallel manipulators using

local dexterity maximization and the concept of trajectory map.

Some of the results reported in this thesis have been partly presented in the

following publications and communications: Angeles et al. (1987), Gosselin and Angeles

(1987a), (1987b), (1987c). (1987d). (1988a). (1988b). (1988c) and (1988d).




Chapter 1 INTRODUCTION

The constant evolution of the variety of products and goods to be manufactured
and the evergrowing need for better efficiency iead to the development of new methods of
production. This also applies to the manufacturing processes that make use of robotic

manipulators to perform certain tasks.

Indeed. there is a great deal of effort directed towards the development of robots
exhibiting better characteristics, e.g.. the speéd of operation, load carrying capacity, dy-
namic properties, reliability and repeatability. Apart from the work being done in control
systems, algorithms and sensors, which will not be discussed here, researchers have been

involved at two different levels, to aim at the foregoing objectives.

The first trend consists of the improvement of the performance of the different
elements of a manipulator such as its actuators. The introduction -and the development
of direct-drive robots is an example of the research conducted at this level. (Asada et al.

1982; Asada and Kanade 1982; Asada and Youcef-Toumi 1987)

On the other hand, some researchers have been considering the possibility of
designing robots with new kinematic architectures. As a matter of fact, most of the
manipulators that are currently in use are of the serial type, i.e., their kinematic structure
is simple and open. In such an architecture, each of the links is binary, i.e., it is attached to

two other links, except for the end-effector and the base that are attached to only one other




1. INTRODUCTION

link. However, although it readily leads to anthropomorphic arms and to simpler kinematic

equations, this structure has some drawbacks, namely:

(i) only one of the motors is fixed; the remaining ones. accounting for a substantial

part of the inertial load, are moving

(i) due to the cantilever type of the links, the elastic flexibility is generally high

which introduces positioning inaccuracies and undesired dynamical side effects

Since some applications require very stiff arms with important load-carrying
capacities, the possibility of including closed kinematic chains into a robotic manipulator
(Asada and Youcef-Toumi 1984; Bajpai and Roth 1986, Stoughton and Kokkinis 1987;
Mohamed 1987). or even to build manipulators with a fully p‘arallel architecture (Hunt
1983; Yang and Lee 1984; Mohamed and Duffy 1985; Fichter 1986; Inoue et al. 1985:
Sugimoto 1987: Shirkhodaie and Soni 1987: Lee and Shah 1987), has been considered.
Parallel robotic manipulators are characterized by the fact that the gripper is attached to
the ground via several kinematic chains leading to a structure with multiple closed-loops.

Parallel manipulators are expected to yield the following results:

(i) by allowing all of their motors, or at least the heavier ones, to be fixed, larger
amounts of power will be available, thus increasing the load-carrying capacity

and the speeds of operation

(i) by full elimination or, at least, reduction of gear drives, accuracy will be in-

creased, while production costs will be lowered
(iii} by elimination of cable transmissions, accuracy and reliability will be increased.

Moreover, parallel manipulators find applications in other fields such as flight
simulators, walking machines and robot hands. In fact, the two latter mechanical systems

can be considered as parallel manipulators with time varying kinematic parameters.




1. INTRODUCTION

In this thesis, the kinematics of parallel manipulators is studied in detail. The
objective is to obtain the kinematic equations constraining the motion of these manipulators
and to use them to optimize the kinematic properties of the said manipulators with regard
to two issues, design and programming. The approach adopted here is to consider this
class of manipulators as a special case of a more general class of linkages called complex
kinematic chains. Therefore, the next two chapters will be devoted to a review of some

properties of simple and complex kinematic chains.

Some aspects of simple kinematic chains, such as mobility, transmission quality
and branch identification, are critically reviewed because of their relevance to the study of

parallel manipulators. This issue is covered in Chapter 2.

In Chapter 3, compiex kinematic chains are regarded as a very general class
of linkages. The graph representation of their topology is introduced and completed with
a geometric representation, based on the Jacobian matrix, which leads to a method of
determining the degree of freedom of any general complex chain for any of its configurations.
The method is also applied to the investigation of singularities, which are shown to be of

three different possible types.

Having discussed complex kinematic chains in general, parallel manipulators
are introduced as a particular subset of these, their study being of greater interest in the
context of robotics. Chapters 4 and 5 address the problems of analysis and optimization
of these manipulators. The major issues in analysis are the solution of the direct and.
inverse kinematic problems, velocity and acceleration inversions, and singularity identifi-
cation. Planar, spherical and spatial three-degree-of-freedom manipulators are considered
together with a spatial six-degree-of-freedom manipulator. These particular manipulators
have been chosen for they have emerged as the most promising cases according to a survey
of the different possible parallel architectures for robotic applications (Hunt 1983). The
optimization, dicussed in Chapter 5, focuses on the optimum design of manipulators based
on performance indices related to workspace and dexterity. The concept of dexterity is

defined here as a function of the condition number of the Jacobian matrix. A clear distinc-
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tion is made between local and global dexterity, the latter, also termed Global Condition;ng
Index (GCl). being a contribution of this thesis. This approach follows previous work on
the subject (Salisbury and Craig 1982; Yoshikawa 1985; Angeles and Rojas 1987: Klein and
Blaho 1987). The main objective of Chapter 5 is to obtain design guidelines for the parallel

manipulators mentioned above, based on the foregoing criteria.

Since the tasks to be performed by a certain manipulator are, in general, un-
known a priori, the design has to be based on criteria such as the ones presented above.
However, a different problem arises when a given robot is required to produce a certain
trajectory in the task space. If the number of controlled axes of the robot is equal to the
number of variables associated with the given task, then the inverse kinematic algorithm
is directly used for the programming of the robot. On the other hand, if the number of
controlled axes of the robot is greater than the number of variables associated with the
task, then the manipulator is said to be redundant with respect to this particular task and
its motion can therefore be optimized because of the extra axes. The programming of these
robots deserves special attention. Examples of such parallel robots are given in Chapter 6
where this problem is addressed. The trajectory is optimized using the local dexterity as

an optimization criterion and using the concept of trajectory map developed here.




Chapter 2 SIMPLE KINEMATIC CHAINS

At the preliminary stage of this work, it is of interest to revisit some of the
properties of simple kinematic chains. Simple chains are defined here as kinematic chains
containing links having a degree of connectivity smaller than or equal to 2. It is recalled
that the degree of connectivity of a link is understood here as the number of rigid bodies
that are directly attached to the said link by kinematic pairs. Therefore, simple kinematic
chains encompass both serial manipulators and closed single-loop linkages. The former have
binary links and two links of connectivity one (the base and the end-effector), whereas the

latter have only binary links.

The properties of kinematic chains studied in this chapter have been chosen for
their particular relevance in the analysis or optimization of parallel manipulators. They allow
the introduction of some concepts that will be extended or used as such in the forthcoming

chapters, namely:

(i) the mobility analysis of planar and spherical four-bar linkages presented here is
based on the concept of linkage discriminant which will be used later for the

workspace analysis of planar and spherical parallel manipulators,

(ii) there is a connection between the concept of transmission quality used here to
optimize planar and spherical four-bar linkages and the local and global dexterity

of parallel manipulators which will be defined in Chapter 4,
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(iii) the branch identification problem is discussed here for serial manipulators to
stress its importance in the kinematics of manipulators in general. As a mat-
ter of fact, parallel manipulators usually have many more branches than the

corresponding serial manipulators.

2.1 Mobility Analysis of Planar and Spherical Four-Bar Linkages

The identification of the mobility regions of linkages constitutes an important
aspect of linkage design. In the context of CAD, the graphical representation of these
regions is therefore an item of the utmost importance. The mobility region of a linkage is
defined as the region, in the space of its parameters {or in a space defined with functions
of these parameters), in which the input link has full rotatability, i.e.. it can undergo a full
rotation of 27. However, it is often desirable to find the region in which the output link
is fully rotatable. When these two regions are known, we can infer the region in which
both the input and the output are fully rotatable, i.e., the crank-crank region by finding
the intersection of the aforementioned regions. In a similar fashion, we can subtract the
intersection from each of the original regions of mobility to obtain the crank-rocker and

rocker-crank regions.

The mobility of planar and spherical linkages has been studied extensively in the
past. Grashof (1883) first proposed inequalities describing the mobility of planar linkages.
Further work on the subject produced other geometric (Gupta and Radcliffe 1971; Midha
et al. 1985) and algebraic-geometric (Gupta 1980) criteria. These were meant to incor-
porate mobility conditions in design procedures. Similar mobility criteria were developed
for spherical linkages (Freudenstein, 1965; Savage and Hall, 1970; Soni and Harrisberger,
1967; Duditza and Dittrich, 1969; Gupta 1986b).

More recently, the need for graphical representations of the mobility regions
arose, the objective being to include them in CAD packages for linkage design. Risbourg

(1983) gave a full description of the different regions for planar linkages based on Grashof's
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inequalities. Barker and Lo (1986) presented a similar description and representation for

spherical mechanisms.

The mobility analysis used here is an extension of the one given in (Gosselin and
Angeles, 1987a). This is based on the concept of linkage discriminant which was first used
in (Angeles and Callejas, 1984) for planar linkages and extended in (Angeles and Bernier,
1987a). Other studies using the concept of linkage discriminant for linkage mobility are

(Williams and Reinholtz, 1986 & 1987).

The inequalities obtained by the mobility analysis of planar and spherical link-
ages lead to polyhedra in the 3-D space of linkage parameters. Moreover, these polyhedra,
as shown here, have surprisingly symmetrical shapes and are formally identical for planar

and spherical linkages.
2.1.1 Planar Linkages

The linkage parameters k;, (¢ = 1,2,3) used here are essentially those proposed
first by Freudenstein (1954,1955). Moreover, they are identical to the ones used in (Angeles
and Callejas, 1984; Angeles and Bernier. 1987a; Gosselin and Angeles, 1987a). They are
recalled here for quick reference. A planar mechanism is shown in Fig. 2.1, where the link

lengths are given by a,,(: = 1,...,4). The linkage parameters k;,(: = 1,2,3) are then

defined as:
a%+a%—a§+ai aq aq
ky = . k=—, k3= (2.1)
2a9ay ay ay
The inverse transformation is given as follows:
1 1 VKB + K2+ kZK2 — 2k koks Ly
a1 = 1, Qg — 7, az = ) a = —— .
! ky |k k3| k3
The input-output equation of the planar mechanism can then be expressed as:
A()T? 4+ 2B(¢)T + C(¢) = 0 (2.3)
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Figure 2.1 Planar four-bar linkage.

where
A(p) = kg — ky + (1 — k) cos ¢ (2.4a)
B(4) = —sin¢ (2.48)
C(0) = ky + ky — (1 + k3) cos (2.4¢)
T = tan(¢/2) (24d)

in which ¢ and ¢ are the input and output angles respectively. The discriminant of the
quadratic equation (2.3), known as the linkage discriminant (Angeles and Bernier 1987a).

can be written as:

2(v) = B* () - A()C(¥) (2.5a)
= sin? 1 — [ky — ky + (1 — k3) cos ¥][ky + ky — (1 + k3) cos ] (2.5b)

which can be simplified to:
2() = (1 — k2 + k3) + 2(ky k3 — k) cos ¢ — k3 cos? ¢ (2.5¢)

9
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The input link has full mobility if the discriminant is positive for every value of
Y. i.e., for =1 < cosy < 1. Since eq.(2.5¢) represents a parabola with negative curvature,
this is the case if 2(0) > 0 and z(7) > 0. If we denote by z; and z; the values of z(¢) for
cos v = 41 and cos ¢ = —1 respectively, we have:
i = mi , 26
—-1§rg)lsn¢§1 z{cos 1) = min(zy, zp) (2.6)

and the full rotatability is attained if and only if min(zq, 2y} > 0 where:

2 = 2(r) = (1 + ky)? — (ky + k3)2 (2.7a)
29 = 2(0) = (1 - kp)? — (kg — k3)? (2.70)

It is then straightforward to show that these expressions lead to the following inequalities:
(ky + k3)? < (1 + ky)? (2.8a)

and

(k1 — k3)? < (1 — ky)? (2.85)

Each of these inequalities represents two regions of the (kq,k;,k3) space which
are bounded by two orthogonal planes. The line of intersection of these planes is parallel
to plane kq k3 and is located at k) = —1 for inequality (2.8a) and at ky = +1 for inequality
(2.8b). Moreover, the projections of these two lines on plane kqk; give two lines orthog-
onal to each other and passing through the origin with an angle of +45 and -45 degrees,

respectively, as shown in Fig. 2.2.

Hence, the intersection of the regions defined by inequalities (2.8a) and (2.8b)
is given by a regular tetrahedron having its centroid at the origin and having edges of
length 21/2 and two open convexes (which are unbounded on one side) each sharing a
common edge with the tetrahedron. This is represented in Fig. 2.3. The set of points of
the (kq,ky,k3) space located within these limits corresponds to the set of planar four-bar
linkages having a fully rotatable input. It is pointed out that the origin of the (k1,k9,k3)

space, which is located inside this region, corresponds to the set of degenerate cases of

10
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Figure 2.2 Projection, on the kqkg plane, of the lines constituting the intersection
of the planes defined by eqs.(2.8a&b).

mechanisms for which a9 — o0, a3 — oo and ag — oo, i.e., the planar PRRP mechanisms

where the axes of the P pairs are parallel.

The mobility region is also represented in Fig. 2.4 where the tetrahedron is

shown in yellow and the two open convexes in blue.

The foregoing analysis can now be applied to the output link by exchanging the

11
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Figure 2.3 Mobility region for the input link of planar four-bar linkages.

role of the input and output links of the mechanism. To this end. eq.(2.3) is rewritten as:

AN T?+ 2B ($)T +C'(¢) =0
where

A'(@) = ky + k3 + (kp + 1) cos ¢

B'(¢) = —sin¢

C'(¢) = ky — k3 + (kg — 1) cos ¢
T =tan(y/2)

The new discriminant obtained can then be expressed as:

(¢) = [B' (@) - 4'(¢)C"(9)
= (1 — ki + k%) + 2(ks — 2ky kp) cos ¢ — k3 cos® ¢

12
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Figure 2.4 Mobility regions of planar four-bar linkages, crank-crank regions are
shown in yellow and crank-rocker regions in blue.

The reasoning used above can be repeated here since we are again in the presence of a
quadratic equation having a negative curvature. Therefore, the conditions for full mobility

of the output link are ¢(0) > 0 and ¢(7) > 0. They lead to the following inequalities:

(kg + k)% < (1 + k3)? (2.12a)
and

(ky = ka)® < (1 — k3)? (2.120)
This result could have been expected since the exchange of the input and output links in

eq.(2.1) is equivalent to exchanging the roles of k; and kj.

The region described by inequalities (2.12a) and (2.12b) is shown in Fig. 2.5.
Moreover, the central tetrahedron (in yellow) of this figure is regular and is related to that
of Fig. 2.4 by a rotation about the origin that is a member of the symmetry group (Angeles
1982) of the tetrahedron of Fig. 2.4. Hence, the central tetrahedra of Figs. 2.4 and 2.5

13
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are one and the same. Furthermore, the two open convexes (in red) are similar to the
ones shown in blue in Fig. 2.4. Thus, the region defined by the tetrahedron is the one
where both the input and output links have full mobility, i.e., where the linkages are of the
crank-crank type. The open convexes then represent the regions where the linkages are of

the crank-rocker type (in blue) and of the rocker-crank type (in red). respectively.

f
|
|

Figure 2.5 Mobility regions of planar four-bar linkages, crank-crank regions are
shown in yellow and rocker-crank regions in red.

It can be observed that the open convexes are attached to the tetrahedron by
its edges. To complete the symmetry of the whole spatial representation, we can define
another set of open convexes (Fig. 2.6) attached to the tetrahedron by the two edges that
are still free. Although this has not been shown, it is conjectured that this region (in
green) contains unfeasible linkages. The rest of the space would then contain linkages of

the rocker-rocker type. The proof of this hypothesis would require further work.

Notice that, in order to help the reader to grasp a global idea of the mobility

14
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Figure 2.6 Mobility regions of planar four-bar linkages, crank-crank regions are
shown in yellow and the regions containing unfeasible linkages in green.
regions in space, the edges of the tetrahedron in Figs. 2.4-2.6 have been drawn with the

color of the open convex attached to it.

2.1.2 Spherical Linkages

Again, the linkage parameters k;,(: = 1,....,4) are identical to the ones used
in (Angeles and Bernier, 1987a; Gosselin and Angeles, 1987a). The spherical mechanism
is shown in Fig. 2.7, where the link angles are given by a;,(¢ = 1,....4). The linkage

parameters are then defined as:

.  COs acos apCos ay — cos a3 L tanay
k= sin aq €os «;p sin ay ’ 27 tanay (2.13)
tan ayp tan oy )
Sin tan o4

15
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A possible inversion of this transformation is given by:

/K2 — k2

CoSs oy = k—4, sinay =

sgnlk .
cos ay = —g_(_i_ sinoy =

\V/1+k§—k£

kokg — kg (k3 — k2)

cosas = 2.14

;k3l\/(1+k§—k£)(k§+k§—kg) (214a)
sin ag = 1 (K] = k)[K + K3(1 + K3) + 2kykepley + (k3 — K2) (k2 — k2)]

ks (1 + k2 — k2)(k2 + k3 — k2)

k

cos oy = > 22 = sinoy = sgn(lc3)

\ K2 + k2 — k2
In this inversion, it is assumed that:

2 2
ki < k3 (2.14b)

The input-output equation of the spherical mechanism can then also be written

as the following quadratic equation:

A(W)T? + 2B()T + C(4h) = 0 (2.15)
where
A(W) = ky + 14 (ky — kg) cos ¢ (2.164)
B(y) = k3siny | (2.16b)
C() = kg — 1+ (ky + kg) cos (2.16¢)
T = tan(¢/2) (2.16d)

in which ¢ and ¢ are the input and output angles, respectively. The discriminant of the
quadratic equation (2.15) is then the linkage discriminant for the spherical mechanism. It
is given by:

2(¥) = B*(¢) — A(¢)C(¥)

217
— (12 _ 1.2 _ 1.2 2 . _ 1.2 2 ( )
= (ky — k3 — k3)cos® ¢ + 2(—ky — kykp) cos ¢ + (1 — ki + k)

16
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Figure 2.7 Spherical four-bar linkage.
where the coefficient of cos? 1) can also be written as:

tan? o9

sin2 oy

k3 — k2 — k2= - (2.18)

which clearly shows that it is negative definite, and hence the discriminant of equation

(2.15) is a parabola in cos 1 with negative curvature, such as the discriminant appearing

in eq.(2.5).

The arguments used in Section 2.1.1 for planar linkages can be repeated here.

The full mobility of the input link is guaranteed by the positive definiteness of the discrimi-

17
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nant over the whole range of values that ¢ can attain, i.e., 0 < ¢ <27 or —1 < cos ) < +1.
If we denote by z; and z the values of z(¢) for cos ) = —1 and cos ) = +1—i.e. 2(0)

and z(m)—respectively, the mobility conditions become:

i b) = mi , >0 2.19
_1Srcrggwsl z(cos ¥) = min(zq1,2y) > (2.19)
where
21 = 2(—1) = (kg + 1)% — (kg — ky)? (2.20a)
29 = 2(+1) = (kg — 1)? = (ky + ky)? (2.200)
which lead to:
(kg + kg)? < (kg —1)? (2.21a)
and
(ky — k1)2 < (kg +1)2 (2.21b)

Inequalities (2.21a&b) are very similar to inequalities (2.8a&b) and the associated region,

which is shown in Fig. 2.8, is geometrically identical to the one obtained for planar linkages.

It is pointed out that, in this case, only three of the four parameters that we
had defined (k;,« = 1,...,4) play a role in the mobility, which allows us to obtain a
tridimensional representation in the (ky,ky,ks) space. The set of points located inside the
limits of the tetrahedron and the open convexes correspond to the set of spherical four-bar
linkages having a fully rotatable input link. The origin of the space used here represents the
set of spherical mechanisms for which a1 = a3 = a4 = 90°, i.e., the spherical equivalent
to planar PRRP linkages (Lichtencheldt and Luck 1979). The mobility region is also shown
in Fig. 2.9.

The analysis is repeated by exchanging the role of the input and output links.

Equation (2.15) is rewritten as:

A'(¢)T? + 2B'(¢)T + C'(¢) = 0 (2.22)

18
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Figure 2.8 Mobility region for the input link of spherical four-bar linkages.

where

(@) = kq — ky — (1 + kyg) cos ¢

Al ()
B'(¢) = k3 siné
C'(¢)

(@) =kq + ky— (1 — ky)cos ¢

T =tan(v/2)

The new discriminant obtained can then be expressed as:

¢(¢) = [B'(#))? — 4'(#)C"(9)

= (kz — k% —1) cos? ¢ + 2(ky + kyky) cos ¢ + (k% — k% + k%)

where the coefficient of cos? ¢ can be rewritten as:

(kj — k3 —1) =

— sec? oy

(2.23a
(2.23b
2.23¢
2.23d

St N N e

(2.24)

(2.25)

19
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Figure 2.9 Mobility regions of spherical four-bar linkages. crank-crank regions are
shown in yellow and crank-rocker regions in blue.

which clearly shows that it is negative definite, thus leading to the same conclusion as in

dealing with the discriminant of eq.(2.17).

The conditions for full mobility of the output link are ¢(0) > 0 and ¢(x) > 0.

They lead to the following inequalities:
(ky + kg)? > (1 — kq)? (2.26a)
and

(ky — kg)? > (1 + kq)? (2.26b)

The region described by inequalities (2.26a&b) constitutes a set of four open

convexes which are shown in Fig. 2.9 (in yellow) and Fig. 2.10 (in red).

It is now apparent that the open convexes shown in Fig. 2.9 (in yellow) are

the common intersection of the regions described by inequalities (2.21a&b) and (2.26a&b).

20
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Figure 2.10 Mobility regions of spherical four-bar linkages. crank-rocker regions are
shown in blue and rocker-crank regions in red.

Thus, this region is the one where both the input and output links have full mobility. i.e.,
where the linkages are of the crank-crank type. The tetrahedron then represents the region
where the linkages are of the crank-rocker type (in blue) and the open convexes shown in

Fig. 2.10 (in red) represent the region containing mechanisms of the rocker-crank type.

Again, to complete the symmetry of the whole spatial representation, we can
define another set of open convexes (Fig. 2.11) attached to the tetrahedron by the two
edges that are still free. In this case also, although it is not shown here, it is conjectured
that this region (in green) contains unfeasible linkages. The rest of the space would then
contain linkages of the rocker-rocker type. The proof of this hypothesis would also require

a deeper investigation that may require tools other than the discriminant technique.

2.1.3 Example

An example problem making use of the mobility regions derived above is now

21
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Figure 2.11 Mobility regions of spherical four-bar linkages. crank-rocker regions are
shown in blue and the regions containing unfeasible linkages in green.

discussed. This example, which was presented in (Gupta 1986b), deals with a spherical
robot wrist. The problem consists of determining the set of orientations of the end-effector
that will allow it to undergo a full rotation about a given axis which is concurrent with
the other three axes of the wrist. The angle defining the orientation of the end-effector,
which becomes the unknown of the problem, is then associated with the value of ¢4, i.e.,
the fixed link. It is assumed here that 0° < aq < 180° . The other angles of the wrist are

given as oy = 30° a3 = 80° , and oy = 75°. Therefore, we have

C1CoOsq — €

ky = ———= ky =c3
Maalie (2.27a)
B ¢4
Sin a4 tan oq
where
¢q =0.26794 ¢, = 0.20759
(2.27b)

c¢3 = 0.15470 cy = 057735
which represents a curve in the (kq.ky,ks) space. The values of angle a4 corresponding

to the portions of this curve that are inside the mobility region of the input link (Fig. 2.8)

22
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are the values of oy for which the end-effector can undergo a full rotation. Notice that
the end-effector is considered here as the input link of the spherical mechanism having a

dimension of ay. Inequalities (2.21a&b) lead to:

2 _ 2 2
((04 Cl) ¢y + 261 ¢y i 2(54 + 6163) . 20263 +1— C%) >0 (228(1)

tan? ey sinaq sinagtanog tan oy sin ay
and
2 2 2
- 2 2
(cg i i) .022 L2 2atege) L 2oy —d) >0 (228)
tan® oq sin“ay Sinagtanoy tan oy sin o
The following substitution is then introduced:
1-1? . 2T
cosay = o T T2 sinay = i 7 (2.294)
where
T =tan(oy /2) (2.29b)
and inequalities (2.28a&b) can therefore be rearranged, which leads to:
AT* — BT+ CT?+ DT+ E>0 (2.30a)
AT* 4+ BT*+CT? - DT +E >0 (2.306)
where:
A= c% — (eq + ¢9)? (2.31a)
B = 4(cq + cqe3 + ¢pe3) (2.31b)
C=2(c2 e -2~ +2) (2.31¢)
D = 4(cy + c1c3 — ¢y¢3) (2.31d)
E = c,zl — (g — ¢3)? (2.31€)

Since we have 0° < aq < 180°, then the range of interest of the variable T
in inequalities (2.30a&b) is restricted to T > 0. The corresponding functions are plotted
in Figs. 2.12-2.14, which clearly shows the different regions in which the inequalities are

verified.

23
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— 600

— 1200

Figure 2.12 Function defined by the left-hand side of eq.(2.30a).
Notice that Fig. 2.13 is a zoom of Fig. 2.12 in the neighbourhood of the origin.

The ranges of values of T for which the inequalities are not verified are:

0222 <T<0315 and 192<T7T <229 (2.32)

25° < oy < 35° and 125° < oy < 175° (2.33)

which is in full agreement with the results reported in (Gupta 1986b).

Finally, since the value of ky is constant, the curve described by equations
(2.27a) can be represented in the plane given by ky = 0.15470, i.e., using a cross-sectional
view of the solid of Fig. 2.8. This view is shown in Figs. 2.15 and 2.16. Portions AB and

CD of the curve are clearly outside of the mobility region.

24
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Figure 2.13 Zoom of Fig. 2.12 in the neighbourhood of the origin. .

2.2 Optimization of Transmission-Quality

The linkage optimization probiem aimed at maximizing the quality of transmis-
sion has been given due attention by many a researcher. Some of the authors that reported
on the subject have used design charts (Hain 1967; Hall 1966; Soni 1974) while others used
algebraic methods (Freudenstein and Primerose 1973; Gupta 1977) or numerical methods

(Cleghorn and Fenton 1984) to tackle this problem. A crucial development in this context is
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o

Figure 2.14 Function defined by the left-hand side of eq.(2.305).

the concept of transmission index, introduced first by Sutherland and Roth (1973), which
allows us to extend the concept of transmission angle to any spatial linkage. Moreover,
it is shown in the foregoing reference that the maximization of the transmission quality
is equivalent to a minimization of the positioning error, a result which is not to be ne-
glected, especially when considering the extension of the concepts studied here to multiple
degree-of-freedom systems. On the other hand, Gupta (1980) introduced a method of
planar-linkage synthesis with an input crank, whose transmission angle is constrained to

lie between 45° and 135°. This method was then extended to the exact synthesis of RSSR
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Figure 2.15 Curve defined by eq.(2.27a) in the plane ky = c3, and the mobility
regions in that plane.

linkages (Gupta and Kazerounian 1983). Furthermore, Tinubu and Gupta (1984) showed
that a linkage optimization based on minimizing the structural error, rather than the de-
sign error, leads to branching-defect elimination. Moreover, the optimization of planar,
spherical. and spatial linkages having a quadratic input-output equation, with a minimum
design error and a maximum transmission quality, was presented in (Angeles 1986a). In
this reference, the method used by the author is based on the Newton-Gauss algorithm
for nonlinear least squares—see, for instance, (Wilde 1982 & 1983). On the other hand,

the concept of linkage discriminant, which was used for the determination of the linkage
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Figure 2.16 Zoom of Fig. 2.15 in the neighbourhood of the origin.

mobility region in Section 2.1, was applied to the optimization of linkages with maximum

transmission quality and prescribed mobility characteristics (Angeles and Bernier 1987b).

In this section, results concerning the transmission quality of planar and spher-
ical linkages are derived. A particular class of linkages, called here zero-mean linkages, is
defined and analyzed in detail. Their mobility regions are introduced as a particular case
of the ones presented in Section 2.1 for general planar and spherical 4-bar linkages. Some
important theorems governing their mobility characteristics are also stated and guidelines

for their design are given.
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A more general class of linkages, called minimum-defect linkages. is also defined
and this concept is applied to the design of quick-return mechanisms using the orthogonal-

decomposition method, presented in (Angeles et al. 1987).
2.2.1 Definition of the Transmission Quality

The transmission quality of a four-bar linkage, which is to be maximized, was
defined in (Angeles and Bernier 1987b) as the square root of the following positive definite
quantity:

27
= J; sin? pdy (2.34q)

where  represents the transmission angle of the function-generating linkage under study.

V4

For brevity, the transmission quality is defined in what follows as z itself, rather than its
square root. The complement of the transmission quality, which is to be minimized. is thus

defined as:
2T

Z = %T— A cos? udyp (2.34b)

and is termed the transmission defect. Hence,
242 =1 (2.34¢)

and

0<z2 <1 (2.34d)

Of course, in these definitions, the input link is assumed to be of the crank type, for the
associated integrals are not defined for input links of the rocker type. In the particular
cases of planar and spherical linkages, the cosine of the transmission angle can be written
as follows:

cos i = ¢q + ¢y cos P (2.35)

where c1 and ¢ are constants depending only upon the linkage parameters, expressions

for which will be given presently. Thus, for planar and spherical linkages, z' becomes
vZ

1
'=%+§% | (2.36)
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where c% and c% are positive semidefinite and positive definite quantities, respectively, as

shown next, i.e.,

>0, S>0 (2.37)

From the foregoing discussion, it is apparent that the transmission quality is maximized if
the transmission defect is minimized. The practical application of this fact is that linkages
with maximum transmission quality can be found using least-square based optimization
algorithms, which aim intrinsically at minimizing a positive semidefinite performance index,

rather than at its maximization.

For a general planar linkage as the one shown in Fig. 2.1, the cosine of the

transmission angle is given as (Gupta 1977):

2 2 2 2
cos 4t = a3 + ay — aj — ay + 2aqay cos P (2.380)
2(13(14
or, in terms of the parameters (k;, © = 1,2, 3) defined in the previous section, as

sgn(kyks)(ky — kyks + k2 cos
cosu = & (kak3) (ky — kyk3 + k3 cos ) (2.385)

VS + 2+ K22 — 2k ks

Constants ¢4 and ¢y appearing in eqs.(2.35) and (2.36) are, then,
+(ky — +k2

¢ (kg — iks) ¢ : (2.39)

1= s =
2 2 2.2 2 2 21.2
VS + K2+ K22 — 2kykyhs VK3 + K3+ K3 — 2ky ks

from which it is apparent that c% is positive semidefinite, whereas c% is positive definite.

For a general spherical linkage as the one shown in Fig. 2.7, where o, for

¢ = 1,...,4, denote the linkage dimensions, the cosine of the transmission angle, given

in (Gupta 1987), is multiplied by factor \/(1 — cos 3)/2, in order to render it compatible
with the general definition of transmission index given in (Soylemez and Freudenstein 1982).

This produces the foliowing:

1 — cos a3 cos oy cos ay — €os ag oS ay + sin aq sin ay cos P (2.40)
cos pi = 4/ _ , .
# 2 sin az sin oy
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Constants ¢q and ¢; of eqs.(2.35) and (2.36) are now defined by:

1 — cos a3 cos aj cos oy — cos a3 cos o
c1 =4/ 3 1= 3 4 (2.41q)
2 sin a3 sin ay .
1 —cosagsinagsina
¢y =1/ e (2:415)
2 sin a3 sin oy

or, in terms of the parameters (k;,7=1,...,4):

cq=Fmy , ¢y = Fyy (2.41¢)
where
| 2 2y(1.2 2 2 2 2
o 33/ (1 + K3 — k2) (k3 + K2 — k2) — kohky + ky (k2 — k2) 241
2lksfy/ (1 + K2 — k2) (k2 + k2 — k2)
and
kiky + k
= 152+ % (2.41¢)
VB + KL+ kD) + 2kykoky + (2 — k2) (kZ — k2)
k3 + k3 — k2
Ny = 2~ 3 4 (2.41f)
VIR + K21+ k) + 2hyhyky + (k2 — k2) (k2 — K2)
If none of the angles o, for 7 = 1,...,4, is allowed to vanish, an issue that
is given due attention in Section 2.2.3, it is clear that c% is positive semidefinite, and
2

¢y is positive definite—the positive definiteness of c% can aiso be readily realized from
condition (2.14b). From expression (2.41d), neither ¢4 nor ¢y, and not even their squares,
are smooth functions of the linkage-parameters (k;, ¢ = 1,...,4). This would prevent us
from minimizing 2’ using nonlinear least-square techniques, which rely on such smoothness.

This is readily overcome by formulating the problem in the space of linkage dimensions,

ag,ay,03,04, in which, from egs. (2.41a&b), ¢q and ¢y are smooth functions.

2.2.2 Zero-Mean Linkages and their Properties

Minimum-defect linkages are defined as linkages having an input crank, for which

the transmission defect, as given by equation (2.36), is a minimum. It has been shown
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in Section 2.2.1 that the second term of the right-hand side of eq.(2.36) cannot vanish,
whereas the first one can. This leads to the definition of a specific class of linkages, called
zero-mean linkages, for which the value of ¢q is equal to zero. From eq.(2.35) it is apparent
that ¢4 and %c% are, in fact, the expected value and the variance of the cosine of the

transmission angle, i.e.,

¢y =E(cos p) (2.42a)
—;-c% =FE[(cos u — cl)z] = Var(cos u) (2.42b)

and hence the zero-mean adjective for linkages having a vanishing c;.

2.2.2.1 Planar Zero-Mean Linkages

For planar linkages, the zero-mean condition leads to:

ky = ki k 243
2 173

Thus, the transmission defect can be expressed as:
2
k3

244
201 — k2 + k2k32) (244)

I _ 2 _
Zz = Cz——

N~

and the mobility conditions for an input crank derived in Section 2.1, i.e.. inequalities

(2.8a&b) . reduce to the following:
(kg + k3)? < (1 + kyks)? (2.45q)
(kg — k3)? < (1 — kyk3)? (2.450)
The two foregoing inequalities can be readily reduced to a single one, namely,
(kf —1)(1 —K3) <O (2.45¢)

which represents the dashed region of the ki-k3 plane shown in Fig. 2.17. This region
represents the domain of definition of zero-mean linkages, i.e., linkages having an input

crank and for which ¢4 = 0.
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Figure 2.17 Domain of definition of planar zero-mean linkages.

Y,

Moreover, one can readily prove the following:

Theorem 2.1: Zero-mean planar linkages are of the drag-link type when they correspond
to points located in the inner square of the region of definition and of the crank-rocker type

when they correspond to points located elsewhere within the said region.

Proof: The conditions under which a planar four-bar linkage has a fully-rotatable output

link are given in inequalities (2.12a&b). Substitution of the zero-mean condition in these
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expresssions leads to:

(k2 —1)(1+k3)2 <0 (2.460)
and
(K2 —1)(1 - k3)2 <0 (2.46b)
which can be reduced to:
ki <1 (2.47)

Therefore, only the zero-mean linkages corresponding to points located in the inner square
have a fully-rotatable output link, i.e., they are of the drag-link type. The other subregions
represent zero-mean linkages of the crank-rocker type since their input link is a crank but

their output link is not. This completes the proof.

A function-generation problem that arises rather frequently in applications calls
for quick-return mechanisms. In this case, one is rather interested in linkages of the crank-
rocker type. The motion of such linkages is defined by the time ratio of its two phases. If
the first phase takes place as the input link sweeps an angle 7 + A+, whereas the second
phase—the return—as the input link sweeps an angle m — A, the time ratio T'p is defined

as:
7+ Ay

Tp =
R= 02 Ay

(2.48)
It was mentioned in theorem 2.1 that planar zero-mean linkages can be of the

- crank-rocker type. The following theorem is now proven:

Theorem 2.2: Planar zero-mean linkages which are of the crank-rocker type have a time

ratio of one.

Proof: Consider the two geometric constructions of Fig. 2.18 where a planar crank-rocker
linkage is shown in its two extreme positions. Moreover, the angle A as defined in
eq.(2.48) is given by:

A =1y — 1y (2.49q)
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where 11 and v, are assumed to be bounded as follows:

0 <,y < (2.49b)

Using the law of cosines, we can write:

a? — a2 + (a3 + ap)?

= 250

cos 1 2a1 (a3 + ay) (2:50a)

and ) ) )

ay — ay + (a3 — ap)
cos ¥y = 2.5056
2 2a1 (a3 — ay) (2:50)
a; +a3 ay
é1
aq
(a)

()

Figure 2.18 Limit positions of a planar four-bar linkage of the crank-rocker type.

If we now impose the zero-mean condition, i.e., if we substitute a% + a% by
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a% + alzl. we obtain:
cos iy = cos Py = sl (2.51)
ag

which, by virtue of relations (2.49a&b), leads to Ay = 0 and. from eq.(2.48). we have

Tr = 1, which completes the proof.

Therefore, planar zero-mean linkages of the crank-rocker type cannot be candi-

dates for quick-return mechanisms.

Planar zero-mean linkages which are of the drag-link type can be optimized by
finding the minimum transmission defect for a given minimum value of the mechanism'’s

dimensional balance. This is defined as the following real number:

b= (Z—‘Z‘)2 + (%)2 —1 (2.52a)

which turns out to be positive definite, for

b= k2k? (2.52b)

It can be readily shown that 0 < b < 1 for zero-mean linkages of the drag-link
type since for these we have |ki| < 1 and |k3] < 1. Lines of constant balance and of
constant transmission defect are plotted in Fig. 2.19. The optimum drag-link mechanism,
for a given minimum balance b,,. is found at the point of tangency of the contour b = b,
with a contour of constant transmission defect. This point can be readily determined in

closed form. Indeed, linkages with a dimensional balance b,, verify the following equation:
2,2 _
by — kik3 =0 (2.53q)
whereas zero-mean linkages with a constant transmission defect z(') verify

1

(5 - k22h)k3 — 2 (1 —k2) =0 (2.53b)
The solution of the nonlinear system of equations obtained when minimizing z6

in eq.(2.53b) subjected to the constraint (2.53a) is the following:

2by,
1+bm

K = (2.54a)
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—— b= const

!
2 = const

Figure 2.19 Lines of constant dimensional balance and of constant transmission

defect for planar drag-link zero-mean linkages.

and
b
L2 ="
1 2
k3

(2.54b)
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2.2.2.2 Spherical Zero-Mean Linkages

For spherical linkages, the zero-mean condition leads to:
ky = —kyky (2.55)

and the transmission defect can be written as:

o= %cg _ j_l AB (2.56a)
where
i s/ (0 + B = K2R3) (3 + 3 — 33 + k3 + oy (2 — K3 D) (2.56)
k3l + K — k7R3
and

2 2 21.2\3/2
B (k3 + k3 — k2K2)%/
k3 + k2(1 + k2) — 2k3k32 + (k3 — k2) (k2 — k2k2)

(2.56¢)

The mobility conditions leading to an input crank, i.e., inequalities (2.21a&b).

take on the form that follows, under condition (2.55):
(kg — k1)® < (1 = kyky)? (2.57a)
and
(ky + k)2 < (1 + kqky)? (2.57b)
which are equivalent to the following single inequality:
(kf —1)(1 — K3) <0 (257)

The region of the k1 k) plane defined by the foregoing inequality is represented in Fig. 2.20.
This Is the domain of definition of spherical zero-mean linkages. One now can prove the

following:

Theorem 2.3: Zero-mean spherical linkages are of the crank-rocker type when they corre-
spond to points inside the inner square of the region of definition and of the drag-link type

when they correspond to points located elsewhere within the said region.
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Proof: The conditions under which the spherical linkage has a fully rotatable output link
were derived in Section 2.1 and are given in inequalities (2.26a&b). Upon substitution of

the zero-mean condition, we obtain:

(k3 —1)(1 = k)2 >0 (2.58a)
and
(k3 —1)(1 +k¢)? >0 (2.58b)
which can be reduced to
k3 >1 (2.59)

Therefore, the linkages associated with points located in the peripheral sections
of the mobility region are of the drag-link type and the ones corresponding to points inside

the inner square are of the crank-rocker type. The proof is then completed.
Moreover, one has the following:

Theorem 2.4: Zero-mean spherical linkages that are of the crank-rocker type have a time

ratio of one.

Proof: Consider now the two extreme configurations of the spherical linkage shown in

Fig. 2.21. In this case, the angle A%, defined in eq.(2.48), can be expressed as:

A = 41 — ¥, (2.60a)
where 11 and vy are constrained as follows:

0< ¢y, < (2.600)

Using the law of cosines for spherical triangles, one can also write:

cos ay — cos oy cos{az + )

cos Py = (2.61a)

sin aq sin(a3 + ay)
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/ /c,ank Crank

-

7
o0 | U

Figure 2.20 Domain of definition of spherical zero-mean linkages.

and
by = cos oy — cos aq cos{az — o)

sin oy sin(a3 — ay)

If we now introduce the zero-mean condition, i.e., if we substitute cos oy by r, where 7 is

defined as

r = COs (g COS (p . (2620,)
COs o3
the following is derived:
Cos P4 = €0s Py = cot aq tan ag (2.62b)

40
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which, similarly to the planar case. leads to Ay = 0 and therefore Tp = 1, thereby

completing the proof.

rri

7717

(b)

Figure 2.21 Limit positions of a spherical four-bar linkage of the crank-rocker type.

The fact that zero-mean crank-rocker linkages have a time ratio of unity disables
them from being candidates for quick-return mechanisms. Hence, the optimization of quick-
return mechanisms should be tackled with an alternate approach, which is done in the

following Section.
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2.2.3 Optimization of Quick-Return Mechanisms as Minimum-Defect Linkages

Quick-return mechanisms, as defined in Section 2.2.2, will now be designed
using the concept of minimum-defect linkages. The problem then consists of minimizing
the quadratic form of eq.(2.36) subjected to constraints on the time ratio and output swing

angle of the linkage.

2.2.3.1 Planar Linkages
This is based on the approach introduced by Cleghorn and Fenton (1984). In or-

der to set up the constraint equations of the problem at hand. the following transformations

of the link lengths are introduced:

an a3 ag
= =, = —, = — 2.63
nEL T e (2.63)
and
g =r3—1) (2.644)
@ =r3+7 (2.64b)

The two extreme positions of the output link give rise to the geometric constructions of
Fig. 2.18. Application of the cosines law to these triangles gives the following constraints

(Cleghorn and Fenton 1984):

g1 =4 —1— g} +2gpcosypy =0 (2.65a)
gy =75 —1— g% +2g1 cos iy = 0 (2.65b)
g3 = qg -1- rﬁ +2rpcos ¢y =0 (2.65¢)
g =g} —1—r] +2r,cos ¢y = 0 (2.65d)
95 =ty — %1 — D=0 (2.65¢)
96 =¢1— P2 —Ap=0 (2.651)
or, in vector form,
g=0 (2.65¢)
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where g; denotes the i-th component of the 6-dimensional vector g, the time ratio being

defined as in equation (2.48).

In the foregoing discussion, A¢ is the prescribed output swing angle, and Ay

is as defined in eq.(2.49a). Moreover, ¥1. 19, ¢4 and ¢, are defined in Fig. 2.18.

The vector of design variables x will therefore be defined as:

X:[7‘4, 91, 92, wla ¢2a ¢1a ¢2]T (266)

The objective function to be minimized is defined as the linkage defect, i.e., as 2/, which

can be readily expressed as the following quadratic form:

1
2 = EfTWf (2.67a)

where f =[¢;  ¢)]T. with ¢4 and ¢y defined as follows:

. _qgptri—1

2.67b
r4(g1 + 97) ( )
99— 9
Cg = ———— 2.67c
2=t a) (267c)
and
2 0
W = [0 1:! (2.674)

The Jacobians of f and g with respect to x, F and G, respectively, are then readily derived

as the following 2 x 7 and 6 x 7 matrices:

_{Juu f1ip f13 0 0 0 O
F_{fﬂ faa fo3 0 0 O O} (2.68a)

where:

f11 =[=N/ri + 20/ (a1 + 09) (2.680)
f12 =I=N/(a1 + a2) + a2l /ralas + 02) (268¢)
f13 =[=N/(a1 + @) + a1]/rala1 + 99) (2.684)
a1 =(a1 — 02)/r (a1 + 02) (2.68¢)
fa2 =l(e1 — @) /(91 + @2) — 1/ralg1 + 92) (2.68f)
fa3 =l(a1 — ¢2) /(a1 + 92) + 1] /ra(g1 + ¢2) (2.68¢)

N =gygp+73 -1 (2.68h)
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and
G= [ G1 Gz] (2690,)
where
I 2ry 0 —2q9 + 2cos 1 ]
27y —2q1 + 2cos iy 0
—2r4 + 2cos ¢ 2qy
G1 = —2ry + 2cos ¢ 2qq 0 (2.69b)
0 0 0
i 0 0 0 _
and _
[ —2gy sin ¥y 0 0 0 i
0 —2q1 sin iy 0 0
0 0 —2ry sin ¢q 0
Gy = 0 0 0 —2ry sin ¢y (269¢)
-1 1 0 0
L 0 0 1 —1 |

which completes the formulation of the problem. This problem was solved numerically
using the orthogonal-decomposition method (Angeles et al. 1987). This method is meant
to minimize an objective function which is an m-dimensional quadratic form of n variables
subjected to p nonlinear equality constraints. In this case, we have m = 2 with n = 7

variables subjected to p = 6 constraints.

Two examples of application of this method are presented here. They are
taken from (Gupta 1977) for purposes of comparison. The results obtained using the
aforementioned procedure are given in Table 2.1 and they are in full agreement with the

results reported in that reference.

Several tests performed with this formulation of the problem for the design of

planar linkages show that the procedure usually converges within 15 iterations.
2.2.3.2 Spherical Linkages

The formulation of this problem is similar to the one used in the planar case.

The constraints are established using the extreme positions, which are shown in Fig. 2.21.
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Optimum Casel Case2
parameters | A¢ =40° Ay = -20° Ap=64° Ay =28°

aq 1.342 1.041

ay 0.323 0.494

as 0.729 0.936

ay 1.000 1.000

1 —0.2564 0.2929

) 0.5946 0.5494

2 0.2425 . 0.2367

Table 2.1 Optimum planar four-bar linkages.

The cosines law for spherical triangles is applied on these two configurations. Moreover,
since the link dimensions are now angles, the design variables will be chosen as the sines
and the cosines of these, rather than as the angles themselves. This will simplify the for-
mulation and will enhance the numerical stability of the problem, but will require additional

constraints. The global set of constraints will then be:

91 = ug — uq(upu3 — vyv3) — vy (upv3 + vouz) cos ¥y =0 (2.70q)
92 =ug — ug(uguz + vyv3) — vy(upv3 — vouz) cos 1y = 0 (2.700)
g3 = UU3 — VU3 — UqUy — V14 COS ¢ = O (2.70¢)
gs = ugu3 + VU3 — U Uy — V14 COS ¢y = 0 (2.704)
g5 =1 — Y~ Ay =0 (2.70¢)
96 =¢1— ¢ — D=0 (2.701)
g7 = u% + v% ~1=0 (2.70¢)
gg =ub+vi-1=0 (2.70k)
go=ui+vl-1=0 (2.704)
g10 =uj +vi—1=0 (2.705)
where

u; =cosey; , v;=sine; , 1=1,...,4 (2.70k)
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or, in vector form,

g=0 (2.700)
where g; is the sth component of the 10-dimensional vector g. The output swing angle is
given by A¢ and A is related to the time ratio by eq.(2.48). Angles 11, ¥, ¢1 and ¢,
are defined in Fig. 2.21.

The objective function to be minimized will be the transmission defect. However,
tests run with the program implementing the orthogonal-decomposition algorithm showed
that the procedure is very strongly attracted by the degenerate case for which oy = oy =
a3 = a4 = 0. One can easily verify that, in this case, all the constraints are satisfied—
providing ¥y — v = Ay and ¢; — ¢y = A¢g—and that the objective function goes to
zero. To overcome this problem, we augment the objective function with the squares of the
cosines of the link angles. This will force the angles of the mechanism to be as close as
possible to 90°, which will lead to dimensionally well-balanced mechanisms. The objective

function then becomes:

7 = %fTWf (2.71)
where
f=[V2e, ¢y, cos aq, cos oy, cos a3, COS ay ]T (2.72q)

Matrix W allows one to introduce some weights in the quadratic form. For example, if one
assigns less importance to the dimensional balance of the mechanism—and gets closer to

the original problem—, then W can be defined as
W = diag[1,1, w, w,w, w] (2.72b)

where w is a positive quantity smaller than 1.

Notice that, in this case, the vector of design variables will be defined as:

T
X = [ula vy, Uz, V3, U3, U3, Uy, V4, "a[)la "pZa ¢1’ ¢2] (273)

Therefore, the Jacobians of f and g with respect to x, denoted by F and G, respectively,

are written as the following 6 x 12- and 10 x 12 matrices:
F = [F1 Fz F3] (274&)
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where
[V2Qu o, Y29y [—\/562% n \/5(%”4—“1“2)]“
’U3’U4 ’03’04 7.13’04 4Q’U3 '04
0 9% 0 Qug —v1
U39y V34 4Quzuy
Fi = 1 0 0 0 0 (2.74b)
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0 i
032’04 v3v4 0311%
—Qvl UZ O -—Q’Ulvz
’U4’U§ ’U31}12l
0 0 0
0 0 0
| 0 1 0 ]
F3 = 0gx4 (2.744)
in which 0g, 4 denotes the 6 X 4 zero matrix, and @ is defined as
1-— us
= 2.7
Q \/ 5 (2.74¢)
with
G = [G1 G2 G3 G4] (275@)
where
- (vav3 —upu3)  —(upv3 +wpuz)cos ¢y —(ugug + vyvgcosy) ]
—(uguz +vyv3)  (vpuz —upvg)cosvpy  —(ugu3 + vyvzcos Py)
—Uyg ~—vy COS @1 ug
—Uy —v4 COS ¢y u3
0 0 0
Gy = 0 0 0 (2.75b)
2u1 2’01 0
0 0 2uy
0 0 0
i 0 0 0 ]
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i (U1’U3 — v{U3 COS ’d)l) —(u1u2 + vqv9 cos ’(ﬁl) (u1v2 — vU1U9 COS ’le) i
(—uqv3 +vqugcos i) (—uquy +vqvgcoshy) —(ugvy + viuy cos thy)
—U3 uj 02
v3 Uz v
0 0 0
G, = 0 0 0
0 0 0
21)2 0 0
0 2ug 2vg
i 0 0 0 ]
(2.75¢)
[ 1 0 v (ugug + vyug) sinhy |
1 0 0
—uq4 —vqcCOS8 gbl 0
—Uy —UqCOS ¢2 0
0 0 1
G; = 0 0 0 (2.754)
0 0 0
0 0 0
0 0 0
L 2“4 2’04 0 |
i 0 0 0 ]
v1{ugv3 — vyus) sin ¢y 0 0
0 V14 sin ¢1 0
0 0 V14 sin ¢2
G, = 01 (1) _(_)1 (2.75¢)
0 0 0
0 0 0
0 0 0
i 0 0 0 ]

which completes the formulation of this problem. Notice that, in this case, we have n =
12 variables subjected to p = 10 constraints and that we are aiming at minimizing a

performance index for which m = 6.

Three examples are presented for this case, the results appearing in Table 2.2.
Notice that in the first two examples given for this problem, we specified the same time
ratio and output swing angle. However, in the second one, we have used some weights to

2

give less importance to the terms cos® a; in the objective function. The optimum linkage

48




2. SIMPLE KINEMATIC CHAINS

Optimum
parameters Casel Case2 Case3
A¢ 70° 70° 90°
Ay 20° 20° 30°
Weights 1. 0.1 0.1
oy (deg) 104.1 97.6 80.2
ay(deg) 33.7 343 152.4
a3 (deg) 834 | 560 46.9
oy (deg) 88.7 89.8 88.7
cq —0.13749 | —0.06312 | —0.09061
¢ 0.36078 0.31653 0.24891
2 0.08399 | 0.05408 0.03919

Table 2.2 Optimum spherical four-bar linkages.

obtained, then, has a better transmission quality, but is dimensionally less balanced.

In the case of spherical linkages, convergence usually occurs within about 25

iterations.

2.3 Branch ldentification for Regional Structures of Open-Loop

Manipulators

This section concerns open-loop simple kinematic chains, i.e.. serial manipu-
lators. The problem addressed here is known as branch identification. This arises from
the solution of the inverse kinematic problem for serial manipulators which may lead to
many branches. However, when the robot is required to produce a certain trajectory in the
Cartesian space, it is necessary, when obtaining the corresponding joint coordinates. that
each of the points of the trajectory—in the joint space—belong to the same branch. It will
be realized. in Chapter 4, that the branch identification problem for parallel manipulators
can be solved as a series of such problems for serial manipulators. This is the rationale

behind the discussion presented in this paragraph.
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It has been shown in (Primrose 1986: Lee and Liang 1988) that the solution of
the inverse kinematic problem for an arbitrary 6-axis serial manipulator can produce up to
16 different solutions, i.e., 16 branches. Sandor et al.(1986a) have developed inequalities
that allow to identify the different branches. '

An alternate method is derived here, based uniquely on the Jacobian matrix.
The idea is to obtain a method to identify the branches by performing certain tests or
computations on the Jacobian matrix. There should exist frame invariant properties of this
matrix that would differ from one branch to another and which we could exploit. Some
properties of a matrix that naturally arise are its determinant and its eigenvalues. These
quantities are obviously frame independent since the determinant represents the local ratio
of volume of the mapping defined by the matrix and the eigenvalues remain unchanged
under similarity transformations. The problem is now reduced to regional structures of
manipulators , i.e., three-degree-of-freedom kinematic structures used to position a point
in space. This type of structure has a particular relevance for it is possible to treat wrist-
partitioned manipulators as a regional structure plus a wrist that is used to orient the
end-effector. The branching problem associated with the wrist is straightforward since the
sine of the second angle of the wrist bears a different sign in each branch. This angle is,

in fact, the transmission angle of the equivalent spherical four-bar linkage.

The branching problem of the regional structure, which in general may have
up to four branches, is now solved using the properties of the Jacobian matrix mentioned

above. Four cases may arise:

(i) the eigenvalues are all real and the determinant is positive

(ii) the eigenvalues are all real and the determinant is negative

(iii) only one of the eigenvalues is real and the determinant is positive

(iv) only one of the eigenvalues is real and the determinant is negative
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An example of application of this method to a 3R regional structure taken from

concept to a general 6-axis manipulator is not trivial.

Solution # 1 2 3 4
Eigenvalues | 0.20 + 2,935 | 0.03 4 0.745 —-2.31 —0.08
0.20 —2.935 [ 0.03 — 0.745 3.72 0.81
0.87 —0.87 0.87 —0.87
Determinant 7.45 —0.48 —7.45 0.48

Table 2.3 Branch identification for a 3R regional structure with ag =3, a9 =2,
a3 =1, by = by =b3 =0, aq =0 and ay = 7/2 for the configurations obtained

when z =4, y=1and z =1/2.

(Rastegar and Deravi 1987) is shown in Table 2.3. Unfortunately, the extension of this
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Chapter 3 ANALYSIS OF COMPLEX KINEMATIC CHAINS

The subject of this thesis being the study of parallel manipulators, it is necessary
to derive some results concerning the general class of linkages to which these manipulators
belong. i.e., complex kinematic chains. It is recalled that these chains are defined as those
containing at least one link having a degree of connectivity greater than or equal to three.
However, if the only link of the chain having a degree of connectivity greater than or equal to
three is the fixed link, then the chain can be treated as a set of uncoupled simple kinematic
chains, i.e., it can be broken down into a number of cases similar to the ones that were

studied in Chapter 2.

The possibility of applications of complex kinematic chains are numerous. Ex-
amples can be found even in the early work on machinery. Watt's and Stephenson’s link-
ages, for instance, clearly constitute planar 6-link complex kinematic chains (Hunt 1978).
More recently, with the advances in computer-aided synthesis of linkages, researchers have
started to consider the use of complex kinematic chains as hard automation modules which
are designed to perform a precise repetitive task. The inherent rigidity of complex kine-
matic chains is one of the important motivations behind these, because it leads to higher
accuracy and load-carrying capacity. Some of the designs even include a certain flexibility,
i.e., provision to perform alternate tasks by a simple change—which can be done within
minutes or even seconds—in their linkage parameters; for instance, changing the distance

or angle between two joints of the fixed link. Examples of the results obtained with this

approach are found in (Sandor et al. 1984, 1985, 1986a, 1986b, Wang et al. 1987)
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In this chapter, three aspects of the analysis of complex kinematic chains will
be treated: the graph representation of their topology, the determination of their degree
of freedom based on topology and geometry and their singularity analysis. A distinction
has to be made here between the topology and the geometry of a kinematic chain, the
former being the description of the chain through the type of kinematic pairs and the rigid
bodies constituting the chain together with their relative connectivities, whereas the latter
defines more precisely the linkage by giving its physical relative dimensions, in the form
of its Hartenberg-Denavit parameters (Hartenberg and Denavit 1964) for instance. The
final section of the chapter will be devoted to the introduction of parallel manipulators as

a special case of complex kinematic chains.

3.1 Graph Representation of Complex Kinematic Chains

A kinematic chain can be described as a set of rigid bodies attached to each
other by kinematic pairs, resulting in a mechanical network containing joints and links.
Moreover, when at least one of the links but the fixed one has a degree of connectivity
greater than or equal to three, the chain is said to be complex. The network defined by
the chain is topologically analog to electrical networks made up of nodes and impedances
(Davies 1981). Hence, graph theory offers a systematic way of representing the topology
of complex kinematic chains. This is now shown and the results obtained here concerning
the topology will be used in the next section for the derivation of a method allowing one

to find the degree of freedom of any complex kinematic chain.

For the sake of consistency, and to render the presentation more systematic, we
will define a joint as a kinematic pair coupling two rigid bodies and allowing no more than
three degrees of freedom. Cylindrical (C), planar (E). screw (H). spherical (S). revolute (R)
and prismatic (P) pairs are examples of joints. Once this is clear, we can write the graph
associated with the kinematic chain, in which a point of the graph corresponds to a rigid
body and an edge to a joint. A few definitions pertaining to graph theory (Harary 1969)

are now recalled.
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Definition 3.1

Definition 3.2

Definition 3.3

Definition 3.4

3. ANALYSIS OF COMPLEX KINEMATIC CHAINS

A graph G consists of a finite nonempty set V. = V(G) of p points together
with a prescribed set X of ¢ unordered pairs of distinct points of V. Each pair
z = {u,v} of points in X is a line or edge of GG, and X is said to join u and v.

We say that u and v are adjacent points of the graph.
A subgraph of G is a graph having all its points and lines in G.
A spanning subgraph of G is a subgraph containing all the points of G.

A walk on a graph is an alternating sequence of points and edges beginning

and ending with points, in which each edge is incident with the two points

~ immediately preceding and following it.

Definition 3.5

Definition 3.6

Definition 3.7

Definition 3.8

A pathis a walk with all its points (and thus necessarily all its lines} distinct.

A graph is said to be connected if every pair of points are joined by a path.

A cycleor loop is defined as a path beginning and ending at the same point and

including at least three points.

A treeis a connected graph which has no cycles.

As shown in {Davies 1981), only connected graphs in which every edge belongs

to at least one cycle are needed, since the other cases represent trivial additions to the

problem addressed here. They correspond to complex kinematic chains to which an uncou-

pled independent simple kinematic chain is added. An important issue to be covered now is

the determination of the number of independent loops in a kinematic chain. This quantity

is of great importance since it allows us to find a basis having a minimum cardinality for
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the kinematic constraints of the chain, the cardinality of a set being defined as the number
of elements that it contains. We can determine the number of independent loops in the
kinematic chain by counting the number of independent cycles in the associated graph. The
number of independent cycles in a connected graph is given by Euler's formula for graphs

(Harary 1969), namely:
k=e—v+1 (3.1)

where e is the number of edges and v is the number of points (vertices). Notice that this

equation has already been used in the context of kinematic chains, namely in (Davies 1981;

Sheth and Uicker 1972; Kleinfinger and Khalil 1986).

The next step is now to identify a set of independent loops. i.e., a cycle basis
of the graph. This can be done systematically by finding a spanning tree of the graph
and then using the chords to complete the fundamental independent cycles. The following

definition is needed:

Definition 3.9 A spanning tree of a connected graph is a connected subgraph in which all the
points are present but in which there are no cycles. The omitted edges are
called chords and each of the chords added to the tree completes a fundamental

independent cycle of the original graph.

The topological analysis of complex kinematic chains is therefore completed
since we have obtained, from its associated graph, the number of independent loops and a
basis for these loops. It is to be noted that this basis need not be unique and that the use
of any of the bases in setting up the kinematic constraint equations will lead to equivalent

systems of equations.

As an example, Watt's linkage is shown in Fig. 3.1 together with its associated
graph. A spanning tree and the corresponding chords, which allow us to identify a set

of independent loops, are also included. It is recalled that the graph associated with a
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Figure 3.1 (a)Watt's linkage (b)associated graph {c)a spanning tree (d)the corre-
sponding chords and (e)the associated set of independent loops.

kinematic chain, although very useful in the topological analysis, does not contain any

information on its geometry.

One more important concept, in the context of graph representation of kinematic

chains, is now defined.

Definition 3.10 The non-powered subchain of a kinematic chain is the subchain obtained when

all the actuated joints are locked. i.e., when all the adjacent bodies connected
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by actuated joints are rigidly coupled. When the linkage is in a non-singular

configuration, the non-powered subchain has a degree of freedom of zero.

This concept can be illustrated by the following example: A two-degree-of-
freedom planar complex kinematic chain is shown in Fig. 3.2a. The non-powered subchain
shown in Fig. 3.2b is the one obtained when the actuated joints are the ones whose rotation
angles are given by ¢ and . The corresponding graph is shown in Fig. 3.2¢. It is pointed
out that, in this case, no closed-form solution for the output angle ¢ can be written in
terms of the input angles. However, when the actuators are located on the joints whose
rotation angle is denoted by 6 and ¢, the non-powered subchain becomes the one shown
in Fig. 3.2d. with the associated graph of Fig. 3.2e. In this case, we can obtain a closed-
form solution for the output angle 3 in terms of the input angles # and ¢. This is due
to the fact that the fixed link of the non-powered subchain and the ternary floating rigid
body are directly connected to each other by a kinematic pair, which generates the short
path between the end nodes of the associated graph. Indeed, it can be readily seen, from
Fig. 3.2a, that, given angles @ and ¢, the position of point F can be computed using the
input-output equation of the planar four-bar linkage. The position of points F and H being
known, it is then straightforward to compute the position of point G and to determine

angle ¢ by making use of the four-bar linkage equation again.

3.2 Degree of Freedom of Complex Kinematic Chains

The determination of the degree of freedom (dof) of kinematic chains has at-
tracted the attention of researchers for many years. The well known generalized Chebychev-
Grubler-Kutzbach formulae, which rely only on the topology of the chains, can be used to
find the dof of many simple and complex kinematic chains. An expression for this criterion,

referred to as the general mobility criterion (Hunt 1978), can be written as:
g
I=6n—g—-1)+)_fi (3.2)
1=1
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Figure 3.2 (a)Example of a 2 dof planar complex kinematic chain (b)non-powered
subchain obtained when the actuated joint angles are @ and ¢ (c)corresponding
graph {d)non-powered subchain obtained when the actuated joint angles are § and
¢ and (e)corresponding graph.
where [ is the total number of degrees of freedom of the kinematic chain, n is the number

of rigid bodies in the chain, g is the number of joints, and f; is the number of degrees of

freedom allowed by the :th joint.

However, this type of formulae are known to fail in cases such as the paradoxical

kinematic chains (Hervé 1978). These exceptions arise when some special geometries are
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present, as in the case of Bennett's (Bennett 1903) and Goldberg’s mechanisms (Goldberg
1943). which are probably the best known examples. This suggests that general methods
for the determination of the dof of kinematic chains should take into account their geometry
as well as their topology (Eddie Baker 1980b, 1981; Davies 1981; Angeles 1987). The
-problem of finding the dof of complex kinematic chains, i.e.. chains with multiple closed-

loops, has also been addressed in this context (Eddie Baker 1980b, 1981; Davies 1981).

Using the results obtained on the topological description of complex kinematic
chains, we will now derive a general method allowing us to determine the degree of freedom
of any complex kinematic chain. It is assumed here that the graph associated with the
complex kinematic chain has been obtained and that the independent loops have been

identified, according to the procedure presented in Section 3.1.

The method developed here is an extension to complex kinematic chains, of the
method described in (Angeles 1987). for simple closed kinematic chains. This method is
based on the Jacobian matrix of the kinematic chain, a concept that is well known in the
context of robot manipulators (Renaud 1980), and that was applied to closed kinematic
chains in (Angeles 1987). It is interesting to notice that the idea of using the Jacobian
matrix to find the degree-of-freedom of kinematic chains was first suggested in (Freuden-
stein 1962). The method developed in (Angeles 1987) will be recalled briefly here, for quick
reference. It will then be formally extended to multiple closed-loop kinematic chains. An
example of a linkage and two examples of parallel manipulators will be studied. These ex-
amples will bring about another interesting feature of the method, i.e., its ability to describe

the singularities of multiple closed-loop manipulators.

3.2.1 Degree of Freedom of Simple Kinematic Chains

The method presented in (Angeles 1987) for the determination of the degree of

freedom of simple kinematic chains can be summarized as follows:

Let a simple open kinematic chain be built with rotational (R) or prismatic (P)
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pairs. As a matter of fact. screw (H). cylindrical (C), planar (E), and spherical {S) pairs can
be synthesized as combinations of R and P pairs. Moreover, let this chain be constituted
of (n+1) rigid bodies. The axis of the ith joint is defined by a point O, on this axis and a
unit vector e; along this axis (Hartenberg and Denavit 1964). The motion of the (7 + 1)st
rigid body with respect to the sth one is then defined by the rotation angle 4, about this
axis if the sth joint is rotational, or by the displacement s; along this axis if the :th joint

is prismatic.

In particular, the motion of the (n + 1)st rigid body, called the end-effector,
is described by the position vector r of one of its points P and by the orthogonal tensor
Q giving its orientation. Velocities are then given by f and w, the angular velocity of the
end-effector. If we denote by 0 the n-dimensional vector of joint rates and t = [wT,iT]T

as the 6-dimensional twist vector, then we can write:
o=t (3.3)
where J = J(0). the Jacobian matrix, is a function of the configuration of the chain. Matrix

J is then defined as:
eq €9 Ce €n
€1 Xr{ € Xry ... €pXirIy

1= (3.4)

where r; is the position vector of point P with respect to O;. If the ith joint is prismatic,
then the sth column of J is changed to: ¢; = [OT,eZT]T, where 0 is the 3-dimensional zero

vector.

For simple closed kinematic chains, the end effector is coupled to the first link
with a rotational or prismatic pair or a combination of these. The twist of the last link can

then be written as:

t=—0p11Cn41 (3:5)
where ¢, is defined similarly to c;. The vector of joint rates # can then be redefined as
an (n + 1)-dimensional vector having én+1 as its last component. The Jacobian matrix is
correspondingly redefined as an augmented 6 x (n + 1) matrix whose last column is ¢, 4.

Equation (3.3) becomes:
J6=0 (3.6)
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The degree of freedom (I} of the chain is then equal to the dimension of the nullspace of

J. Le.:

[=dim[N(J)] (3.7)

where N is the nullspace of J. The problem of finding the degree of freedom of a simple
closed kinematic chain is then reduced to the determination of the dimension of the nullspace
of a 6 x (n + 1) matrix, which is a common problem of numerical analysis. There are many
ways of solving this problem. For instance, one can apply a Householder reflection technique

to reduce the Jacobian matrix to a simpler form (Golub and Van Loan 1983), i.e.,

H,...HJT =

IJ (38)

where T is an 7 X 6 matrix and 0 an (n —r+1) X 6 zero matrix. Moreover, T is of the form
T = [S,U] where S is an upper-triangular r x r matrix and U is an arbitrary r x (6 —r)

matrix, r being the rank of J.

The method described above has been successfully used in (Angeles 1987) for
the determination of the degree of freedom of the Bennett mechanism which is a paradigm

of mechanisms elusive to Chebychev-Grubler-Kutzbach formulae.

3.2.2 Extension to Complex Kinematic Chains

The extension of the method to complex kinematic chains is based essentially
on the topological analysis of Section 3.1. Indeed. when all the independent loops of a
complex kinematic chain have been found, the procedure described above is applied to each

of these loops. which leads to:
JO=0, i=1,.. ,k (3.9)

where k is recalled to be the number of independent loops and vector 8 includes all the
joint rates of the whole chain. Joints which are not included in the ith loop will lead to a
corresponding 0 column in the subjacobian matrix J;. It is also important, for consistency.

to make sure that the positive direction of rotation around the axis (Hartenberg and Denavit
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Figure 3.3 Special case of Watt's linkage, all link lengths are equal.
1964) of the sth joint be the same for each of the loops, i.e., that the definition of the joint
rates is the same on each of the loops. The Jacobian matrix of the whole chain J can now

be assembled as:

4
J=1: (3.10)
i
and hence, the kinematic joint-rate constraints of the overall chain can be written as
J6=0 (3.11)
and hence
I =dim(N{J)) (3.12)

i.e., the dof | of the complex kinematic chain is equal to the nullity of J. This method will

now be applied to the analysis of three different complex kinematic chains.

3.2.3 Examples

3.2.3.1 Application to Watt's Linkage

This linkage was described in Section 3.1 and a set of independent loops was

identified in Fig. 3.1. The dimensions of the linkage considered here are shown in Fig. 3.3.
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Since the topological analysis is already completed, we can directly apply the
Jacobian method. The subjacobians will be 3 x 7 matrices for we have seven joints and the
kinematic chain is planar. This is so because the angular velocity constraint leads to only
one equation in a planar system, and the linear velocities are two-dimensional vectors. As

a matter of fact, if we use complex numbers to denote the vectors in the plane, we have:
exr = e”/zri : (3.13)

where e = [0,0, 1]T 1s a unit vector orthogonal to the plane and e is the basis of the natural

logarithms. Therefore, if we denote the joints as in Fig. 3.3, we derive:

1 1 1 1 0 0 o0
Ji-{tOZ 6717'./2I’2 ejl]r/zl’g 6_7'71'/2',4 02 02 02} (314&)

for the first loop and

JZ:[O 0 O 1 1 1 1 } (3.145)

0, 0, 0y ™2y 0, &I™/2, &I7/2
for the second loop. where 0, denotes the two-dimensional zero vector. The first row of
the foregoing matrices arises from the angular velocity constraint—this is how the unity
entries are obtained—and r; and r; are the vectors connecting the sth joint to the 1st and

5th one respectively. These expressions can be rewritten in terms of angle ¢ (Fig. 3.3) as:

1 1 1 1 00 0
Jy=10 sind (sind++3/2) v/3/2 0 0 0 (3.154)
0 cos® (cos§—1/2) —1/2 0 0 0
and
000 1 1 1 1
Jyb=10 0 0 v3/2 0 sin(27/3—8) [sin(27/3 — 6) +/3/2] (3.15b)
0 00 1/2 0 —cos(2r/3—6) [1/2 —cos(2n/3 — §)]

The matrices can now be assembled as:

= [jﬂ (3.16)

where the global Jacobian matrix J is of 6 x 7. Therefore, if J is of full rank, its nullity is of

dimension 1 and the mechanism has a degree of freedom of 1, which is true in general. We
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will now consider the link connecting joints 1 and 2 as the input link—the fixed link being
the one connecting joints 1,4 and 5—and try to find configurations in which the mechanism
would acquire an extra freedom. To this end, we will equate the joint rate corresponding
to the input, i.e., 91, to zero. This can be accomplished by dropping the first column of J,

which leads to:

M1 1 1 0 0 0 T
sind  (sinf++/3/2) V3/2 0 0 0
) cosd (cosf—1/2) —-1/2 0 0 0
- 0 0 1 1 1 1
0 0 V3/2 0 sin(2r/3—6) [sin(27/3 —6) +/3/2] |
. 0 0 1/2 0 —cos(2n/3—46) [1/2—cos(27/3 —¥8)] |
(3.17)
The expansion of the determinant A of J' can then be reduced to:
3
A = —sin 0(% sinf + %_— cos 6) (3.18)
and the zeroing of this quantity leads to four solutions for 8, namely:
6= —-7n/3,0,27/3, (3.19)

Each of these values of the input angle correspond to a configuration in which the linkage
instantaneously acquires an extra degree of freedom, i.e.. in which we can have a nonzero

vector of joint rates even if the joint rate of the input is zero.

3.2.3.2 Planar Three-DOF Parallel Manipulator

A three-degree-of-freedom planar parallel manipulator is shown in Fig. 3.4.
The three motors My, M, and M3 are fixed and placed on the vertices of an equilateral
triangle. Moreover, the corresponding link lengths on each of the legs are the same, i.e.,
the manipulator is symmetric. This manipulator will be studied in detail in Chapters 4
and 5, and the reader is referred to these chapters for a more detailed description of its

characteristics.

in order to apply the method derived here to this manipulator, the associated
graph has been drawn. This is shown in Fig. 3.5a. A spanning tree is shown in Fig. 3.5b

and the associated independent loops are identified on Fig. 3.5¢.
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inxed joint

Figure 3.4 Planar three-degree-of-freedom paraliel manipulator.

3 7
4
2 5 8
6
1 9

Figure 3.5 (a)Graph associated with the manipulator shown in Fig. 3.4 (b)a span-
ning tree and (c)the corresponding independent loops.
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Since we have nine joints and the kinematic chain is, again, a planar chain, the
subjacobians will be 3 x 9 matrices. f we use a notation identical to the one presented
above, and if we denote the joints as indicated in Fig. 3.4, we derive:

{ 1 1 1 1 1 1 0 0 O
Jy =

€j7r/2r1 ej-7r/2r2 ej'7r/2r3 e]ﬂ/2r4 e]~7r/2r5 02 02 02 02] (320&)

and

0 0 O 1 1 1 1 1 1
Jy = : - - - » 3.20b6
2 {02 0, 0, ¢ ”/Zrﬁ e ”/ng e’ ”/zré e”/zr'7 el ”/zré 0, } ( )
where, again, the first row of the subjacobian matrices arises from the angular velocity
constraint and where r; and ré are the two-dimensional vectors connecting the th joint to

the 6th and 9th one, respectively.

Figure 3.6 Definition of angles 14, ¥ and ¢3.

Moreover, angles 11, 1 and 3 are defined as shown in Fig. 3.6, which leads

to:

[ = H | (3.21a)

__|z-1 cosdy | cos(¢q + 1)
2= { y ] ths [Si” ¢1] 2 [Sin(% +¢1)J (3:210)
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r 1 _ N
BT _xy | T Cs?,fff (3.21¢)
[ 1' r . Z
(Rl R R cs?,:j; | (3.21d)
[zt [ cos ¢ | cos(¢y + )
5T Ly i | sin ¢y | —! {sin(qﬁz.{.d)z)} (3.21¢)
and

- - 1/2 COs ¢2

r4—_[?/—\/§/2}+l3[sin¢2:} (3.22q)
_ r—1/2 cos ¢y cos(dy + 1)
7’5 T {y - \/5/2J i {sinq&z} —h {sin(qﬁz +¢2)} (3.225)
-1/2

6= [ﬁﬂ (3.22¢)

I — T-— 1/2 Ccos ¢3
. [y - \/5/2} T [sin qu (3.22d)

- T — 1/2 COSs ¢3 _ COS(¢3 + ¢3)
where

$r=¢+7/6
¢y = ¢ +57/6 (3.23)

3 =¢—m/2

angle ¢ being the angle defining the orientation of the gripper and z and y being the

coordinates of the centroid of the gripper. Equations (3.20a) and (3.20b) lead to:

11 1 1 1 1 0 0 07

0 -y —-y3 —w —ys 0 06 0 0

_ 1 z9 Z3 Ii Iy 0 0 0 0
1= 0 0 0 1 1 1 1T 1 1 (3.24)

0 0 0 -y -y —V3/2 —yf -y O

[0 O 0 'z =z -1/2 <z, zf 0]

where ;. y; and z}, y; are the = and y components of vectors r; and r! respectively.

Since J is a 6 x 9 matrix, its nullity will be 3 if J is of full rank, i.e., the
manipulator has, in general, three degrees of freedom. To analyze the singularities, we will
set the rates of the powered joints to zero and see under which conditions the nullity of the

reduced matrix can be greater than zero. It will become clear, in Section 3.3, that this type
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of singularity corresponds to a singularity of the second type discussed in that section, i.e.,
a singularity for which the Cartesian rates of the gripper can be nonzero while the motor
rates are zero. The zeroing of the motor rates can be accomplished here, by dropping the

1st, 6th and 9th columns of J. which leads to:

1 1 1 1 0 0
-y —y3 -y -y5s O 0
Y] z3 7| Iy, 0 0
0 0 1 1 1 1
0 0 -y -w -y —ug
0 0 Ty Tp oz ]

JI

(3.25)

The foregoing Jacobian can be properly reduced by performing elementary operations on

J'—without affecting its rank—, which leads to:

1 1 1 1 0 0 T
0 (yv2—w3) (v2—w) (v2—us) 0 0
/ 0 (zg—1x3) (z9—1z4) (29— 5) 0 0
] 0 0 1 1 1 1 (3'26)
0 0 0 (a—ws) (va—vh) (vj—vp)
[ 0 0 0 (zy —z5) (zj —f) (z) — =)

Substituting eqgs.(3.21) and (3.22) in eq.(3.26) and expanding the determinant A will lead,

after many simplifications, to the following:

A =sin(27/3 + 3 — 2) [sin ¢y ~ sin(yq — 27/3)]

(3.27)
+ sin(yq — ¥y — 27 /3) [sin(tp3 + 27/3) — sin 3]
which is next further reduced and set equal to zero as follows:
A =sin(q + 1y + 3) + 4sin gy sinigsinhy =0 (3.28)

There are two conditions under which this equation can be satisfied:

1. fy = ¢ =13 = na,n =0,1,2,..., then eq.(3.28) is obviously satisfied.
This solution corresponds to configurations in which the secondary links of the
three legs are concurrent. These links are defined as the ones joining the driving

links to the gripper.
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2. If 41—y = —m/3 and ¥y —1P3 = 27 /3 then, substitution of these two equalities
in eq.(3.28), leads to:

sin(3¢q) + 4sind ¢y — 3singy =0 (3.29)

which is a trigonometric identity. This solution corresponds to the configura-

tions for which the secondary links of the three legs are parallel.

These two conditions are exactly the same as the ones derived in (Hunt 1983)
using screw theory: that is, the planar three-dof parallel manipulator is singular whenever its
three secondary links are either concurrent or parallel. These results will also be confirmed
in Chapter 4, where the singularities of the planar manipulator are analyzed following a

different approach.

3.2.3.3 Spherical Three-DOF Parallel Manipulator

A spherical three-dof parallel manipulator is shown in Fig. 3.7. This manipulator
will be studied in detail in Chapters 4 and 5. The three motors My, My and M3 are fixed
and placed on the vertices of an equilateral triangle. Moreover, the manipulator is symmetric
and all joint axes are concurrent. Furthermore, we denote by u,, v; and w;, the unit vectors
along the axis of the ¢th motor, the ¢th joint attached to the gripper and the sth intermediate

joint, respectively.

The graph associated with this manipulator is identical to the one shown in
Fig. 3.5a. and therefore, there are two independent loops. However, the linear velocity
equations are irrelevant here since all the joint axes intersect and only the angular velocity

constraints need to be considered. This leads to:
Jl = [ul Wl V1 u2 W2 Vz 0 0 0] (3.30@)

and

Job=[0 0 0 u w; vy u3 w3 v3] (3.300)
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Figure 3.7 Spherical three-degree-of-freedom parallel manipulator.

These are next assembled as:

J— “;] (3.31)

Again, matrix J is of 6 x 9, which means that, when it is of full rank; its nullity
is 3 and the kinematic chain has three dof, as it should. To analyze the singularities, we

set the motor rates to zero, as in the previous example, which leads to:

r_|wg vp owy vp 0 O
! 0{0 0 wy vy w3 "3} (332

and the condition under which det(J') is equal to zero can be shown to be:

[(wq x vi) x (wy x vp)] - (w3 x v3) =0 (3.33)

This result will be reproduced and interpreted in Chapter 4, where the singu-
larities of the spherical parallel manipulator will be analyzed in detail following a different

approach.
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3.3 Singularities of Closed-Loop Kinematic Chains

The study of the kinematics of mechanical systems leads inevitably to the
problem of singular configurations. These special configurations are defined as the ones
in which the Jacobian matrix, i.e., the matrix relating the input rates to the output rates,
becomes rank deficient. They correspond to configurations of the system that are usually
undesirable since the degree of freedom is instantaneously changed. As a matter of fact, this
is how the method presented in Section 3.2 allowed us to identify singular configurations.
For serial manipulators, the singularity problem has been addressed by several authors, for
instance: Sugimoto and Duffy (1982): Lai and Yang (1986): Litvin and Parenti Castelli
(1985); Waldron et al. (1985): Litvin et al. (1985 & 1986); Hunt (1986 & 1987); Wang
and Waldron (1987). Some researchers have also worked on the singularities of simple
closed-loop kinematic chains {Eddie Baker 1980a; Sugimoto et al. 1982; Litvin at al. 1986
& 1987; Litvin and Tan 1987; Litvin and Fanghella 1987; Litvin and Wu 1987).

A singularity analysis for closed-loop kinematic chains is presented in this sec-
tion. As demonstrated by the examples included here, this analysis is applicable to simple
and complex closed-loop kinematic chains in general. The technique will be used in Chapter

4 for the singularity analysis of parallel manipulators.

3.3.1 Singularity Analysis

A complex kinematic chain consists of a set of rigid bodies connected to each
other with joints and where the conditions specified in the first paragraph of this chapter
are satisfied. The chain is also characterized by a set of inputs, denoted here by an
n-dimensional vector §, which correspond to the powered joints and by a set of output
coordinates, denoted here by an m-dimensional vector x. These input and output vectors
depend on the nature and purpose of the kinematic chain. For instance, in a parallel
manipulator, the input vector 8 represents the set of actuated joints and the output vector

x represents the Cartesian coordinates of the gripper. However, in general, the output does
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not need to be a set of Cartesian coordinates and can also correspond to joint angles or
displacements. Furthermore, although the number of inputs and outputs does not have
to be equal, the number of independent inputs and outputs will always be the same and,
therefore, vectors # and x can be reduced or augmented to vectors of the same dimension
which will be equal to the degree of freedom of the linkage. The input and output rates are

then related through the Jacobian matrix of the chain as:
f = Jx (3.34)

As opposed to the convention used for serial manipulators, the Jacobian matrix is defined
here as the one mapping the output rates into the input rates. The reason for that will

become clear in Chapter 4. Moreover, eq.(3.34) can also be written as:
x = Ké (3.35)
where K = J71, J and K being configuration dependent.

As stated above, singularities occur in configurations where J is rank deficient.
However, for general complex kinematic chains, a distinction can be made between three

types of singularities which have different physical interpretations.

(i} The first type of singularity occurs when the following conditions are verified:

det(K) = 0 (3.360)

det(J) — oo (3-360)

The corresponding configuration is one in which the chain reaches either a
boundary of its workspace, or an internal boundary limiting different subregions
of the workspace where the number of solutions is not the same. In other
words, this type of singularities consists of the set of points where different
branches of the inverse kinematic problem meet, the inverse kinematic problem

being understood here as the computation of the values of the input variables
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from given values of the output variables. Since the nullity of K is nonzero, we
can find a set of vectors § for which x would be equal to zero and therefore
some of the velocity vectors x cannot be produced at the output. Typically,
these would be velocities orthogonal to the boundary and directed towards the

outside of the workspace.

(i) The second type of singularity occurs when we have the following:

det(J) =0 (3.37a)

det(K) — oo (3.37b)

This corresponds to configurations in which the chain remains uncontrollable
even when all the actuated joints are locked. As opposed to the first one, this
type of singularity lies within the workspace of the chain and corresponds to a
point or set of points where different branches of the direct kinematic problem
meet. The direct kinematic problem is the one in which it is desired to obtain
the values of the output variables from given values of the input variables. Since
the nullspace of J is not empty, there exists a set of output rate vectors x which
will be mapped into the origin by J, i.e., which will correspond to a velocity of

zero of the input joints. The input rates are therefore not independent.

Both the first and second types of singularities correspond to configurations

that can happen in a general complex kinematic chain.

(iii) The third type of singularity is of a slightly different nature than the first two,
since it requires conditions on the linkage parameters. Indeed, if some specific
conditions on the linkage parameters are satisfied, the chain can reach configu-
rations where the first two types of singularities meet and the Jacobian matrix
then becdmes indeterminate. This corresponds to configurations in which the

chain can undergo finite motions when its actuators are locked or in which a
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finite motion of the inputs produces no motion of the outputs such as, for in-
stance, a linkage having a constant branch (Russell 1988). For linkages having
a quadratic input-output equation, the third type of singularity also corresponds

to a case for which all three coefficients of the quadratic are equal to zero.

The three types of singularities will now be illustrated with some examples of

closed-loop simple and complex kinematic chains.

3.3.2 Example 1: Planar RRRP Mechanism

A planar RRRP mechanism is shown in Fig. 3.8. This one-degree-of-freedom
mechanism is often referred to as a crank-slider four-bar linkage. The crank angle 0 is the

input variable and the displacement of the slider, denoted as z, is the output.

S
A

ot

Figure 3.8 Planar RRRP mechanism.

Therefore, in this case, the Jacobian is a 1 x 1 matrix, i.e.. a scalar, and will be

denoted as J or K. From the geometry of the linkage, we can write:
z = Rcosf +lcos ¢ (3.38a)

and

Rsing = lsiny (3.380)
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substitution of eq.(3.38b) into eq.(3.38a) leads to:
£ =Rcosf+1\/1—1r2sin?0 (3.39a)

where
R
l

(3.39b)

r

and where the double sign arises from the fact that the direct kinematic problem has two

branches. Upon differentiation with respect to time of eq.(3.39a). one obtains:

=K (3.40q)
where ‘
) rsinfcosé
K=—-R|sinf = (3.400)
1—1r2sin?g

Therefore, the first type of singularity arises when K = 0, i.e., when § = 0 or

7. In this configuration, eq.(3.39a) becomes:
z==+R=+tl (3.41q)

and the links of length R and [ are aligned, which corresponds to the limit of the workspace.

Since K is equal to zero. the value of & will be equal to zero, whatever the value of 8 is.

The second type of singularity occurs when J = 0, i.e., when the denominator
of K goes to zero. This condition leads to:
1
sinf = — 3.41b
. (3.418)
The corresponding configuration is shown in Fig. 3.9. This configuration is clearly within
the range of motion of the output, i.e., within the workspace. Moreover, since the second

term of eq.(3.39a) vanishes, the two branches of the direct kinematic problem meet. The

output can undergo infinitesimal motion even if the input is locked.

As stated above, the third type of singularity requires that certain conditions
on the linkage parameters be satisfied. For the example treated here, the condition is that

the input and coupler links have the same length, i.e.,
R=1 (3.42)
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pa—

Figure 3.9 Second type of singularity for the planar RRRP mechanism.

Under this assumption, eq.(3.39a) can be rewritten as:

z=Rcosf+ Rcosd (3.43a)
or
0
= 3.43b
* { 2Rcos f ( )

which clearly shows that the mechanism has a constant branch. Therefore, when z is equal

to zero, the input can undergo arbitrary rotations while the output remains at rest.
3.3.3 Example 2: Watt’s Linkage

A linkage of this type is shown in Fig. 3.10. The link lengths used here are
slightly more general than the ones used in Section 3.2. The mechanism has one degree
of freedom. and the input and output variables are angles 6 and ¢, respectively. Again, the

Jacobian is a scalar quantity.

From the geometry of the linkage, we can write:
zq1 = —cos(¢ + 7/3) (3.44)

and

yg = —\2@ + sin(¢ + 7/3) (3.45)
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3 y1] (E10)

Figure 3.10 Watt’s linkage.

and also:
a=tan"1 (2}_) (3.46a)
1
where
Ty =21 —1/2 (3.460)
and - /3
f=tan”! (l;::;sg i 13//22> _(3'47)

Moreover, using the /aw of cosines, we obtain:

li :l§+x/12+y%—213\/x'12+y%cos(a—gb) (3.48)

and
12 =1+ (g cos 8 +1/2)% + (i sin 8 — v/3/2)?

— 2\/(11 cos 0 +1/2)2 + (I3 sin 6 — /3/2)2 cos( — B)
Given a certain value of the input angle 8, angle i) can be computed from egs.(3.47) and

(3.49) and then angle ¢ is obtained from eqs.(3.46) and (3.48). Upon differentiation of

(3.49)

these equations with respect to time, the following is obtained:

(V/3ly sin 6 — I3 cos 6 — 12)(—1/2ly sin § — v/3/2l; cos0) | .
2sin(v — B)[(1/2 + 14 cos )2 + (i1 sin 8 — v/3/2)2]3/2

b=+ [ (3.50qa)
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where ) 3
. Is +1/21 0 —/3/2l;sind :
= | fit1/2hcosd — v3/2sin b (3.500)
(lcos 8 +1/2)2 4 (Iy sin — +/3/2)2
and ) s
! /s -
. + -1 +
b=a+t (z 3_’1 +1i 3)(2151-‘1512 y;y1) (351a)
213 sin(o — ¢} (2} + yl)?’/
where
b
o= ﬁg%L;l (3.51b)
Therefore, the relation between the input and output velocities can be written as:
=K@ (3.52)
where
NNy |
K=—2=: 3.53a
and
Ny =(lg cos 6 — /3y sin 8 + 12 +12)(1/2l4 sin 8 + /3 /214 cos §)
+2sin(¢ — B)(Z +1/24 cos § — v/2/2l; sin §)
x 1= VBlysin0+lcos0+1 (3.53b)
Ny = —sin ¢(x'12 + y% + ZZ - l%) — 2l3 sin{a — ¢)(1 + cos )4/ :1:'12 + y% (3.53¢)
Dy =2sin(¢ — B)(1 — V/3ly sin 0 + I cos § + 12)3/2 (3.53d)
D, =213 sin(a — ¢) () + v2)3/? (3.53¢)
The first type of singularity occurs when K =0, i.e., when
N1 =0 or N2 =0 (354)

The first condition corresponds to the set of configurations in which links I and I, are
aligned, which clearly defines a boundary of the workspace. The second condition corre-
sponds to configurations where link [, is aligned with the line connecting joints 4 and 5,
which again defines a limit position of the output link. In these configurations, the velocity

of the output is always zero, whatever the input velocity is.
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The second type of singularity, i.e., the one in which the velocity of the output
link can be nonzero even if the input velocity vanishes, occurs here when the denominator

of K is equal to zero, i.e.:

Dy =0 or Dy, =0 (3.55)
The first condition can be rewritten as:
sin(¢py — ) =0 (3.56)

which corresponds to configurations in which link [, is aligned with the line connecting
joints 3 and 4. This type of configuration is shown in Fig. 3.11, where it is clear that the
output link can undergo an infinitesimal motion even if the input is locked. The second

condition can, in turn, be rewritten as:
sin(a — @) =0 - (357)

which corresponds to configurations in which links I3 and /4 are aligned.

Figure 3.11 Second type of singularity for Watt's linkage.

The conditions on the link lengths required for the third type of singularity are
given by the following:
ll = 12 =1 or l3 = l4 =1 (358)
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When the first equality above is verified, the mechanism can reach configurations where
joints 2 and 4 are superimposed, and the output can then undergo finite motions while the
input is at rest. As a matter of fact, since links /4 and [, are aligned with the lines connecting
joints 1 and 4 and joints 3 and 4 respectively, they become kinematically irrelevant and the

whole linkage is reduced to a four-bar planar linkage.

On the other hand. if the second equality of eq.(3.58) is verified. the mechanism
can reach configurations where joints 4 and 6 are superimposed. In this case, links I3 and
l4 become irrelevant and the linkage has a constant branch, i.e., a branch on which the

output link remains at rest.

3.4 Characteristics of Parallel Manipulators

The purpose of this section is to introduce parallel manipulators as a subset of

complex kinematic chains and to derive their characteristics.

First of all, the graph representaﬁon of parallel manipulators is always of the
type shown in Fig. 3.5a. The graph is composed of a set of parallel paths connecting two
poles, the poles being the base link and the gripper. Therefore, these two links are the only
ones having a degree of connectivity greater than or equal to three. The number of joints

in each of the parallel paths and the number of paths can vary.

Moreover, for the general case of a spatial manipulator, the number of loops

can be related to the degree of freedom using the general mobility criterion (eq. 3.9) as:
I =6(1+pn) —5p(n +1) (3.59)

where 1 is the number of degrees of freedom of the manipulator, n is the number of rigid
bodies per leg of the manipulator disregarding the base and the end-effector and assuming
that each joint has only one dof, and p is the number of legs, which corresponds to the

number of paths connecting the two poles of the graph. Moreover, if we want to have a
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fully parallel manipulator, i.e., one in which all the motors can be fixed to the ground. we

need to have only one motor per leg, which leads to the following condition:
I=p (3.60)

By substitution of eq.(3.60) in eq.(3.59), an equality describing all spatial fully parallel

manipulators is obtained. This is expressed as:
p(n —6) = —6 (3.61)

The solutions of this equation that are physically meaningful, i.e., the ones that correspond
to feasible manipulators, are shown in Fig. 3.12. Point A is associated with the well -
known six-degree-of-freedom parallel device referred to as the Stewart platform (Stewart
1965). Point B, in turn, corresponds to a three-degree-of-freedom manipulator such as,
for instance, the parallel part of the AR TISAN manipulator studied in Chapter 4. Point C

is associated with a two-degree-of-freedom simple closed kinematic chain.

p

A
6T ° 4
4 .

4 °B

1 °
2 e,

2 4 6 n

Figure 3.12 Spatial fully-parallel manipulators.

Although this thesis is devoted to the study of fully parallel manipulators, it
is worth mentioning here that some researchers have proposed partially parallel structures

for manipulators. Earl and Rooney (1983) have presented a topological'investigation that
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considers all these possibilities. In order to characterize the kinematic structure of such
manipulators, the following index is now defined:
| k
d= — 36
1 (3.62a)
with

0<d<1 (3.620)

where d is called the degree of parallelism of the manipulator, k is recalled to be the
number of independent loops in the manipulator’s graph, and [ is the degree of freedom
of the manipulator. The application of this criterion to a fully parallel manipulator gives
a degree of parallelism of 1, whereas a degree of parallelism of zero is obtained for a
serial manipulator. Intermediate architectures will give other results. For instance, the
manipulator discussed in (Bajpai and Roth 1986) gives a degree of parallelism of 50%
when the foregoing criterion is used. The index has a singularity when the degree of
freedom of the chain is equal to one, in which case the value of d is one if there is at least

one loop and zero otherwise.
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Chapter 4 ANALYSIS OF PARALLEL MANIPULATORS

Some planar, spherical and spatial manipulators are introduced in this chapter.
They all satisfy the definition given in Chapter 3, i.e., they all have a degree of parallelism
of one. As pointed out in Chapter 1, the advantages of parallel manipulators make them
suitable for many potential applications. However, since their structure is fundamentally
different from the usual serial architecture, it is required that a detailed kinematic analysis
be pursued. This analysis will allow us to obtain the equations constraining their motion,
which include solutions to the direct and inverse kinematic problems as well as velocity
and acceleration inversions. These results are of a primary importance for the control and
trajectory planning of the manipulators. Moreover, the derivation of the Jacobian and the
investigation of singularities presented here will be used in Chapter 5 for the optimization

of the kinematic parameters of the manipulators.

As in the case of serial manipulators, the direct kinematic problem is defined here
as the one in which the Cartesian coordinates of the gripper are obtained from the powered-
joint angles. The inverse kinematic problem is therefore the one in which the powered-joint
angles are computed from the Cartesian coordinates of the gripper. It is pointed out that
the degree of difficulty involved in finding a solution to the direct kinematic problem of
parallel manipulators differs from the one involved in the solution of the same problem for
corresponding serial manipulators. The term corresponding serial manipulator used here
refers to a serial manipulator having a kinematic structure identical to one of the legs of a

given parallel manipulator. Therefore, the degree of difficulty involved in finding a solution
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to the inverse kinematic problem of corresponding parallel and serial manipulators is the
same, with the difference that, in the case of the parallel manipulator, only one joint angle
per leg is needed and that the solution has to be repeated for each of the legs. However, the
degree of difficulty involved in finding a solution to the direct kinematic problem of a parallel
manipulator is much higher than for a corresponding serial manipulator. As a matter of
fact, the solution of the direct kinematic problem for serial manipulators is straightforward
since it amounts to a series of matrix multiplications and vector additions, whereas the
solution of the same problem for the corresponding parallel manipulators usually requires the
utilization of a numerical method, closed-form solutions being impossible to obtain. This
is so because the graph representation of their non-powered subchain is usually symmetric
and the gripper cannot be related directly to the fixed link of this subchain by any of the
legs. Therefore, for parallel manipulators, the solution of the direct problem is, in general,

not unique and both the inverse and the direct problems lead to multiple branches.

The velocity inversion gives the relationship between powered-joint rates and
Cartesian rates of the manipulator’s gripper and the acceleration inversion relates the cor-
responding accelerations. The Jacobian matrix derived for the velocity inversion is used in
the singularity analysis and the results obtained are shown to be in agreement with those

presented in Section 3.2.

4.1 Planar Three-Degree-of-Freedom Manipulator with Revolute

Actuators

A planar parallel manipulator is represented in Fig. 4.1, all of whose joints are
of the revolute type, and the three motors My, My, M3 are fixed. The manipulator consists
of a kinematic chain with three closed loops, namely M{DABEM,, MyEBCF Mj, and
M3FCADM),, the gripper being rigidly attached to triangle ABC. It is pointed out again
here that only two of the aforementioned loops are kinematically independent according to
the definition given in Chapter 3. This is clearly seen from the associated graph which was

shown in Fig. 3.5a.
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@ fixed joint

Figure 4.1 Planar three-degree-of-freedom parallel manipulator with revolute actu-
ators.

Unlike the case of a mechanism, which, most of the time, is designed for a
specific task, the tasks to be performed by a manipulator are unknown and unpredictable a
priori. As a matter of fact, the manipulator studied here will be asked to arbitrarily position
and orient the gripper in the plane of motion, following a certain trajectory that will be task
dependent. Hence, there should not be any preferred general orientation for which the
manipulator would have better properties. This suggests that the manipulator should be
symmetric. Therefore, the motors will be located on the vertices of an equilateral triangle

and the link lengths will be the same for each leg, i.e.,

l; = l; = l;’, 1 =1,2,3 (4.1)

This assumption will be used throughout. Moreover, in what follows, the dis-

tance between any two of the motors will be set equal to unity, for normalization purposes.
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Triangle ABC will be referred to as the gripper, for it is kinematically equivalent to this. It
could be referred to as the end-effector, as well, but due to the kinematic structure involved,

the gripper is not an end link.

The potential applications of this manipulator include pick-and-place operations
over a plane surface, machining of plane surfaces, mobile base for a spatial manipulator

and moving platform for a terrestrial vehicle simulator.

4.1.1 Inverse Kinematic Problem

As stated above, the manipulator aims at guiding the gripper through a certain
trajectory in the Cartesian space, the Cartesian coordinates of the gripper being given by
the position of its centroid C(z,y) and the angle ¢ defining its orientation (Fig. 4.1). The
inverse kinematic problem, therefore, consists of determining 8y, 8, and 63 for given values
of z. y and ¢. It can be readily shown that the solution to this problem contains eight
different branches. In fact, the solutions for the input angles 6y, 6, and 65 are uncoupled
and, moreover, the solution to each of these angles can be obtained from the input-output
equation of a planar four-bar linkage for each leg, thus giving rise to a quadratic input-
output equation, which thus contains two solutions, as shown, e.g., in {Angeles and Bernier
1987a). For instance. the solution for the first leg is shown in Fig. 4.2. In this figure, when
the Cartesian coordinates (z,y,¢) are specified, we can consider the chain CADMj as a
four-bar linkage for which the position of the input link, {3, is given. Angle 6 can therefore

be computed using the input-output equation mentioned above.

The same reasoning can be applied to each of the legs and a general solution
is given here, for leg 7. by:

b=+, =123 (4.2)

where

o; = atan2(zy;,yo;) (4.3)
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@ fixed joint

Figure 4.2 Analysis of the first leg.

and
2 2,2 2
1|l -l +zh +yy,

[2 | .2
20\ 75, + Yy

angle ¢, being chosen on the main branch of the inverse cosine function, i.e., 0 < ¢, <.

¥; = cos™ (4.4)

Moreover, coordinates zy; and yy, are defined as:

Ty, = T — l3 Ccos (,ZSZ — Xy (450,)

yy =y —lzsind; —yy (4.5b)

whereas angles {qﬁz}% are given by

¢1=¢+ /6 “ (4.6a)
¢y = ¢ +571/6 (4.6b)
¢3=¢—7/2 (4.6¢)
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and

{xoi}i’ ={0,1, 1/2} (4.7&)
{Yoi }i’ ={0,0, \/§/2} (4.7b)

are the positions of the centres of the motors. This completes the solution of the inverse

kinematic problem.

4.1.2 Direct Kinematic Problem

As pointed out in the introduction of this chapter, the direct kinematic problem
for parallel manipulators is more involved than the inverse problem. Indeed, even for the
simple three-degree-of-freedom planar manipulator discussed here, no closed-form solution

can be found. However, the following theorem was shown in (Hunt 1983):

Theorem 4.1: The solution of the direct kinematic problem for the planar three-degree-

of-freedom parallel manipulator leads to a maximum of 6 different branches.

Proof: This result is obtained with the following reasoning: referring to Fig. 4.1, if the three
input angles—i.e., the powered-joint angles—are specified, then the positions of points D,
E and F are readily computed. Moreover, we can think of the chain DABE as a four-bar
linkage of which C is a point of the coupler link, generating a coupler curve. A solution for
the closure of the whole kinematic chain (manipulator) is obtained whenever the coupler
curve described by the motion of point C intersects the circle defined by the rotation of link
FC around point F. Since the equation of the general coupler curve of a planar four-bar
linkage—also called the tricircular sextic—is of the sixth degree (Hartenberg and Denavit
1964), the intersection of this curve with a circle has a maximum of six solutions, and
hence, the direct kinematic problem of the planar three-degree-of-freedom manipulator has

a maximum of six solutions, and the proof is completed.

The foregoing principle is now used to derive the equations that will lead to

a simple formulation of the direct kinematic problem which is suitable for a numerical
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solution. The notation used here is similar to the one used in (Ma and Angeles 1987). The

four-bar linkage considered is shown in Fig. 4.3.

Figure 4.3 Planar four-bar linkage.

The position of point C of the coupler can be written as:
zo = zp + Iy cos(oyq + ¥) + V/3l3 cos(ey + ay + 6)

yo = yp + lysin(ay + ¥) + V3lzsin(ag + oy + )

where
ay=m/3
oq = atan2 {M}
Ig —Ip

and

6o — 2tan=1 B++vB? - AC

12 = tan

’ A

with

A:mi—m2+(1+m3)cosd)
B =siny

C = myq + my + (mg — 1) cos ¢

(4.12a)
(4.12b)
(4.12¢)
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and
~d? — 312
3
my = ——— 4.13a
1 2\/§l2l3 ( )
d .
my = — (4.13b)
Iy
d (4.13¢)
msz = ——— .43C
V3l
d= \/(zE - zp)? + (yr — yp)? (4.134)
Therefore, the nonlinear equation to be solved is given by:
2 2 __ 42
(zc —zp)" + (e —yr)° =13 (4.14)

Equation (4.14) can be solved for angle ¢ using a numerical procedure. The secant method
(Forsythe et al. 1977) has been implemented here. Moreover, the range of validity over
which eq.(4.14) has real solutions is determined by the positive-semidefiniteness of the

quantity under the square root in eq.(4.11), i.e.,
B~ Ac >0 (4.15)
which, in the light of eqs.(4.12a,b.c), leads to:
(1—mi +m3) ~ 2(mymz + my) X — mdx2 > 0 (4.16a)

where

X = cos P (4.16b)

Since the left-hand side of eq.(4.16a) represents a parabola with negative curvature, the
roots of this parabola will give the limits of the range of validity of X from which the range
of validity of ¢ can be found. Due to the cosine function involved in eq.(4.16b), it may
happen that we obtain two distinct ranges of validity for angle 1, both of which should be

considered. The roots of the parabola can be written as:

mym3 + my + \/m% + m% + m%msz, + 2mymoms
X192 =

) 2

(4.17)
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Figure 4.4 The six solutions of the direct kinematic problem for a given planar
three-degree-of-freedom parallel manipulator in a given configuration.

Once the range of validity of ¥ is known, we can use the secant method to obtain the
solutions for angle . By varying the value of the initial guess, we can obtain different
solutions and, providing that a sufficient number of initial values is used. get all possible
solutions. An example is shown in Fig. 4.4, where the configurations corresponding to each

of the six solutions are displayed.

4.1.3 Velocity Inversion

The Jacobian matrix of a manipulator is generally defined as the matrix repre-
senting the transformation mapping the joint rates into the Cartesian velocities. However,

since in the case of the closed-loop manipulator the inverse kinematic problem is easier
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to solve than the direct one, the Jacobian matrix will be defined in terms of the inverse
transformation, i.e.,

Je=146 (4.18)

where ¢ is the vector of Cartesian velocities, given here by ¢ = [i:,y,éS]T and 0 is the vector

of joint rates, given here by § = [51,92,93]T.

For the planar manipulator under study, the Jacobian matrix can be obtained by
differentiation of eqs.(4.2-4.5) with respect to time. This leads to the following:

ai/dy bi/dy cq/dy
J = az/dz bz/dp_ 62/d2 (419)

az/dy b3/d3 c3/d;

where
a; =21yy;\/ 23 + yz?i sin; + v, Bz, (4.20a)
b; = — 2yz91/ 23, + y3; sin ; + % Eyp, (4.200)
c; :211l3\/ :E%Z + ygl. sin v, (CCZZ‘ cos ¢; + Yy, Sin (}52)
+ Y E;l3(9; sin é; — yy; cos ¢;) (4.20c)
d; = — 21y (23, + v5;)%? sin g (4.204)
and
E;=15 12423 + 43 (4.21a)
Moreover,
v = *1 (4.21b)

is a factor that depends on the branch we chose for the ith leg in the solution of the inverse

kinematic problem.

However, the constraint on the kinematic closure of the ith leg can also be

written as:
(w3 — 74:)” + (v3i —vag)? = 12 (4.224)
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where
I3, = T, + ll cos 92 (422b)
Y3; = Yo; + 11 sinb; (4.226)
T4; = € — l3 cos ¢, (4.224)
Yg, = Y — 13 sin ¢Z (4226)

Differentiating both sides of eq.(4.22a) with respect to time, the Jacobian matrix can be

rewritten as in eq.(4.19) with

a; =T — T, — Iy cos b; — I3 cos ¢ (4.23q)
by =y — Yo — Iy sinb; —I3sin ¢, | (4.23b)
¢, = —B3[(y — yos) cOs & — (z — z,;) sin @] + lyl3sin(6; — ¢;) (4.23¢)
di = [y — o) cos 6; — (z — z45) sin ;] + lyl3 sin(0; — ¢;) (4.23d)

which is equivalent to eqs.(4.20a—d), except that now both the joint angles and the Carte-
sian coordinates are included in the expression. The computation of the Jacobian matrix

using this method, therefore, requires that the inverse kinematic problem be solved first.

4.1.4 Acceleration Inversion

The relationship between the joint and Cartesian accelerations can be derived

by differentiation of eq.(4.18). The following is obtained:
Je+ie=4 (4.24)

where & = [,§,4])7 and 8 = [6y,6,,6;]7. The other quantities are assumed to be known
from the velocity inversion. Therefore, the only matrix that has not been defined yet is the
time derivative of the Jacobian matrix, denoted as J. The differentiation of eqgs.(4.19) and

(4.23a-d) leads to:

A1 By 4
i={4, B, o (4.25)
A3 Bz (3
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where
_ dzaz - azdz _ dzbz - bzd . d,LC2 - Czdz
with
a; =% + 116, sin 6, + Iy psin ¢ (4.26b)
by =y — 116, cos 0, — Iy cos ¢ (4.26¢)
& =l3g|(z — zo5) cos ¢ + (y — ;) sin ¢} + I3[Z sin ¢; — ycos ¢,]
+1413(0; — 4) cos(6; — ¢;) (4.264)
d; =~ lb;[(z — 205) €08 0; + (y — y;) sin 6;] — y [ sin 6; — g cos 6;]
+1313(8; — ¢) cos (6; — ¢;) (4.26¢)

thereby completing the acceleration inversion.
4.1.5 Singularity Analysis

The three types of singularities discussed in Chapter 3 are now derived for the
manipulator studied here. The physical significance of each of these types of singularities

is also presented.
First type of singularities

It is recalled that the first type of singularities corresponds to the limit of the
workspace and that it occurs when the determinant of the Jacobian matrix tends to infinity.
This condition is encountered here when one of the denominators involved in the expression

of the Jacobian tends to zero. From eq.(4.19) it is clear that this corresponds to:
d; =0, t=1or2o0r3 (4.27)
which, from eq.(4.20d), leads to:

siny; =0 or 7, t=1or2or3 (4.28)
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This type of configuration is reached whenever the links of lengths I; and Iy of one of the legs
are aligned. as one can readily infer by inspection of Fig. 4.2. Moreover, since the solution
of the inverse kinematic problem leads to two branches per leg, the corresponding quadratic
equation leads to two solutions when the input Cartesian coordinates are located inside
the workspace of the manipulator and to no real solution when the prescribed Cartesian
coordinates are not within the workspace. Therefore, the limit of the workspace is defined
by the set of points for which the quadratic equation will lead to only one solution, i.e..

when we have the following condition in eq.(4.2):
Y; = £nm, n=20,1,2,... t=1or2o0r3 (4.29)

which is equivalent to eq.(4.28). Since in this type of configuration the ith leg is fully
extended or folded. the set of Cartesian velocities of the gripper that correspond to a
velocity of the point of attachment of the ¢th leg to the gripper along the folded or extended
leg cannot be produced. This set of Cartesian velocities is given by the set of rotations of
the gripper about an arbitrary point of a line passing through the sth point of attachment

of the gripper and orthogonal to the 7th leg.
Second type of singularities

The second type of singularities, which is located inside the workspace of the
manipulator, occurs when the determinant of the Jacobian matrix tends to zero. For this
type of configuration, the different motor rates are not independent any more and there
exists a set of Cartesian velocities ¢ which are mapped into the zero vector by J. These
Cartesian velocities are then possible even when the rates of all motors are zero. These
configurations can be inferred from eq.(4.19) by imposing the linear dependence of the

columns of J, i.e.,

kia; + kob; + k3e; =0, =123 © (4.300)
for some real values of kq, k,. and k3 for which

|Ikl| # 0 (4.300)
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where

k= [ky, Ky, ksl (4.30¢)

By inspection of egs.(4.30a) and (4.23a-d). two different cases for which the
condition given by egs.{4.30a&b) is satisfied can be identified. The first one is obtained
when the lines along each of the three links of length I, intersect at the centroid of the

gripper. In this case, we have

€1 =€ = 3 = 0 (431)

and hence, eq.(4.30a) can be satisfied with k4 = k) = 0 and arbitrary k3. The last column
of the Jacobian matrix is equal to zero and hence, the nullspace of J is given by [0, 0, l]T
for any real r. The nullspace corresponds here to the set of pure rotations of the gripper
about its centroid. This set of velocity vectors will produce motor rates of zero, due to the

transitory additional degree of freedom. A configuration of this type is shown in Fig. 4.5.

Figure 4.5 An example of the second type of singularity for the planar three-degree-
of-freedom parallel manipulator.
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The second case for which eq.(4.30a) can be verified is the set of configurations
for which the three links of length I, are parallel. Indeed. by inspection of eq.(4.23a&b).

we can define a set of vectors v,, 7 = 1,2, 3 as two-dimensional vectors:

v, = [a;, ] (4.32)

where it is clear that v; is the vector connecting the joint common to links Iy and [y of
the ¢th leg to the point of attachment of link I, of the same leg to the gripper, ie., v; is a
vector along the two joint centres of the link of length I5. Therefore, when the three links

of length [, are parallel, we have
Vi = tvy = $vs3 (4.33)

and the second column of J is a multiple of the first one. In this case, the nullspace of J
represents the set of pure translations of the gripper along a direction orthogonal to v, i.e.,
orthogonal to the three links of length I,. A velocity of the gripper of that nature would

produce motor rates of zero.

It is to be noticed that the results presented above for the second type of
singularities of the revolute-based planar three-degree-of-freedom manipulator are in full
agreement with the ones obtained in Chapter 3 with a different approach. This is so because
the configurations derived here are the ones for which the manipulator instantaneously

acquires an additional degree of freedom.
Third type of singularities

This type of singularities is characterized by the indeterminacy of the Jacobian

matrix. In other words, some of the quantities involved in the expression of matrix J take

on the form 0/0.

As mentioned in Chapter 3, this singularity is not only configuration- but also
architecture-dependent. For the planar manipulator studied here, two situations may render

the Jacobian matrix indeterminate. One of these two cases happens when we have:

= L/_§ and 12 = l3 (434)
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With these constraints on the link lengths, we can reach a configuration where the tip
of each of the three links of lengths [1 meet at the centroid of the base triangle which
coincides with the centroid of the gripper, since Iy = I3. The gripper can then undergo
arbitrary rotations about its centroid while the motors remain at rest. This indeterminacy
is due to the zeroing of both the ¢;’s and the d;’s when the gripper is oriented such that

¢ = 0. At this particular point, both the first and second type of singularities meet.

The second case of degeneracy of the manipulator requires the following condi-
tions:
V3

ll = l2 and l3 = T (435)

In that case, the gripper is of the same size as the base triangle. Therefore, when the
three vertices of the gripper are located at the centroid of the motors, and when angle ¢
Is equal to zero, the motors can undergo arbitrary rotations while the gripper remains at
rest. Again, the first two types of singularities meet here, i.e.. when angles 6, 6. and 04
take on the values —150°, —30°, and 90° respectively, then both the ¢;'s and the d;'s are

equal to zero.

4.2 Planar Three-Degree-of-Freedom Manipulator with Prismatic

Actuators

The planar three-degree-of-freedom parallel manipulator studied in Section 4.1
can also be built using prismatic actuators. The 3R architecture of the legs is changed to
an RPR architecture where the prismatic joint is the one that is actuated. This is shown in
Fig. 4.6, where, again, the distance between each of the M, s—which do not refer to motors
here but to free pin joints—is set equal to unity. The assumption of symmetry is also made
here for the same reasons that were mentioned in Section 4.1. The potential advantages of
this manipulator over the one based on revolute actuators are simpler kinematic equations
and reduced mechanical interference. The applications for which this manipulator could be

used are essentially the same as the ones mentioned for the revolute-based manipulator.
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eﬁxed joint

Figure 4.6 Planar three-degree-of-freedom parallel manipulator with prismatic ac-
tuators.

4.2.1 Inverse Kinematic Problem

Referring to Fig. 4.6, we denote by /3 the dimension of the gripper. by p; the
length of the sth leg or actuator, and by (z;,y,) the coordinates of the point of attachment
of the sth leg to the gripper. Moreover, the position of the point of attachment of the :th
leg to the base is given by (z,;,y,). quantities that are given in egs.(4.7a&b). As in the
case of the manipulator with revolute actuators, the Cartesian coordinates are given by the
position of the centroid of the gripper C(z,y) and by its orientation, defined here by angle
¢. We can then write |

z, =z —l3cos; —z,;,, 1=1,2,3 (4.36a)
Yy =y—l3sing; —y,, 1=1,23 (4.360)
where angles ¢; and the pairs (z,;,y,;) are given by eqs.(4.6a—c) and {4.7a&b) respectively.
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The inverse kinematic problem, which has only one solution here, can then be solved using:
=1/2 +y? '=1,2,3 4.37
=4ty 1=1,2, (4.37)

Therefore, given a certain position and orientation of the gripper, the required

lengths of the actuators can be computed directly from eq.(4.37).
4.2.2 Direct Kinematic Problem

The solution of the direct kinematic problem for the manipulator with prismatic
actuators is basically identical to the one encountered for the manipulator with revolute
actuators. As a matter of fact, when the actuator lengths py. py. and p3 are specified,
point C' can be considered as a point on the coupler of the four-bar linkage M1ABM,. The
solutions of the direct kinematic problem are obtained when the curve described by this
point of the coupler intersects a circle of radius p3 centred at M3. The problem leads to a
maximum of 6 branches as shown in Section 4.1.2. The formulation given in that section
can also be used here provided that some of the equations are rewritten. Indeed, for the

four-bar linkage considered here, eqgs.(4.8a&b) become:

T = Ty + Py cos ¥ + V33 cos (o + 6) (4.38a)
Yo = Yo1 + Py sine + V/3l3 sin(ay + 6) (4.38b)

where
oy = /3 (4.38¢)

and 6 can be obtained from eqs.(4.11) and (4.12a—c). in which the m,’s are redefined as

p§—1—p§—3z§

m1 = 4.390,
2/313p, ( )

' 1
mo = — 4,395
2= (4.39)

1
(4.39¢)

maq = ——
3 \/§l3
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Therefore, the nonlinear equation to be solved becomes

2 2 2
(z¢ — 23)" + (yo — ¥o3)” = p3 (4.40)
Equation (4.40) is similar to eq.(4.14) and can be solved for angle ¢ using a numerical
procedure. The ranges of validity of angle ¢, i.e., the ranges over which we can expect to

find real solutions are found using eqs.(4.15) to (4.17).

4.2.3 \Velocity Inversion

The Jacobian matrix of the planar manipulator with prismatic actuators is de-
fined similarly to the one of the manipulator with revolute actuators given in eq.(4.19). We
define:

Je=p (4.41)
where ¢ = [z, §, ¢]T is the vector of Cartesian velocities and p = [91, P9, p3]T is the
vector of linear actuator rates. The differentiation of eq.(4.37) leads to the following

Jacobian matrix:
a1/p1 bi/p1 e1/p

J=1lay/py by/py c3/p> (4.42)
a3/p3 b3/p3 ¢3/p3

where
a; =z — z, — l3cos ¢, (4.43q)
b =y — yo; — l3sin (4.43b)
¢; = (z— z5)l3sind; — (y — yo;)l3cos ¢; (4.43¢)

and the angles ¢;, for + = 1,2,3, are defined as in eq.(4.6a—c). The derivation of the

relationship between Cartesian velocities and joint rates is thereby completed.

4.2.4 Acceleration Inversion

The differentiation of eq.(4.41) leads to the equation relating Cartesian acceler-

ations with joint accelerations. Again, we obtain:
Je +Je=p (4.44)
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where ¢ = [z, §, ng]T is the vector of Cartesian accelerations and p = [y, po, j')3]T is the

vector of joint accelerations. The time derivative of the Jacobian matrix, J. is obtained by

differentiation of eqs.(4.42) and (4.43a-c). Separating the different terms, we can write

where

iy =
and

iy =
with

iz -,

A; =£(i +I3sin ¢;)

2

1

B; =—(§ — l3¢ cos ¢;)

p;

1 . . :
C; =—(&l3sin ¢; + (z — z,;)l3¢ cos ¢;

)

— gl3 cos ¢; + (v — Yo )l3B sin ¢;)

1 .
D; =—(a;p;)

by

1 .
E; == (b;py)

by

1 .
Fy == (e;m)

p.

o

which completes the acceleration inversion.

4.2.5 Singularity Analysis

(4.45q)

(4.45b)

(4.45¢)

(4.464)

(4.46b)

(4.46¢)
(4.46d)

(4.46¢)

(4.461)

The singularities of the planar manipulator with prismatic actuators are now

derived. Since the expression of the Jacobian matrix of this manipulator has similarities

with the one of the manipulator with revolute actuators, it is expected that the singularities

will occur in configurations of the same type.
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First type of singularities:

If we assume that the prismatic actuators of the manipulator have an infinite
range of motion, the result is an infinitely large workspace and the first type of singularities

occurs only when one of the actuators has a length of zero, i.e.:
p, =0, 2=1o0or2o0r3 (4.47)

From eq.(4.42), it is readily seen that this situation produces a Jacobian matrix whose
determinant tends to infinity. This is so because the direction of the prismatic joint is

undefined in these configurations.

However, in a real manipulator, the actuators have a finite range of motion, i.e,

Pmin < P; < Pmaz (4.48)

and where p,,;, is. in general, different from zero. In this case, the first type of singularities

happens when one of the actuators reaches one of its limits, i.e..
Py = Pmin OF P; =Pmaz, t=1o0r2or3 (449)

which corresponds to the limit of the workspace. Since one of the actuators cannot move
further in one direction, a certain set of gripper velocities—pure rotations about an arbitrary
point of a line orthogonal to the ¢th leg and passing through the point of attachment of

that leg to the gripper—cannot be produced.
Second type of singularities

For purposes of analysis of the second type of singularities, we define a set
of three two-dimensional unit vectors which are, respectively, orthogonal to the three lines
connecting the centroid of the gripper to the points of attachment of the legs to the gripper.

These vectors are given by

L sinqbz- .
uz_{—cosqbzl’ i=1,2,3 (4.50)
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efixed joint

Figure 4.7 An example of the second type of singularity for the planar three-degree-
of-freedom parallel manipulator with prismatic actuators.

Similarly, we define a set of three vectors connecting the centroid of the gripper with the

fixed pinned joints as

v; = {z_zm}, 1=1,2,3 (4.51)
Y= Yo
Using these definitions, we can express the elements of the third column of the Jacobian
matrix as
l
Jz=2(u;-v;), 1=1,2,3 (4.52)
P

Therefore, when vectors u; and v; (z = 1,2, 3) are orthogonal, i.e., when the three lines
along the legs intersect at the centroid of the gripper, the last column of the Jacobian matrix
vanishes and the determinant vanishes. The nullspace of the Jacobian matrix is spanned
by vector [001]T, which means that Cartesian velocities associated with pure rotations of
the gripper about its centroid will produce zero velocities at the actuators. The resulting

configuration is shown in Fig. 4.7.
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As in the case of the manipulator with revolute actuators, there exists a second
type of configuration which will cause the second type of singularities. Indeed, when all the
legs are parallel. the second column of the Jacobian matrix is proportional to the first one,
which results in a singularity. The proof of this fact was already given in Section 4.1.5.
The set of Cartesian velocities that produce vanishing joint rates is given by the set of pure

translations along a direction orthogonal to the legs.
Third type of singularities

The condition on the kinematic parameters of the manipulator that are required

for the third type of singularities to occur is now given as:

I3 = % | (4.53)

In other words, the gripper triangle has the same dimension as the base triangle. Therefore,

if the three legs are extended to the same length and are all parallel to each other. i.e.:

Pr=py=p3 and ¢=0 (4.54)

then the four-bar linkage My ABM, is a parallelogram and point C of its coupler will trace
a circle of radius p; and centred at point M3. The resulting linkage, which is shown in

Fig. 4.8 can then undergo finite motions while the actuators are locked.

4.3 Spherical Three-Degree-of-Freedom Manipulator

Previous research on parallel manipulators has been confined, almost exclu-
sively, to the consideration of planar and spatial kinematic chains while spherical parallel
manipulators have received little attention. As a matter of fact, the only reference that
the author could find on a spherical parallel manipulator is (Asada and Cro Granito 1985),
where a mechanism similar the the one studied here is briefly introduced. A spherical par-
allel manipulator could be applied as an orientation wrist in robotics. Applications outside

of robotics, that could be mentioned, are mechanisms for the orientation of machine-tool
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M, M,

Figure 4.8 Third type of singularity for the planar three-degree-of-freedom parallel

manipulator with prismatic actuators.

beds and workpieces, solar panels, antennas, etc. Hence the motivation to study this type

of kinematic chains.

A spherical parallel manipulator is represented in Fig. 4.9, all of whose joints are

of the revolute type, and the three motors My, M, M3 are fixed. The manipulator consists
of a kinematic chain with three closed loops, namely M{DABEM,, MyEBCF M3, and

M3FCADMj,. and the gripper is rigidly attached to triangle ABC. Again, only two of

the loops are independent. For reasons that were explained in Section 4.1, a symmetric

layout has been chosen here. By symmetry, then, the axes of the motors will be located

in a common plane, intersecting a point defining the centre of the spherical manipulator.

Moreover, the joints attached to the gripper have the same relative orientation, and the link

angles will be the same for each leg, i.e.,

Y R A
o =0, =a;, 1=1,2

These assumptions will be used throughout.

4.3.1 Inverse Kinematic Problem

(4.55)

Since the spherical manipulator is aimed at orienting a rigid body in space,
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Figure 4.9 Spherical three-degree-of-freedom parallel manipulator.

the Cartesian coordinates of the gripper are given by its orientation only (with respect to a
reference configuration Cj), which can be described by a rotation tensor Q or, alternatively,

by the linear vector and scalar invariants of this tensor (Angeles 1985), which are defined

as follows:
q = vect(Q) = esing (4.56a)
W= H(Q—;——i = cos (4.56b)

where e is a unit vector along the axis of rotation and ¢ is the angle of rotation. A
discussion on the linear invariants is presented in Appendix B. These invariants are related

through
lall? + 43 =1 (4.57)

The inverse kinematic problem for this manipulator consists, then, of finding
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the motor angles corresponding to a given orientation of the gripper. The solution of this
problem contains eight branches, i.e., two branches per leg, since the solutions for the input
motor angles, 01,05,03, are decoupled. The situation is similar to the one encountered in
the case of the planar manipulator with revolute actuators except that, in this case, each

of the legs can be thought of as a spherical four-bar mechanism.

Let us define u; as a unit vector along the axis of the sth input motor, and v, as

a unit vector along the axis of the revolute joints connecting the gripper and the adjacent

link (Fig. 4.10), for ¢ =1,2,3.

v3

w2

uy
u?

vi

wi

Figure 4.10 Definition of the unit vectors u,. v, and w,, forz =1,2,3.

Moreover, let us denote by a1 and ay the link angles and choose the reference

configuration as the one in which u; = v, for ¢+ = 1,2,3 (Fig. 4.11).
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us3

ug

uz

Figure 4.11 Reference configuration for the spherical three-degree-of-freedom par-
allel manipulator.

We can define another set of unit vectors w;, for + = 1,2,3, along the axes of

the intermediate revolute pairs of each leg. These are given by

cos 1), cos 8, sin oy 4 sin 7, cos oy

w,; = |siny;cosf;sina; —cosm;coseq |, 2=1,2,3 (4.58)
sin 8, sin aq
where
m=x/2,ny = —5n/6,n3 = —7/6 (4.59)

and 8; is the angle of rotation of the sth motor where we have chosen

u; = [sinn,;, —cos ni,O]T, i =1,2,3 (4.60a)
or, explicitly,
1 -1/2 —1/2
up= {0, u=1{v3/2|, ug=|-3/2 (4.60b)
0 0 0

The solution to the inverse kinematic problem is then obtained by writing the closure
equations as follows:

w, v, =cosay, ¢=1,2,3 (4.61)
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which, for each leg, leads to a quadratic equation of the form:
A T2 42B,T,+C; =0, i=1,2,3 (4.62)
where
T, = tan(6,/2) (4.63a)
and
A; = (sinn;v;1 — €0s 1;v57) €os g — (€0s 7;v;1 + sin7;v5) sin @ — cos ary (4.63b)
B; = sin ajv;3 : (4.63¢)
C; = (sinn;v;q — cos m;v;5) cos ey + (cos m;v;1 + sin n;v,9) sin aq — cos ay (4.63d)
v;; being the jth component of vector v;. The solution of the inverse kinematic problem

is therefore completed by solving the quadratic equation above for each of the legs. which

—B; +1/B? — A,C;
T =

K3 )
A;

leads to:

1=1,2,3 (4.64)

The spherical parallel manipulator mentioned in (Asada and Cro Granito 1985)
exhibits a kinematic structure slightly different from the one shown in Fig. 4.9. Indeed, in
the former arrangement, the three powered revolute joints are mounted on a common axis,
I.e., using concentric shafts, while the rest of the structure remains essentially unchanged.
The equations for the solution of the inverse kinematic problem have to be consequently

modified. We now have:
cos §; sin oy
w, = | sinf;siney |, 1 =1,2,3 (4.65)
—cos oy
since the shafts of the three motors are now aligned with the unit vector:

s = [0, 0, 1]7 (4.66)
Using eq.(4.61), a quadratic equation similar to the one given in eq.(4.62). is obtained with

coefficients A;, B; and C; defined as follows:

Ai = — Sil’l aqV;1 — COS ¥ v,;3 — COS (0%} v (4670,)
B’i = sin 1,9 (4.676)
Ci = sin a1v;1 — COS 0qv;3 — COS a9 (4670)
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the solution of which is obtained using eq.(4.64).

4.3.2 Direct Kinematic Problem

The solution of the direct kinematic problem for the spherical manipulator can
be derived using an approach similar to the one used for the planar manipulator. The
reasoning allowing us to establish the number of expected solutions can be repeated here
by replacing planar four-bar linkages with spherical four-bar linkages. However, since the
equations describing the motion of a point of the coupler of a spherical four-bar mechanism
take on rather complicated forms, the formulation derived here for the numerical solution

of the direct kinematic problem is slightly different.

First of all. when the input angles are known, the vectors along the intermediate
Joints of each of the legs w;, ¢ = 1,2, 3, are readily computed from eq.(4.58), or alternatively
from eq.(4.65). if the manipulator has the kinematic structure presented in (Asada and Cro

Granito 1985). Therefore, the equations to be satisfied are

W, - V; = COS &y, 1 =1,2,3 (4.68q)
viov,=-1/2, i#j, 45 =123 (4.68b)
Iv; || = 1, 1 =1,2,3 (4.68¢)

which thus lead to nine equations in nine unknowns, i.e., the three components of each of
the three vectors v;, v = 1,2,3 where three of the equations are linear. The solution of
this problem can be combuted using, for instance, the Newton-Raphson method. Once the
three vectors v;, ¢+ = 1,2,3 are obtained, the rotation matrix Q describing the orientation
of the gripper can be computed using, for instance, the procedure described in (Angeles
1986b). An example is shown in Table 4.1 where the six solutions of the direct kinematic

problem for a particular configuration are given.

4.3.3 \Velocity Inversion

The definition of the Jacobian matrix of the spherical paraliel manipulator is
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Solution # | 1 2 3 4 5 6
Vi, 407 | 149 | 963 | —.560 | —.244 | .980
vi, 588 | —.202 | —.030 | 829 | .060 | —.197
vy, —.699 | 968 | —.260 | .000 | .968 | .000
vy, 101 | —.455 | —.713 | —438 | —.714 | —.319
Vo, 230 | 849 | .050 | —.899 | .035 | .948
vy, 968 | —.260 | —.699 | 000 | —.699 | .000
Vs, ~508 | .307 |—.250 | 998 | .959 | —.661
v3, —.818 | —.646 | —.028 | .070 | —.004 | —.750
Vs, ~.269 | —.609 | 968 | .000 |—.269 | .000

Table 4.1 The six solutions of the inverse kinematic problem for a spherical three-
degree-of-freedom parallel manipulator with aq = /3 and ag = 77/18 when 6y =
92 = (93 = 300.

similar to the one used for the planar manipulator, i.e.. it is defined as the matrix repre-
senting the transformation mapping the Cartesian velocities into the joint rates. This is
written as

Jw =9 (4.69)
where w is the angular velocity of the end effector and @ is the vector of actuated joint
rates. The Jacobian matrix can be found by differentiation of both sides of eq.(4.61). which
leads to:

V'\IZ' "V, W, - \'IZ‘ =0 (4.70)

Now, the following relations are introduced:

and
Q=10Q (4.71b)
with €1 defined as the following skew-symmetric matrix
_ 0w x a)
for any a. Thus,
vect(€) = w (4.71d)
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We now write the time derivative of vectors w, as

—cos i; sin §; sin a4
—W,; = | —sinn;siné;siney | = u; X w, (4.72)
v cos §; sin oy
Moreover, the differentiation of both sides of eq.(4.71a) leads to the following, when

eq.(4.71b) is used:
v, = Qu; = 0Qu; = v, (4.73)

Therefore, eq.(4.70) can be rewritten as:

Gz-(uz- X Wz) SV, W, QVZ' =0 (474(1)

or

ﬂi(uz- X Wz) TV, — W (W,L X Vi) =0 (474b)

which leads to
o wy xv)-w

= 475
C (X wy) v 473)
The zth row of the Jacobian, jZT can then be written as
: (w; X v;)
=7 4.76
T (U ) 476)

which completes the velocity inversion.

It is pointed out that the essence of the derivation given above is also valid for
the kinematic structure of the spherical manipulator studied in (Asada and Cro Granito
1985). However, a few changes in the expressions arise. Indeed. eq.(4.72) has to be

rewritten as _ _
—sin 8; sin oy
—W,; = | cosf;sinag | =s X w, (4.77)

and the 7th row of the Jacobian matrix then becomes

= e v (w; < vi) (4.78)

s X W;) v,

113




4. ANALYSIS OF PARALLEL MANIPULATORS

4.3.4 Acceleration Inversion

The acceleration equation is obtained by taking the time derivative of both sides
of eq.(4.69). which leads to
= Jw+ Jo (4.79)

where all the entities are known except for the time derivative of the Jacobian matrix,
which can be obtained by differentiation of both sides of eq.(4.76). The sth row of matrix

J, denoted by k;r, is then written as

[(u; X w;) - vi]b — a{w; x v;)

k, = (4.80a)
[(u; x w;) - v ]2
where
b=w, XV, +w, xv, (4.800)
and
a = (UZ‘ X WZ) . Vz -+ (UZ‘ X Wz) A (4800)

The time derivatives of vectors v; and w, can be obtained from eqs.(4.72), (4.73) and

(4.77).

The equivalent expression for the kinematic structure presented in (Asada and

Cro Granito 1985) is obtained by replacing vectors u; by vector s in the above equations.

4.3.5 Singularity Analysis

First type of singularities

The first kind of singularities is known to lie on the boundary of the workspace
and appears whenever det(J) — co. The conditions under which this type of singularities

arises can be obtained from the expression of the Jacobian, i.e., €q.(4.76) which produces:

(u; xw;)-v; =0, t=1or2or3 (4.81)
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Equation (4.81) states that vectors u,, v;, and w, are coplanar, i.e., that the corresponding
leg is totally unfolded or folded. In the case of the second kinematic arrangement (Asada
and Cro Granito 1985), vector u, is replaced by vector s in the above expression. When such
a configuration is attained, a certain set of velocitites of the gripper cannot be produced.
This set of velocities corresponds to the motions of the gripper that involve a velocity of
the point of attachment of the fully extended or folded leg to the gripper along the direction

of the leg.
Second type of singularities

The second type of singularities—which occurs when det(J) = O—appears in
configurations in which the different motor rates are not independent. This type of config-
uration should be avoided for the manipulator is not controllable in such a configuration.

An additional proof of that is now given.

If we regard the manipulator as a control system where the orientation of the
gripper is the state variable vector and @ the input variable vector, then eq.(4.69) can be
rewritten as

w=Ké (4.82)

where K = J=1. Moreover, using the following relation between w and A {Angeles 1985):

A=Aw (4.83a)
where .
A= [7(“:3; Q)J (4.83b)

eq.(4.82) can be rewritten in standard state-variable form as
A = AK§ (4.84)

where X is the four-dimensional state variable and 6 is the three-dimensional input variable.

Therefore, for this system, the 4 x 12 controllability matrix (Wonham, 1979) is given by
R = [AK,0,0,0] (4.85)
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where 0 is a 4 x 3 zero matrix. If A is of full rank, which is the case if the angle of rotation,
¢. is different from 7, then rank(AK) =rank(K). The rank of the controllability matrix
R is then equal to the rank of K and hence the system becomes uncontrollable when K

becomes singular.

For the spherical manipulator, the condition under which det(d)=0 can be de-
rived from expression (4.76) obtained for the Jacobian. Since, by definition, vectors w; and
v; cannot be identical, then this condition is that the three vectors (w; x v;,7 =1,2,3)
are coplanar. Since vq,vy and v3 are coplanar, this condition states that the three planes
defined, respectively, by the pairs of vectors (v;,w;). for i = 1,2, 3, either have a common
intersection along an axis or are identical. This corresponds to configurations in which the
links of dimension ay either lie on the plane of the gripper or are orthogonal to this plane.
It is pointed out that this result is in perfect agreement with the one obtained in Section

3.2.3.3 with an alternate approach.
Third type of singularities:

Two sets of spherical manipulators for which the third type of singularities can

occur are identified here, the second one being a subset of the first one.

First, for the set of spherical manipulators having ey = oy, the configuration
that we defined as the reference configuration is attainable and it constitutes a special case
because condition {4.81) is verified for all three legs. Therefore, in this case, any motion of
the input links will not affect the gripper since the former are just rotating, together with
the intermediate link, around the axis defined by vectors u; = v;, leaving the gripper at
rest. The rank of K is then equal to zero in this configuration, which means that system
(4.84) is completely uncontrollable, i.e., none of the three Cartesian components of w can be
produced in the said configuration. Moreover, if 6y = 0) =603 =0 orif 6; = 8, = 3 = 7 /2,

from the discussion above, the first and the second type of singularities meet.

Furthermore, if we have, more specifically. oy = ay = 7/2, all the configurations

for which vq,vy,v3 are coplanar to uq,uy,u3, are singular. This set of configurations is
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characterized by the fact that the gripper can be rotated around the axis described by the

unit vector [0,0, 1]T without moving the input links.

In order to illustrate the foregoing comments, a plot of the reciprocal of the
condition number for a full rotation of the gripper of a spherical manipulator having oy =
ay = 7/3 is given in Fig. 4.12. The reciprocal of the condition number can be thought
of as a measure of the ‘distance’ of the Jacobian to a singularity. This concept will be

clarified in Chapter 5.

A |-

Y

27

Figure 4.12 Reciprocal of the condition number for a full rotation of the gripper
of a spherical manipulator with oy = a9 = 7/3. The axis of rotation is along

e=[0017T.

4.4 Spatial Three-Degree-of-Freedom Manipulator

A spatial three-degree-of-freedom parallel manipulator is shown in Fig. 4.13.
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The moving platform is attached to the base link by three legs which constitute kinematic
chains of the RPS type. Only the prismatic joints are actuated. Therefore, by varying the
length of each of the three legs, the position and orientation of the platform is modified.
However, since the platform has only three degrees of freedom. the six coordinates defining

its position and orientation are coupled and cannot be specified arbitrarily.

p3ll)

o1 P2

Figure 4.13 Spatial three-degree-of-freedom parallel manipulator.

This type of manipulator has been proposed by Hunt (1983) and revisited by
Lee and Shah (1987) and Waldron et al. (1988a & b). In the last two references, a ten-
degree-of-freedom manipulation system called ARTISAN, which is a hybrid serial-parallel
manipulator, is discussed. The parallel part of ARTISAN is of the type discussed here. It
is termed a micro-manipulator because of its relatively small physical dimensions and it is

intended for fine accurate motion.
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The potential applications of the spatial manipulator described here arise when
the demand on workspace and maneuverability is low but the dynamic loading is severe and
high speed and precision motion are of primary concern. For instance, it could be used as
a regional structure for a manipulator which would be completed by mounting a spherical
parallel manipulator of the type described in Section 4.3 on the platform, thereby leading
to a hybrid structure. However, for this type of application, and whenever it is intended to
use the spatial three-degree-of-freedom manipulator as a positioning device, it is necessary
to solve the inverse kinematic problem where the position of a point of the platform—for
instance its centroid—is prescribed and it is desired to compute the corresponding actuator
motions. This problem remains unsolved in the references given above since, in all of them,
the Cartesian coordinates specified for the platform contain at least one variable describing
the orientation. The solution of this problem is given here and it will be shown in Chapter

5 that it leads to a simple description of the workspace of the manipulator.

4.4.1 Inverse Kinematic Problem

The notation used to describe the kinematics of the manipulator is now intro-
duced. Referring to Fig. 4.13, we consider a coordinate system fixed to the base of the
manipulator with its = and y axes lying in the plane of the base and its z axis normal to
that plane. Moreover, the z axis is placed along the line joining the centroid of the base
triangle—which is the origin of the coordinate system—to the revolute joint at the base of
the first leg. Therefore, if we denote the position vectors of the points of attachment of

each of the three legs to the base by s; = [z;, y;, zi]T. we will have:
s; = Ly, (4.86)

where L is the distance from the centroid of the base to each of the legs and the unit
vectors u;, 1 = 1,2,3 are defined in egs.(4.59) and (4.60a). Moreover, we define three
coplanar unit vectors v, as the vectors attached to the moving platform and directed along
the three lines connecting the centroid of the platform, P(z,y,z). with the spherical joints.

As in the case of the planar and spherical manipulators, symmetry is also assumed here so
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the base triangle and the platform are equilateral triangles. The extension of each of the
three actuators is given by p;, © = 1,2,3, and the position of the three spherical joints is
denoted by s, = [z!, y/, zz'.]T. Similar to the case of the spherical manipulator, the reference
orientation for the platform is chosen as the one for which v; = u;, ¢ = 1,2,3. Therefore,
if Q denotes the rotation tensor representing the attitude of the platform with respect to

the reference frame, we have
v, = Qu,, 1 =1,2,3 (4.87)

In what follows, we will denote the (7,7) component of tensor Q, in the given reference

frame, by ¢;;.

As specified in the introduction of this section, it is now desired to solve the
inverse kinematic problem for the positioning of the platform. The input variables are then
the coordinates giving the position of the centroid of the platform, i.e., z. y, and z, and
the corresponding values of the actuator extensions p1. py and p3 are the output variables
to be computed. If we assume that the orientation of the platform is known, we can write:

!

:I:Z- T
yo | = |y | +1v,, :=1,2.3 (4.88)
2! 2z

7
where [ is the distance between the centroid of the platform and each of the spherical joints
and v; is given by eq.(4.87). The extensions of the actuators are then computed as the

distances between the points of attachment on the platform and the base, ie., as

pi=flal — o+ (- w)? + (- m)h i=1,2,3 (4:89)

which leads to a unique solution for each of the legs.

However, before this solution can be used, we have to compute the rotation
tensor Q corresponding to a given position of the platform. Because of this intermediate
step, the inverse kinematic problem, as defined here, might have multiple solutions, as will

be shown later.
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The structure of the manipulator allows us to write some constraint equations
that will lead to the derivation of the rotation tensor. Indeed, due to the revolute joint at
the base of each leg, the tip of the leg, i.e., the spherical joint, is constrained to move on a
plane orthogonal to the axis of rotation of the revolute. This leads to a constraint for each

of the legs, namely,

vy =0 (4.90a)
V3zh + ) =0 (4.900)
V32— =0 (4.90¢)

Moreover, using eqs.(4.87) and (4.88), we obtain:

vi =y +lgn (4.91a)
gy =z +1(~1/2q11 + V/3/241,) )
vy =y +1(=1/2g1 + V3/2gp) )
2y =z +1(~1/2911 — V3/2415) (4.91d)
y3 =y +1(=1/2g51 — V/3/2¢p)) )

Substitution of the foregoing expressions, (4.91a—¢), into egs.(4.90a~c), leads to:

921 = —y/l (4.92a)
V3(—a11 + V3a13 + g39) = —3y — 2v/3z (4.92)
V3(—g11 — V3q1, + g22) =3y — 2V3z - (4.92¢)
which can be rearranged to give:
921 = —y/l (4.93a)
912 = qn = —y/l (4.930)
911 — 422 = 2z/l (4.93¢)

Furthermore, since the rotation tensor Q is orthogonal, its components are constrained by

the following:
3

Y oahi=1 =123 (4.944)
7=1
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and

> akgk=0, i#j, 4,j=1,2.3 (4.940)

If we now consider the first two rows of Q. substitution of egs.(4.93a&b) into eqs.(4.94a&b)

allows us to write:

—a11y/l — ay/l + 41393 = 0 | (4.95q)
gty +ads + (y/) =1 (4.95b)
gy + a5 + (v/1)* =1 (4.95¢)

which, together with eq.(4.93¢), constitutes a system of four nonlinear equations in four
unknowns, g1, 922, 413, g23- In order to solve this system, we first substitute eq.(4.93¢)
into eqs.(4.95a&b) to eliminate gq1. Then, expressions for q%3 and q§3 as f.unctions of g99
only, are derived from eqs.(4.95b&c) and substituted into eq.(4.95a). This results into a

quartic equation in gg7 that can be written as

a3y + Agyy + Bgay + Cgpp+ D =0 (4.96a)

where
A=4X (4.96b)
B=4Xx%2_2y2_2 (4.96¢)
C=-4X(1+Y? (4.964)
D=Y"-2v?_4x?4+1 (4.96¢)

with
X=z/l and Y=yl (4.96)

The four roots of this equation, which are all always real, can be found using the procedure

described in Appendix A and can be written in closed form as

qu 12 =V X24+yY2_X+1 (4.970,)
(¢22)34 =-VX24+Y2-X+1 - (4.97h)
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However, because of the nature of the unknown g9y, we must have
-1< g9y <1 (4.98)

Therefore, only 2 out of the 4 solutions are acceptable—the other 2 solutions do not fall

into that range—and they are given by:
(022)10 =-X £ (VX24+Y2-1) (4.99)

The value of gq1 corresponding to each of these two solutions is obtained from eq.(4.93c¢)
and hence 4 of the entries of Q are known, i.e.. g11. g12. g1 and g99. The absolute
value of all the remaining components—i.e., the last row and the last column of Q—can be
computed using the fact that the columns and rows of Q should have a unit Euclidean norm.
There will remain a sign ambiguity on each of these quantities but, as shown in Appendix
C. only two solutions for matrix Q can arise due to the constraints on the orthogonality of
the rows and columns of Q. As a matter of fact, it is also shown, in the aforementioned

appendix that, when a solution for Q is found, the second one can be obtained by changing

the signs of g43. ¢33. ¢31 and g3;.

It is pointed out that the two sets of two solutions each, obtained by choosing
the plus or minus sign in eq.(4.99), correspond to two different geometric interpretations.
To explain that result, we will define a unit vector z’ attached to the platform as:

= 1 X V2 (4.100)
[lvg X vy

This unit vector is orthogonal to the plane of the platform and points along the positive

direction of the z axis when the platform is in its reference configuration.

It can be shown that the two solutions of the inverse kinematic problem obtained
when the positive sign is chosen in eq.(4.99) correspond to configurations for which the

following holds:

z . e3<0 (4.101)

where e3 = [0, 0, 1]T. i.e., ez is a unit vector along the positive direction of the z axis.

Hence, in these configurations, the upper face of the platform is facing down. Moreover,
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for these two solutions, we have

¢13=¢31 and g3 = g3 (4.102)

which leads to
vect(Q) =0 (4.103)

and the angle of rotation associated with Q is equal to 0° or 180°.

On the other hand. the two solutions obtained when the negative sign is chosen

in eq.(4.99) correspond to configurations for which:
2 e3> 0 (4.104)

i.e., configurations for which the upper face of the platform is facing up. In a practical

situation, these would be the solutions of interest. For these two solutions, we have:

913 = —q31 and g3 = —q3 (4.105)

which may lead to any value for the angle of rotation. However, we have:

a
vect(Q) = | b (4.106)
0

where a and b are arbitrary real numbers. Hence, the axis of rotation is always contained
in the plane of the base. This is so because gy is always equal to go1. and hence, the third

component of vect(Q), i.e., esin ¢, vanishes, which means that e lies in the z,y plane.

In summary, the inverse kinematic problem, as defined here for point positioning,
leads to up to four solutions. Two of these solutions correspond to configurations in which
the platform is facing down and the two remaining ones correspond to configurations in

which the platform is facing up.

4.4.2 Direct Kinematic Problem

The solution of the direct kinematic problem, as in the case of the other manip-

ulators, necessitates the utilization of a numerical procedure. The formulation developed
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here consists of considering the coordinates of the three spherical joints as the unknowns
of the problem. This leads to a system of nine equations in nine unknowns, i.e., the coor-
dinates zi-, yé and zé forz =1,2,3. The first three equations constraining these unknowns
are egs.(4.90a—c). which state that the legs are forced to rotate on a fixed plane. The other
equations are obtained by imposing the length of each of the legs, p;. for i = 1,2, 3, and
by forcing the three spherical joints to remain at a constant distance /3 from each other.
This leads to:

lIs; — lu;|| = p;, 1=1,2,3 (4.107q)

and

st —sil=V3l,  i#j,  1,j=123 (4.107b)
Furthermore, this system can be reduced. since the first three equations, i.e., eqs.(4.90a—c)
are simple linear relationships and can be easily substituted into the other equations, which
then leads to a system of six equations in six unknowns, zj. zj. z}. 2}, ) and z}. The

resulting system of equations can be written as

f(2}, 2y, 23,2,2),2) = 0 (4.108)
where

f1= ()~ 02+ 247 - (4.108b)
f2 = 4{zh +1/2)% + 2" - o} (4.108c)
f3=4{zh +1/2)% + 247 — o (4.1084)
o= (zh — )2 + 3y + (2] — 24) — 312 (4.108¢)
fs = (a} — 24)2 + 324 + (2} — 24)2 — 312 (4.1081)
fo = (zh — 25)? + 3(zh + 24)% + (2) — 24)? — 312 (4.1084)

which can be solved using. for instance, the Newton-Raphson method. Due to the nonlin-
earity of the equations involved, it is hard to predict how many solutions could be obtained.
A reasoning similar to the one used for the planar three-degree-of-freedom manipulator could

be used by virtually disassembling one of the spherical joints. The resulting linkage would
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be an RSSR linkage and the solutions of the direct kinematic problem would correspond
to the intersection of its coupler surface—obtained by rotating the input link of the RSSR
linkage through its range of mobility and by rotating its coupler link about the axis con-
necting its spherical pairs, i.e., exploiting the two real degrees of freedom of the RSSR
linkage—with a circle, in a three dimensional space. An example of solution is given in
Table 4.2, where the Newton-Raphson method has been used and four different solutions

were found by varying the initial guess.

Solution # 1 2 3 4
z'l 0.482 | —0.080 | 0.607 | 0.560
z’2 —0.254 | —0.275 | 0.110 | -0.218
:c’3 —-0.243 | —0.223 | —0.187 | 0.171
zi 1.082 | 0523 | 0.113 | 0.112
zf,_ 1.203 | 1.220 | 0450 | 1.171
zé 1.302 | 1.285 | 1.253 | 0.401

Table 4.2 Four solutions found to the inverse kinematic problem of a spatial three-
degree-of-freedom parallel manipulator with { = 0.5 and when p1 =12, pg =13,

4.4.3 \Velocity Inversion
The relationship between the Cartesian and actuator velocities of the manipu-
lator under study is given by the Jacobian matrix, which is defined as:
p=Jp (4.109)

where p = [z, ¢, 2|7 and p = [y, p9, p3]T. This equation is obtained by differentiation of
the solution to the inverse kinematic problem given in Section 4.4.1. We first take the time

derivative of both sides of eq.(4.89) to obtain:

.1 , . | |
b= llai = m)a + (0~ w)g + (2 - )8l i=1,2.3 (4.110)
2
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The expressions for the time derivatives of the coordinates of the spherical joints are then

obtained by differentiation of both sides of ed.(4.88) as:

s$i=p+1Qu;, i=1,2,3 (4.111q)
or, in component form,
il T q11 12
g = | 9| +lcosy | g | +isinvy | (4.111b)
z z g31 q32
where
v, =26 —1)7/3, i=1,2,3 (4.111¢)

Moreover, the time derivatives of the components of the rotation tensor Q involved in the
foregoing equation can be obtained by differentiation of eqs.(4.93a-b), (4.99), and (4.956—

¢). which leads to

i z Tz + yy

P Fyy 4112a
1= 7 ( l ﬁ——xzﬂjz) ( )

912 = —y/! (4.112b)
gn = —y/l (4.112¢)
. —z T + yy

p=—F=%| —F/— (4.1124

l (l\/ z2 + y2> )

i -1 ) ) :

Q13 = ;1;[4111(111 + 912912} (4.112¢)
X —1 X i

@3 = q—zg[qwm + 422999] (4.112f)

Then, substitution of egs.(4.112a~f) into eq.(4.1118) allows us to rewrite eq.(4.111b) as

il = A;z + Dy (4.113q)
Y, = B;z + E;j (4.113b)
é‘; =Ciz+ Fy+2 (4.1136)
where
A; =1+cosvy(1+rg) (4.114q)
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B; = siny;(—1 £ rz) (4.1140)
C; =cosy; (1 +rz) (———q11> +siny;(—1 £ rg) <—q22> (4.114¢)
q13 a3
D; = trycosy; —sinvy; (4.1144)
E, =1—cos~, £rysinvy (4.114¢)
cos ; ’
F=- < Z) (—a12 £ q117y)
q13
sin Y
- < ) (921 £ a27y) (4.114f)
a3
and
r
Ty = —;i—_}_—_yi ‘ (4.115q)
Y
Ty = ——— 41155
Y/ S, ( )
and hence the sth row of the Jacobian matrix, jZT can be written as
1 .
=D Aoy (-2 (4.1160)
2
with
Mt = A (2 — z3) + B(yl — y)) + Ci(2h — %) (4.1165)
My = Dz — z;) + Ei(y; — ) + Fi(2 — %) (4.116¢)

and the velocity inversion is completed.

4.4.4 Acceleration Inversion

The time derivative of eq.(4.109) leads to the expression relating the Cartesian

and joint accelerations, which is written as
p=Jp+Jp (4.117)

where the acceleration vectors are defined as p = [pq, pg, p3]T and p = [z, ¥, z]T To
complete the acceleration inversion, the time derivative of the Jacobian matrix, J, has to
kT

be derived. This leads to the following expression for = . the ith row of this matrix

1 . . . ) ) )
k = ] [pidit = Mabir Pidia — Mok pidh — pi(2l — z) 1T (4.118)

1
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where the time derivative of the A;'s have not been derived yet. They are obtained from

eq.(4.116b&c) and can be written as:

where

with

and

M1 = () — 7)) Ay + A2 + (6! — v)B;
-+ Bzyi -+ (2’; — zi)Ci + Ci,é';
Mg = (2} — ;) D; + Dyl + (4! — 4) E;

+ By + (2 — ) Fi + Fi3|

Ai = Fwq cos vy,

B; = twq sin~y;

Ci = dwy cos v;(—q11/431) + 11 cos (1 £ 74)
£ wq sinv;(—a22/432) + ta siny; (-1 £ ry)

DZ- = $wy COS 7y,

Ez' = iwz sin Y

F; = cos y;[2wy(—q11 /g31) £ rytq + 3]

+ siny;[£wy(—a22 /932) £ ryty + 4]
e — 2t — zyg
ENCETSEE
_ :czy — Ty
2= 2+ 42)3/2

711931 — 931911

ty =
7
931
; 922932 — 932422
2= 2
937
ta = [ B1921 — 921031
3= ]
931
- 932912 —Q12('132>
4 = 2
937

(4.119a)

(4.1195)

(4.120)
(4.1200)

(4.120¢)
(4.120d)
(4.120€)

(4.120)

(4.1210)

(4.121b)

(4.121¢)

(4.121d)

(4.121¢)

(4.1211)
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4.45 Singularity Analysis

First type of singularities:

Under the assumption that the linear actuators have an infinite range of motion,
the first type of singularities would occur only when one of the legs has a length of zero,
Ie.,

p; =0, t=1or2or3 (4.122)

This result is obtained from eq.(4.116a), which clearly shows that such a situation produces

a Jacobian matrix whose determinant tends to infinity.

However, in a real manipulator, the actuators have a finite range of motion, i.e.,

where p,.... Is, in general, positive. In this case, the first type of singularities occurs when

one of the actuators reaches one of its limits, i.e.;
25 = Prrin or Pi = Pmaz, t=1or2or3 (4.124)

which, again, corresponds to the limit of the workspace. Since one of the actuators cannot
move further in one direction, a certain set of velocities, corresponding to that motion of

the actuator, cannot be produced.

Second type of singularities:

The second type of singularities occurs in configurations where we can find a set
of velocities of the platform that produce vanishing joint velocity vectors. In other words,
this type of singularities happens when there exists a set of velocities of the paltform that
will correspond to velocities of the spherical joints which are orthogonal to the leg to which

they are attached.
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Figure 4.14 Example of the second type of singularity for the spatial three-degree-
of-freedom parallel manipulator.

An example of this is shown in Fig. 4.14, where the first leg is contained in the
plane of the platform. Therefore, a rotation of the platform around the axis connecting
the spherical joints attached to legs 2 and 3 will produce a vanishing joint velocity vector.
Another example is represented in Fig. 4.15, where the whole manipulator is contained
in the base plane. In that configuration, a translational velocity of the platform along a

direction perpendicular to the base plane will produce a zero joint velocity vector.
Third type of singularities:

For this type of manipulator, the third type of singularities occurs when the base
triangle and the platform have the same dimensions, i.e., when [ = L. The first two kinds
of singularities can then meet when all the legs have a length of zero but since this would

not be possible in a real manipulator, this type of singularities will generally not happen.
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Figure 4.15 Example of the second type of singularity for the spatial three-degree-
of-freedom parallel manipulator.

4.5 Spatial Six-Degree-of-Freedom Manipulator

A general six-degree-of-freedom parallel manipulator is shown in Fig. 4.16. Each
of the six legs connecting the platform to the base are kinematic chains having six degrees
of freedom, i.e., they are equivalent to a six-axis manipulator. This type of device has
been the subject of more intensive research than the parallel manipulators studied in the
preceeding sections of this chapter because of its use as a flight simulator. This application
was suggested by Stewart (1965) although it would seem that the first machine of this

type was built by Gough in 1949 (Stewart 1965) and was used to test tires.

However, only rather recently, namely, in the seventies, researchers started con-
sidering to use this kinematic structure as a robotic device. The idea seems to have been

suggested by Hunt (1978)—although Tindale (Stewart 1965) had already suggested to
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Figure 4.16 General six-degree-of-freedom parallel manipulator.

use the platform as a machine tool—and it was further developed in (Hunt 1978, 1983;
MacCallion and Pham 1979; Yang and Lee 1984; Mohamed and Duffy 1985; Inoue et al.
1985; Fichter 1986; Merlet 1987, 1988; Reboulet 1988) and led to robotic systems based on
this architecture such as, for instance, the SPACE-1 system (Systeme Poignet a Contréle

d'Effort) developed in France by CERT (Centre d’'Etudes et de Recherches de Toulouse).

However, in all the aforementioned references, only special cases of spatial six-
degree-of-freedom parallel manipulators are considered. In fact, the complexity of a spatial
parallel manipulator can be described by the number of branches that can possibly be
obtained in the solution of the inverse kinematic problem. This number is given by b°. where
b denotes the number of branches for each of the chains constituting the legs, since there are
six legs. The total number of branches for different cases of chains is shown in Table 4.3.

In the most general case, a six-degree-of-freedom serial manipulator leads to 16 solutions

133



4. ANALYSIS OF PARALLEL MANIPULATORS

(Primrose 1986; Lee and Liang 1988) and therefore, the fully-general parallel manipulator
may lead to roughly 16.8 million solutions. In all the references mentioned above but one,
the simplest case of parallel manipulator, having only one branch, is considered. it is only
in (Inoue et al. 1985) that a manipulator of the second type (two solutions per leg) is

considered and no reference was found where cases of greater complexity are handled.

b n

1 1

2 64

4 4096

8 262144
16 | 16777216

Table 4.3 Number of branches (n) in six-degree-of-freedom, six-leg parallel manip-
ulators as a function of the number of branches of each of the legs (b).

4.5.1 Inverse Kinematic Problem

The solution of the inverse kinematic problem of a spatial six-degree-of-freedom
parallel manipulator is very similar to the solution of the same problem for a serial six-axis
manipulator. Indeed. when the pose—position and orientation—of the platform is given,
the solution of the inverse kinematic problem consists of computing the joint coordinates
for each of the legs. Therefore, the solution of the inverse kinematic problem for each of
the legs is analogous to the solution of the inverse kinematic problem of a serial six-axis
manipulator, except that only one of the joint coordinates, on each leg, is really required
for control. In general, however, the computation of one of the joint coordinates entails the
computation of all of them. The solution of the inverse kinematic problem for the parallel
six-degree-of-freedom manipulator is therefore, in the most general case, a repetition (six
times) of the solution of the inverse kinematics of a six-axis serial manipulator. The
general numerical methods of solution of the inverse kinematic problem developed for serial
manipulators (Tsai and Morgan 1985; Takano 1985; Angeles 1985; Gupta and Kazerounian

1985} are then also applicable to parallel manipulators.
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In some particular cases, like the Stewart platform, i.e., case 1 in Table 4.3, the
solution of the inverse kinematic problem of a parallel six-degree-of-freedom manipulator
becomes very simple. It is emphasized here that this is the case because each of the legs
of the manipulator have a very simple kinematic structure, which leads to simple closed-
form solutions for the inverse kinematic problem of the corresponding serial manipulator.
The kinematic equations of such an arrangement can be found in many references on the

subject. They are included here for quick reference.

The term Stewart platformis generally used to designate a six-degree-of-freedom
parallel manipulator of the first type in Table 4.3, i.e., a manipulator for which each of the
legs is equivalent to a kinematic structure of the SPS type. It is pointed out that both
spherical joints are not necessary and one of them can be replaced by a Hooke joint, i.e.,
two revolutes with intersecting axes. A manipulator of this type is shown in Fig. 4.17a,
where the notation used is now déscribed. Again, symmetry is assumed and the points
of attachment of the legs, i.e., the centres of the spherical joints, are located on the base
and on the platform as shown in Figs. 4.17b& ¢, i.e., on the circumference of circles of
radii Rp (base) and Rp (platform), respectively. The points of attachment are grouped
by pairs which are uniformly spaced along the circle. The angles between the points and
the average position of each of the pairs along the circle are given by ¢g (base) and ¢p
(platform). Moreover, the points of attachment of the legs on the base and the platform
are denoted by B, and P;, for t = 1,...,6, respectively. Furthermore, the position vectors
of points B; and P, are given by vectors b, and p;, for : = 1,...,6, respectively, in a
coordinate frame fixed to the base of the manipulator, while the position vectors of points

P; in a coordinate frame fixed to the platform are given by vectors p;, fore=1,...,6.

We can then write

Rpcos8;
b, = | Rpgsind, |, 1=1,...,6 (4.125q)
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Figure 4.17 (a)Stewart platform (b)position of the joints on the base (c)position
of the joints on the platform.

where
(617 [ éB ]
) 2r/3 — ¢p
_ |6 27 /3 + ¢p
0= ai = 4743 o (4.125b)
05 47r/3 + ¢B
L] L —¢p
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and
Rpcosn,
p. = | Rpsinny; |, i=1,....6 (4.1264)
0
Moreover,
[(m7] [ ép ]
) 2r/3 - ¢p
. n3 _ 27T/3 + ¢P
n= na | = | 4n/3— 6p (4.1260)
5 4r/3 4+ ¢p
L 76 L —¢p

We denote the position vector of the centroid of the platform by x, while the rotation tensor
defining the orientation of the platform by Q. The position of each of the spherical joints

attached to the platform is therefore written as:
p;=x+Qp,, i=1,...,6 (4.127)
Subtracting vector b; from both sides of eq.(4.127) leads to
p;, —b, = x+ Qp, — b;, 1=1,...,6 (4.128)
Now, taking the Euclidean norm of both sides of eq.(4.128), we finally derive
Ip: = bill = |Ix + Qp; = b =¢;;,  i=1,...,6 (4.129)
where ¢, is the length of the ith leg, i.e., the value of the ¢th joint coordinate. The solution

of the inverse kinematic problem of the Stewart platform is therefore completed and can

be rewritten as

¢ =\JU2+V24W2,  i=1,..,6 (4.130a)

where
U,=z+qRpcosn; + qpRpsinn;, — Rpcos b, (4.1300)
Vi=y+aqEpcosn; +gpRpsinn, — Rpsinb, (4.130¢)
W, =2+ ¢33 Rpcosn; + g3pRpsiny, (4.130d)

in which variables z,y,z and ¢;;, for 7,7 = 1,2,3, are the components of the Cartesian
)

coordinates, i.e., vector x and matrix Q. Thus, in the coordinate frame fixed to the base,

z @1 912 913
x=|y| and Q= |g1 gn 3 (4.131)
z 931 932 433
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4.5.2 Direct Kinematic Problem

The problem of finding the Cartesian position and orientation of the platform,
associated with given actuator lengths is now discussed. This problem consists, in fact,
of the solution of the nonlinear system of equations given in eq.(4.130a) for the Cartesian
coordinates. The problem can be formulated using any kind of convention for the repre-
sentation of the orientation of the platform. For instance, a formulation based on Euler
angles is presented in (Dieudonne et al. 1972), where numerical results obtained with the
Newton-Raphson method are shown. In the aforementioned formulation, a system of six
equations in six unknowns is solved, the unknowns being the position coordinates z,y, z
of the centroid of the platform and three Euler angles 11,;,3 giving the attitude of the

platform. This implies, of course, that we have expressed the rotation tensor as

Q = Q(¢1,%2,%3) (4.132)

using a Euler angle convention.

Alternatively, the orientation of the platform could be represented by all the
components of the rotation matrix or by some of its invariants. This formulation would
lead to a larger system of equations since the constraints on the orthogonal matrix, or on
the said invariants, would have to be introduced as additional equations. This formulation
would have the merit of eliminating the singularities introduced by the Euler angles, but,
depending on the invariants used, other singularities may be introduced (cf. Appendix B). It

is to be noted that the use of Euler parameters does not introduce any spurious singularity.

4.5.3 Velocity Inversion

Again, we can write the relationship between the Cartesian and joint velocities
as follows:

¢ = Jx (4.133)
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where ¢ and x are defined as € = [¢q,. .. ,éG]T and x = [:i:,y,é,wl,wz,wg,]T, in which the
angular velocity of the platform is defined as w = [wy,wy,w3]?. This equation, and hence,
an expression for the Jacobian matrix J, is obtained by differentiation of eqs.(4.130a—d).

Moreover, we can again make use of the following property of the rotation tensor:
Q=10Q (4.134q)

where

N=1xuw | (4.134b)

to obtain the time derivative of this tensor. Also, we define a set of vectors w,, for

i=1,...,6 as

=ce= |V, (4.135)

where e, is a unit vector along the sth leg. pointing from the base to the platform. The sth

row of the Jacobian matrix, J;f can then be written as

1 T
Ji:;[w?,(—WiQpé)TJ , i=1,...,6 (4.1364)
1

where

W; =1xw, (4.1360)

and the velocity inversion is completed.

4.5.4 Acceleration Inversion

Differentiation with respect to time of both sides of the velocity equation, i.e.,
eq.(4.133). leads to the expression relating Cartesian and joint accelerations for this ma-
nipulator, namely,

€ =Jx + Jx (4.137)
where the time derivative of the Jacobian matrix needs to be defined. The sth row of this

matrix, denoted as kz.T. can be obtained as

ki——i—[rT sT}T, i=1,....6 (4.1384)

T2t 0™
5
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where
ro= W, — 6w, (4.138b)
si = —¢;[W,Qp} + W, Qp;] + & W, Qp! (4.138¢)
and
W, =1 x w, (4.1384)
with

Z + (w2931 — w3qp1) Rp cos n; + (wyq3p — w3gpp) Rp sin
W, = | ¥ + (w3q11 —wiq31) Rp cos n; + (w3g1y ~ wyg3p) Rp sin; (4.138¢)
2+ (w1921 — wpq11) Bp cos n; + (w1g9p — wagp) Rp sin;

which completes the acceleration inversion.

4.5.5 Singularity Analysis

First type of singularities:

Since the actuators of the Stewart platform are prismatic, the first type of
singularities occurs when one of these actuators reaches its limit, just as in the case of the

three-degree-of-freedom spatial parallel manipulator.
Second type of singularities:

The singularities of the second type for the Stewart platform have been dis-
cussed in some references, namely (Fichter 1986: Reboulet 1988; Merlet 1988). In the
latter reference, several types of configurations in which the platform’s Jacobian is singular
are described in detail. For each of these configurations, there exists a set of velocities of

the platform that will produce vanishing velocities at all the actuators.
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Third type of singularities:

The situation is similar to the one encountered in the case of the three-degree-
of-freedom spatial parallel manipulator, i.e., the third type of singularities occurs when the

platform and the base have the same dimensions, i.e.,
Rp = RB and gbp = ¢B (4.139)

If this is the case, the manipulator becomes uncontrollable when all the actuator lengths
are the same. Indeed, the platform can undergo pure translations when all the actuators

are locked and the manipulator is in the said configuration.

141




Chapter 5 OPTIMIZATION OF PARALLEL MANIPULATORS

The kinematic optimization of parallel manipulators is addressed in this chapter.
The detailed analysis of the kinematics of the parallel manipulators conducted in Chapter

4 will now be used to define and optimize their properties.

An important question that arises in the process of designing robotic manipula-
tors is the choice of the optimization criteria. In the context of kinematics, several concepts
have been used as design guidelines. In fact, most of the serial robots currently in use have
been designed considering invertibility as a constraint, i.e., requiring that the solution to
the inverse kinematic problem be available in closed-form. Many authors (Cwiakala and
Lee 1985; Kohli and Spanos 1985; Lin and Freudenstein 1986; Gupta 1986a; Kumar and
Patel 1986) have also analyzed the workspace of manipulators and have sometimes used it
as a design criterion. Other authors {Vijaykumar et al 1986; Yang and Lai 1985, Yoshikawa
1985) have investigated the possibility of defining dexterity or manipulability indices which

could be used for optimization. A review of these is given in (Klein and Blaho 1987).

The recent development of numerical algorithms (Tsai and Morgan 1985; Takano
1985; Angeles 1985; Gupta and Kazerounian 1985), capable of inverting serial manipulators
of arbitrary architecture, allows designers to relax the constraint of invertibility and thus
opens the avenue for new design criteria. Moreover, since this thesis is devoted to parallel
manipulators which exhibit, most of the time, a simple closed-form solution to their inverse

kinematic problem, the invertibility constraint disappears.
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In this chapter, we will be mainly considering two optimization criteria, i.e., the
workspace or reachable volume and the dexterity of robotic manipulators. The dexterity
index used here is based on the condition number of the Jacobian matrix of the manipulator,
a quantity that has attracted the attention of some researchers (Salisbury and Craig 1982;
Angeles and Rojas 1987; Angeles and Lépez-Cajin 1987). A discussion on the condition
number can be found in Appendix D. It is pointed out that this concept was already used
for the kinematic optimization of a closed-loop manipulator by Stoughton and Kokkinis

(1987).

The aforementioned condition number, which can also be termed local dexterity,
is of great interest for the planning of optimum trajectories of given robots, as will be
shown in Chapter 6. However, for the task at hand, i.e., the optimum kinematic design of
a manipulator, one may be interested in an index that represents a global property of the
manipulator. This motivates the introduction of a new performance index which is defined
here and termed the global conditioning index (GCl). This index is based on the distribution
of the condition number of the Jacobian matrix, i.e., it is a measure of the conditioning of

the manipulator over the whole workspace.

The first section of this chapter will be devoted to a discussion on the dexterity
of manipulators and to the definition of the GCI. Then, the two design criteria mentioned
above, i.e., workspace and dexterity, will be applied to the kinematic optimization of some

of the parallel manipulators presented in Chapter 4.

5.1 Dexterity of Robotic Manipulators

As stated in the introduction of this chapter, the dexterity index defined here is
based on the condition number of the Jacobian matrix. This quantity, which is a measure
of the local dexterity, can be used for both serial and parallel manipulators as will now be

shown.
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The Jacobian matrix of a serial-type manipulator is defined as the matrix rep-
resenting the transformation mapping the joint rates into the Cartesian velocities. This

transformation is written as:

36 =x (5.1)

where @ is the vector of joint rates and x is the vector of Cartesian velocities. However, as
we have seen in Chapter 4, it is more convenient to define the Jacobian matrix of closed-loop

manipulators in terms of the inverse transformation, i.e..

Kx =6 (5.2)

The accuracy of the control of the manipulator is dependent on the condition
number of the Jacobian matrix (Salisbury and Craig 1982; Angeles and Rojas 1987; Angeles
and Lépez-Cajin 1987). This is so because the condition number represents the amplifi-
cation factor by which the error on the input vector of a linear system are multiplied when
the solution vector is computed (Strang 1980). In the case of a manipulator, the condition
number is therefore an indication of the amplification of the error on the position or the
force at the gripper for a given accuracy of the actuators. This number is to be kept as
small as possible, the smallest value that can be attained being 1, which is obtained by

rendering the matrix isotropic. The condition number of the manipulator is defined as:
-1
o= [T (5.3a)

where || - | denotes any norm of its matrix argument. In this thesis, the following frame-

invariant Euclidean norm is adopted throughout:
4] = /tr(dwdT) (5.3b)

W being defined as w1l where w = 1/n, and n is the dimension of the square matrix J.
Of course, the same definition applies to K. A more detailed discussion on the condition
number can be found in Appendix D. The local dexterity index can now be formally defined

as the reciprocal of the condition number of the Jacobian matrix of the manipulator, i.e.,

v = <%> (5.4)
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It is important to notice that, since the Jacobian is configuration dependent, its condition
number is a local property of the manipulator—which is the reason behind the term /local
dexterity index—and therefore bears information on the accuracy of the control in this
particular configuration only. This criterion can be used for design by minimizing the
condition number over the space of manipulator parameters together with the space of
configurations. Isotropic configurations can then be isolated and the corresponding designs
are termed isotropic. However, since isotropy is a property of a limited subset of the
workspace, either a curve or a surface within the manipulator’'s workspace (Salisbury and
Craig 1982, Angeles and Rojas 1987), it does not guarantee, in general, that the overall

conditioning of the manipulator is optimum.

To obtain a measure of the global behaviour of the condition number of the

manipulator, the following global conditioning index n is now proposed:

n = E (550,)
where
A:/ <—1—> dW:/ vdW (5.5b)
W \K w
and
B :/ dW _ (5.5¢)
%%

in which & is the condition number at a particular point of W, the manipulator’s workspace,
and the denominator B is the volume of the workspace. The reciprocal of the condition
number, i.e., the local dexterity index v has been used for it is better behaved than « itself

over the whole workspace. In féct. it is bounded as follows:

0<v<i | (5.6)
which thus produces a bounded performance index, i.e.,

0O<n<1 (5.7)

An alternative definition of A can aiso be given as:

A= /W (%>2dw = /W v2dw (5.8)
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The squaring of the local dexterity index is not necessary here, since the condition number
is a positive definite quantity. However, the definition given in eq.(5.8) can sometimes
simplify the algebra since the condition number, as defined in eq.(5.3a), is given by the

square root of a product. Both definitions are acceptable.

In the context of the optimum design of robotic manipulators, the GCl is to be
maximized over the space of manipulator parameters. Thus, the closer to unity the index
is. the better the overall behaviour of the condition number and hence. of the manipulator.
The normality condition necessary for a stationary value of n is given by:

on _

o =0 (5.94)

where h is the vector containing the parameters defining the architecture of the manipulator.
For example, for an n-axis serial manipulator, these parameters can be those of Hartenberg

and Denavit (Hartenberg and Denavit 1964), i.e..
— T
h = [al, bla O,y ... ,0n, bn, Oén] (59b)

Since the Hartenberg-Denavit parameters are not appropriate for the description of parallel
manipulators (Kleinfinger and Khalil 1986). for this class of manipulators, vector h may

represent an alternative set of kinematic parameters that fully describe the manipulator.

Application of condition (5.9a) to egs.{5.5a,b&c) leads to the normality condi-

a (1 aB
/W o (;> dW —n—- =0 (5.10)

The integration over the workspace can be performed in the Cartesian space

tion given below:

providing that its boundary is known. This will be done in the examples presented here,
which involve closed-loop manipulators. However, for current open-loop manipulators, the
workspace is not always known in the Cartesian space and it is, in general, much easier
to describe it in the joint space. If we want the GCl to still be a measure based on the

Cartesian space metric, the transformation from one coordinate system to the other can be
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introduced in the integral where we have to include the absolute value of the determinant

of the Jacobian matrix, A. The normality condition, eq.(5.10), then becomes:

o (1 oB
/R e <;> 8]0 ... dbydby — =0 (5.11)

where E denotes the workspace (in joint coordinates), and each of A and B are computed

accordingly, i.e., as:

1
A:/ <—) \A[d0,, ... db,dd, (5.12a)
R K

and

B:/ |A|d6,, ... df,dd, (5.12b)
R

It is pointed out that an alternative definition of the GCI based on the joint space metric
“ would take away the determinant of the Jacobian from the above integrals. This GCl would
have a slightly different, but also meaningful interpretation and in many instances it may

be easier to handle mathematically, when serial manipulators are considered.

As a demonstration of its applicability, the concept of global conditioning index
will now be used on two different serial manipulators for which optimum designs will be
obtained. We will also use the GCl in the forthcoming sections of this chapter, where the

kinematic optimization of parallel manipulators is addressed.
5.1.1 Examples
5.1.1.1 Planar, Open-Loop, Two-Link Manipulator

The open-loop. two-link manipulator under study is shown in Fig. 5.1. This

manipulator is capable of positioning a point on its plane.

The Jacobian matrix, as defined in eq.(5.1), can be written in a coordinate frame

attached to link 1 as: .
J— | Tazsin by —ay sin 6y (5.13)
aq +apcosfy aycosby
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az
g/

ai

Figure 5.1 Open-loop planar two-link manipulator.

Therefore, we have:

1 a9 cos 6 aysin g
-1 1 2 2 2 2
J - A —(a1 + aj CcOos 02) —ay sin 02 (514)
where
A= aqa) sin 02 (515)

The condition number of J, can then be computed from egs.(5.3a&b) (Angeles

and Rojas 1987). and is given by:

K= (a% + 20% + 2aqay cos 0y) /2aqay sin by (5.164)
or
k = ({1/a + 20+ 2cos §5) /2sin b, (5.16b)
where
a=ayfag >0, a3 >0 (5.16¢)
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Some plots of the condition number against 6, are shown in Fig. 5.2 for a few values of
a. It can be seen that the only value that leads to an isotropic manipulator is « = \/5/2
a fact that was pointed out in (Salisbury and Craig 1982). However, it is interesting to
notice that, from a figure presented in the latter reference, it is not obvious that this value
of a gives the best GCI. The curves shown in Fig. 5.2 are plotted against 6, and this way
of presenting the curves allows us to see that the isotropic manipulator should lead to an
optimum GCl since the value of the condition number for this value of « is always the

lowest.

Now, in order fo compute the manipulator's GCI, we have to integrate the
reciprocal of k over the workspace. Since we have expressed the condition number as a
function of joint angle 6, and the linkage parameter « only, it is convenient to evaluate the
integrals described in eqs.(5.5a—¢) in the joint space, i.e., to use the formulation developed
in eqs.(5.12a&b). We cover the workspace of the manipulator by integrating on one of the

two branches of the manipulator. For example, letting angle 8, vary between 0 and 7, we

have:
2r T
B = / / aiar sin 02d02d61 = 471'(11(12 (517)
61=0J9,=0
which leads to:
1 r 2sin 6,
= in 6,dé,dé 5.18
4ﬂa1a2[) /0 <1/a+2a+2c0502>a1a25m 27725 (5.18)
and can be further simplified to:
T sin 4,
= dé 5.19
7 /O (1/a+2a+2c0502) 2 (5.19)

Then, taking the derivative with respect to the only parameter involved. i.e., o, and setting

it equal to zero, one obtains:

7 2
(2 -1/ / sin” 0,d6, =0 (5.20)
0 (1/a+ 2a + 2cos 65)2

The integral in eq.(5.20) is a positive definite quantity. Therefore, this equation
is satisfied if, and only if,

o= — (5.21q)
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Figure 5.2 Reciprocal of the condition number of the planar two-link manipulator
as a function of ¢ for three different values of a.

The investigation of the denominator of the integrand in eq.(5.20) shows that the integrand
does not suffer from any singularity. In fact, the condition under which the denominator
vanishes can be written as:

cosfy = —(a+ (5.21b)

70
which leads to:

1+40* <0 | (5.21c)
and cannot be satisfied for real «.
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In this case, the optimum design in the sense of the global conditioning index is
found to lead to the isotropic manipulator already discussed in (Salisbury and Craig 1982;
Angeles and Rojas 1987). The global conditioning index of the two-link manipulator as a

function of « is shown in Fig. 5.3. Its maximum value is nmax = 0.6506, for a = \/5/2

GClI

Figure 5.3 Global conditioning index of the planar two-link manipulator for different
values of a.
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5.1.1.2 Spherical, Open-Loop, Three-Degree-of-Freedom Wrist

A spherical wrist is shown in Fig. 5.4. Since the axes of the three joints intersect
at a common point, the parameters defining the architecture of the wrist are reduced to

the angles oy and a). We then have:

h=[ey, op]F (5.22)

e)

Figure 5.4 Open-loop three-degree-of-freedom wrist.

If we denote by ey, ey and e3 the three unit vectors along the kinematic pairs

of the wrist, we can write the Jacobian matrix as:
..l = [e1 62 63] (523)
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This matrix is now represented in a coordinate frame attached to the second link, i.e.,

0 0 sinfysinoy

J=|sinag 0 —cosb)sinay (5.24)
cosaq 1 CoSs
from which we can write:
A = sin ¢y sin a; sin 6y (5.25)

Using eqgs.(5.3a&b) one can then derive an expression for the condition number (Angeles

and Rojas 1987). which gives:
2
3N
(—1—> = — (5.264a)

where

N = sin? oy sin? oy sin? 6, (5.26b)

and

2 2

D =sin? oy (1 + cos ay) + sin’ ay (1 + sin? 87) + cos? ay sin’ oy cos® 6,

(5.26¢)

+ 2 cos o sin a4 cos oy sin ay cos b,
As in the case of the first example, the spherical wrist has two branches and the integration
can be performed on one of them. For instance, we can choose the branch for which the
determinant of the Jacobian matrix is positive, i.e., integrate over 6, from 0O to 7. Now,

eq.(5.10) will lead to two equations since h is of dimension 2. The integrand of the first

term of each of these equations can be written as:
2
0 1
o (1) 8
dag |\ K

where

= 53 [3 sin? oy cos ey sin® oy sin® 6, D — 2sin® oy sin® oy sin3 6, D'

(5.27q)

D' = sin a9 cos oy cos 0y cos 201 + sin o cos aq (1 + cos? oy — sin ay cos? 6 5.27b
2 2 2 1 1 1 2 2 2

2

3 . . . . . .
2 [3 sin® oy sin? oy cos ay sin® 8, D — 2sin oy sin® a; sin® 02D”]

(5.28a)
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where
D" =sin o4 cos aq cos 8 cos 2ay + sin ay cos ay cos? o (5.28b)

+ sin oy cos ap(sin? 0y + cos? a4 cos? 6y)
Moreover, the second term of each of the normal equations, eq.(5.10). contains a factor

O0B/Jdh whose integrand, for the first equation, is given by,

oA

Bo; = c0s a4 sin ay sin 6y (5.294)
and, for the second equation, by,

oA

By = sin o cos ay sin 6y (5.29)

By inspection of egs.(5.27a~5.29b), it becomes obvious that the normality con-
dition is verified if oy = ay = 7 /2. Therefore, these angles constitute an optimum design
in the sense of the global conditioning index. Again, this design is found to be an isotropic

manipulator which has been discussed in (Angeles and Rojas 1987).

The results obtained for these first two examples can be reproduced using a GClI
based on the joint space metric, which actually leads to simpler integrals. The procedure

is identical to the one described above.

5.2 Planar Three-Degree-of-Freedom Manipulator with Revolute

Actuators

The workspace and dexterity of the planar three-degree-of-freedom parallel ma-
nipulator studied in Section 4.1 will now be optimized. The symmetry assumptions used

in Chapter 4 are maintained here.

5.2.1 Workspace Optimization

The mobility region can be found for each leg of this manipulator, this region

being bounded by the singularity curve which is the closed curve separating the region
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where the leg has mobility from that in which it does not. For the points of the workspace
located on this curve, the solution of the inverse kinematic problem is unique since the two
branches meet. Indeed, for a given leg to have mobility for prescribed Cartesian coordinates,
the expression in brackets in eq.(4.4) has to have a magnitude smaller than or equal to
one. Thus, the singularity curve, i.e., the limit of the workspace, for the sth leg is obtained

by writing:
2 2,2 .2
=1l + x5, + vy

[2 | .2
201/ Ty, + Y,

The workspace of the manipulator, dashed in Fig. 5.5, is then obtained by the intersection

= +1 (5.30)

of the three foregoing mobility regions. Those regions are, in fact, annular regions in the

z-y plane described by the following equations:

(z—2) +(y—y) 2 =(l1 £ )2, i=1,2,3 (5.31a)
where
zq9 = I3 cos(¢ + 7/6) (5.31b)
y1 = I3 sin{¢ + 7/6) (5.31¢)
zy =1—1I3cos(¢ — 7/6) (5.31d)
yp = —lgsin(¢ — 7/6) (5.31¢)
3 =1/2+I3sing | (5.317)
Y3 = \/5/2 — Iz cos ¢ (5.31¢)

a result that is derived directly from eq.(5.30).

Each of the three annular regions is bounded by two concentric circles whose

centres, C;, have coordinates (z;,y;) for + = 1,2,3. This is shown in Fig. 5.5.

The concentric circles are obtained by choosing alternatively the plus and minus
sign in eq.(5.30). which gives rise to circles of radii (I +15) and |l{ —ly|. From the particular
form of the expressions of the coordinates of the centres, C;. given in eqs.(5.31b-g), it can

be realized that these are located on the circumference of three other circles of radii I3,
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Figure 5.5 Workspace of the planar manipulator for Iy = 0.355, I, = 0.15 and
l3 = 0.125 when ¢ = 0°. For this value of ¢. the annular regions whose intersection
form the workspace are centred at points C4, Cy and Cj, respectively.

centred at the driven joints. Their location on this circumference depends on the gripper
orientation, which is given by angle ¢. For example, if ¢ is equal to zero, the centres C;
are located as shown in Fig. 5.5, i.e., bringing the annular regions as close as possible to
each other. As ¢ is incremented, centres C; will move around the circles of radii /3 and, for
¢ = 7, they reach the configuration shown in Fig. 5.6, i.e., the one for which the annular
regions are as far as possible from each other. The geometric construction of Fig. 5.5 can
then be redrawn for any angle ¢. It can be realized, from the foregoing discussion, that the

area of the workspace will be a minimum when angle ¢ is equal to 7, since in this case the
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distance between the regions, whose intersection defines the workspace of the manipulator,

is a maximum.

Figure 5.6 Same construction as in Fig. 5.5 but with ¢ = 7. The workspace -
vanishes.

One important criterion for the usefulness of the manipulator is that we have
a non-vanishing workspace for every angle ¢. This can be achieved by imposing a non-
vanishing workspace for ¢ = , i.e., by setting ¢ = 7 in equations (5.31a) and the condition
that the intersection of two of the circles defining the outer boundary of the annular regions
be inside the third one and that the three circles defining the inner boundary of the annular

regions do not have a common intersection. This leads to:

3(ly + Ip)? > (V33 + 1)? (5.32a)
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and

3(ly — 1p)? < (V3I5 — 1)2 (5.32b)

The manipulators verifying these conditions will have a non-vanishing workspace

for every angle ¢.

The global workspace of the manipulator can now be represented as a volume
in the (z,y, ) space, as shown in Fig. 5.7, where the origin of the coordinates has been
placed on the centroid of the base triangle formed by the motors My, My, M3. This figure
has been obtained by incrementing ¢ and calculating the coresponding workspace in the
(z,y) plane, for every angle ¢. The volume of the workspace, W, can then be approximated
numerically using discrete integration over ¢ from 0 to 27. The introduction of Simpson’s

rule, for example, leads to:
27 Ag
W = / A(¢)do ~ T[AO +4A) +24) 4+ ... + 44y, 1+ Ay,] (5.33a)
0
where
A; = A(rDd), Ao =7/n, 1=0,1,...,2n (5.33b)
and A; — area of the workspace for ¢ = ¢; = 1A¢, i.e., A; is the area of the region a(¢,).

and n can be chosen large enough to provide an acceptable accuracy.

Equation (5.33a) requires the evaluation of A, for many different values of ¢.
This can be done more efficiently by resorting to integration on the boundary using the
Gauss Divergence Theorem (Brand 1955). The application of this theorem to the planar
region a(%i)) gives:

Af¢) = %/an s - ndofl (5.34a)

where
011 : the boundary of the region o(¢)

s : the position vector of an arbitrary point of 92
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Figure 5.7 Workspace of the planar manipulator as a volume in the (z,y, ¢) space
obtained for Iy = Iy = v/2/4 and I3 = 0.1.

n : the outward unit normal vector to the curve 9Q

This integral is more easily evaluated by first computing the area of region
M NP and then subtracting three times the area of region PQR, where M, N, P,Q. and
R are as indicated in Fig. 5.8. This gives:

A(g) = A1(4) —34,(4) (5.340)

The first line integral Aj(¢) can be broken down into three parts, one for each
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of the three arcs forming the border of this region. This leads to:
A1(8) =2 {afsin (V1 ~ blcos 6°N1 1+ R(0y1 — 0p1)}

2 op1 fp1
R

+ 5 {elsin 0]35433 ~ flcos 0]25{33 + R(8p3 — Oy3)) (5.35a)
R

+ 5 felsin 01347 — dicos 01342 + R(6)17 )}

where (a,b). (c,d), and (e, f) are the coordinates of the centres of circles corresponding to
the first, second and third circle, respectively and @, is the angle associated with point N
when considering the ith circle; 0p; and ), are defined similarly to 8y, all angles being
measured from the positive direction of the X axis, and R = I; + ;. The area of region

PQR is computed in a similar fashion, as
Ay(9) =§{a[5i" 01,7 — blcos 6],EL + R(0gy — 0p)}
P1 P1
+ —Z}E{e[sin 0]255 ~ flcos 0];’5: + R(0p3 — 003)} (5.35)
+ %{c[sin 0]22; — d|cos 0]22; +r(0g2 — Ora)}
where 0g; and 0, are defined similarly to 0,. 0, and 8p;, while r = |lj —Iy].

The sine and cosine functions involved in eqgs.(5.35a&b) can be readily calculated
using simple differences between abscissae and ordinates, and the difference between the
angles can be evaluated using the inverse sine function. These considerations allow us to
write these equations in a form that is more efficient for computational purposes. Equations

(5.35a&b) can then be rewritten as:

1

A1(#) =5lalyw —yp) — blzy — 2p) +elyp — yu)
— flzp — zp) +clym — yn) — dlzpyr — zn)] (5.36a)
+ 3R? sin_i(g—)

2R
and .
A(¢) =5lalur —yp) — b(zr — zp) + e(yp — yg)
— flep — zg) + ¢(ug — yr) — d(zg — zg)] (5.36b)
+2R? sin—l(%) e sin*l(zir)
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Y
A
.(ev‘f)
N
a(¢) Y
R
) M P (e, d)
{ast Q. X

Figure 5.8 Workspace a(¢) obtained for iy = 11v/2/32, I, = 5v/2/32, I3 = 0.125
and ¢ = 0°. The centres of the intersecting annular regions are denoted by (a,b).
(c,d). and (e, f). The curve 89 is the boundary of the workspace.

where (zp7,ypM), (zn,ynN), (zP,ypP), (2Q,yg), (zR,yR) are the coordinates of points M.
N, P, @, and E. The quantities D and d are the distances between any two of the points

M., N, P and any two of the points P, ). R, respectively.

We can thus evaluate the volume W of the workspace of the manipulator in the
(z,y,d) space. It can be seen from Fig. 5.8 that, for a given value of R, there is a maximum
value of r for which the workspace is given simply by the intersection of the three larger

circles defining the outer boundary of the annular regions. If r is larger than this value,
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the workspace is reduced due to regions similar to region PQR in Fig. 5.8. Moreover, it
becomes obvious, from eq.(5.31a) that the volume of the workspace will be monotonically
increasing with R since this is the radius of the larger intersecting circles. The optimization
problem will then be to find, for a given value of R, the value of /3 that maximizes the
workspace, and then compute the maximum value of r that is acceptable. The optimum
value of I3 is found using a numerical one-dimensional direct search where the step size
is halved whenever the centrepoint of the current interval gives a larger workspace volume
than the extreme points of the said interval. This method converges to a local maximum.
The maximum acceptable value of r is then computed from this optimum design. The
results of this optimization procedure are shown in Fig. 5.9. Points on the curve represent
manipulators having maximum global workspace. It is interesting to note that when R
is larger than 1. the optimum design is obtained with I3 = 0. On the other hand., when
R — 0, then I3 — \/5/3 which corresponds to the case of a fixed gripper having the
same dimensions as the base triangle. It also turns out that the maximum acceptable value
of r associated with these optimum designs is always zero, which means that we have

Iy = ly = R/2 for the optimum designs.

o
| -
P

Figure 5.9 Optimum values of I3 which maximize the workspace for a given value
of R.
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5.2.2 lIsotropy of the Jacobian Matrix

It is recalled from Chapter 4 that the Jacobian matrix of this manipulator is

defined as

=20 (5.37)

where ¢ = [z,9,$]7 is the vector of Cartesian velocities and § = [61,8,,65]T is the vector

of joint rates. Moreover, an expression for this matrix was given as

ai/dy bi/dy eq/dy
J = aZ/dZ bz/d2 Cz/dz (538)

az/dz b3/d3 c3/ds

where

a; = —9193(% — To;) + g3 cos b; + gy cos ¢; (5.39a)
b; = —9192(y — yo;) + g2 sin 0; + g1 sin ¢; (5.39)
¢; = 911(y — yoi) cos ¢; — (z — zog) sin ¢] — sin(6; — ¢;) (5.39¢)
d; = —g2[(y — ;) cos 0; — (z — z,;) sin 6;] — sin(6; — ¢;) (5.394)

with g1 and gy defined, in turn, as
g =1/ly, g =1/ (5.3%)

To;»Yo;) being the coordinates of the centre of the sth motor and angles ¢, being defined
ot Jor t

as

p1=¢+7/6 (5.40q)
¢y = ¢+ 51/6 (5.400)
3 =¢—7/2 (5.40¢)

It is now desired to find isotropic designs for this manipulator, i.e., kinematic
parameters that will lead to manipulators for which at least one point of the workspace

corresponds to a configuration for which the condition number is equal to unity. One
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simple way of obtaining this minimum value of the condition number is to render the matrix
proportional to an orthogonal matrix. Indeed. it is known (Strang 1980) that orthogonal
matrices and their multiples are the only isotropic matrices, i.e., the only ones having a
condition number of 1. This, however, can be done only in specific configurations since
the Jacobian matrix is configuration dependent. The mobility region shown in Fig. 5.7
being symmetric about the centroid of the triangle defined by the motors, this point of the
z-y plane is the one where the manipulator attains the maximum mobility in terms of the
different values of the angle ¢ that it can reach. Therefore. this position is one in which
we would like the Jacobian to be isotropic. We call this position the home configuration.
This is then defined as that in which the centroid of the gripper is located at the centroid
of the base triangle and, for example, ¢ = 0°. If we write the Jacobian matrix in this
configuration. we will derive expressions in g1,99,01,07,603. However, due to the symmetry

of the manipulator, 8, and 63 will be related to 64 by:
0y =0y + 27/3 03 =0y +4n/3 (5.41)

which leaves us with only 3 variables namely g1,g5. and 6;. If we now want the Jacobian
to be proportional to an orthogonal matrix, then we have to specify that its rows be of
equal norm and orthogonal with respect to each other, the same holding for its columns.
This brings 12 potential equations, some of which are redundant. In fact, in this case, due

to simplifications that arise, we end up with only one independent equation, i.e.,

Vi1t o1, 1 V3 V3 o1

gf(?gz =5 %) T0192(592 — =) cos by + 9195 (= — 5) sin by — ";Sin 01 cos 0y
+ (% - %g%) cos? 6y + (% - %gg) sin 6, =0 |

(5.42)
We can think of the left-hand side of this nonlinear equation as being a function of Iy,l,,13,
since §; will bear the information on ly. We can therefore simultaneously specify isotropy
in other configurations. To satisfy our need for symmetry, we will choose two other config-
urations which have the same position of the gripper but in which the angle ¢ is 27/3 and
47 /3. Moreover, since each of these also leads to only one independent equation, we will

end up with as many equations as unknowns and exact solutions, within roundoff errors,

164




5. OPTIMIZATION OF PARALLEL MANIPULATORS

of course, should be possible. The condition for isotropy in the two last configurations can

be expressed as

2 2
9,95 V3 1 .4 g1 V3 .
—S(F+Fn+35)+ 55+ V30 - Yeos by + 2 (595 — 92— V3)sint]
+ \—gsin 07 cos 6] + (% — %g%) cos? 6} (% — %g%) sin2g) =0
(5.43)
and
2 2
91 (92 V3 1 1, 1 V3 ol
AV by ARt costf + 0100 Lap + 1) sin
2\3 T30 2 6 (5.44)

2
+{(1- %gg) cos? 6 — (gzl) sin2 6! =0

Equations (5.43) and (5.44) seem to intoduce two new unknowns, namely,
05 and 03’. which represent the value of the first motor angle in configurations 2 and 3
respectively. However, they are not independent variables since the value of I, has to be
the same in the 3 configurations. For computational purposes, we will keep these variables
as if they were independent, and write the equations constraining them, i.e.,
(1) _,(2) _,03)
L7 =17 =1 (5.45)
where vlg) denotes the value of /5 in the sth configuration. Equation (5.45) leads to the

following:
! Y / . ' . \/§
g2 (cos 8] — cos 81) 4+ V/3(cos 84 + cos 61) — V3gq + (sin 6y —sin 01)(Tg2 —1) =0 (5.46)
and

3
g2 (cos 8] —cos 8;)+v/3 cos 6y —\/§g1+\~g—_gz(sin 0 —sin 01)+(sin 6 +2sin 8]) = 0 (5.47)

Now the sines and the cosines of the angles appearing in eqs.(5.42-5.44) and
(5.46-5.47) are considered as independent variables as well. Thus, the following constraints

are adjoined:

sin? 6y + cos?6; —1=0 (5.48)
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sin’ gy + cos? 07—-1=0 (5.49)

sin? 0] + cos? 4} —1=0 (5.50)
Equations (5.42-5.44) and (5.46-5.50). therefore, constitute a system of 8 nonlinear equa-
tions in 8 unknowns. The solution, if there is any, may then not be unique. This problem
has been solved using the Newton-Raphson method and convergence has been obtained

to 8 different solutions. The corresponding link lengths are given in Table 5.1 and the

manipulators are shown in Fig. 5.10(a)-(%).

Solution # L Iy I3
1 0.783261 | 5.896342 | —5.399776
2 1.166456 | 5.054792 | —5.393759
3 1.154665 | 3.722528 | —4.041159
4 2.010278 | 2.518945 | 1.240155
5 1.265630 | 7.244370 | 6.767731
6 1.344719 | 3.828894 | 3.257859
7 —1.942812 | 7.854237 | 0.780640
8 1.575610 | 2.587595 | —1.185050

Table 5.1 Link lengths for the isotropic manipulators (8 solutions).

The solutions converging to a positive value of I3 correspond to manipulators
which are isotropic in the home configuration with ¢ = 0,27/3,47 /3, while the ones
having a negative value of I3 represent manipulators for which the third link length is |I3]
but which are isotropic in the home configuration when ¢ = 7/3,7,57/3. Both results
are acceptable. It should be noticed also that the sign obtained for I has a well-defined

geometric interpretation, but this link length should always betaken as positive, of course.

5.2.3 Global Conditioning Index

Unlike the serial manipulators studied in Section 5.1, it is not possible to obtain

a closed-form expression for the condition number of the Jacobian matrix of the planar
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Figure 5.10 Representation of the eight different manipulators that were found to
be isotropic in the home position and for three different orientations. They are
shown here in one of their isotropic configurations.

parallel manipulator. This forces us to resort to a numerical integration in order to evaluate
the GCI. The integration has been carried out over the workspace in the Cartesian space.
The algorithm to compute the volume of this workspace, B, developed in Section 5.2.1

was used and a triple numerical integration was introduced to compute the numerator of
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A:/qg/y/xG) dzdydg (5.51)

The optimization was then performed using the complex method (Box 1965). Optimum
results are shown in Table 5.2, where three cases are reported. The first one represents
the solution obtained when no constraints are imposed on the maximization of the GCl.
However, the manipulator then obtained has a rather limited workspace. Therefore, a
second optimization was conducted with a constraint on the workspace. This presents no
particular problem since the optimization method used is well suited for handling inequality
constlbaev : ery
angle ¢ of the gripper, a criterion that was introduced in Section 5.2.1 where the associated
inequality constraints were derived. The solution obtained for this problem is identified as
case 2 in Table 5.2. The corresponding optimum manipulator now has a much larger
workspace. However, the link Iengt‘hs are quite long, which may induce major mechanical
interference problems. A new optimization problem can be set up by imposing additional
inequality constraints in order to remedy this situation. For instance, case 3 of Table 5.2
shows the solution obtained when the link lengths are forced to be less than the distance
between the motors, ie.. (0 < I; < 1,7 = 1,2,3) and the constraint on the workspace
used in case 2 is imposed. Notice that the introduction of the constraints has led to a
reduction of the GCl. The three cases reported here are obviously not the only possible
designs and they are shown to illustrate how one can use the GCl to optimize a manipulator

while meeting other design constraints associated with a particular problem.

Parameters | Casel Case2 Case3
I 0.9940 | 1.1855 | 0.9968
ly 1.3274 | 45987 | 0.7838
I3 26293 | 5.1739 | 0.9719
n 0.79156 | 0.69691 | 0.42961

Table 5.2 Planar three-degree-of-freedom parallel manipulators having an optimum
GCl. '
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5.3 Planar Three-Degree-of-Freedom Manipulator with Prismatic

Actuators

5.3.1 Workspace Optimization

The properties of the workspace of this manipulator are very similar to the ones
of the manipulator with revolute actuators. Indeed, the limits of the mobility region of each
of the legs is obtained by setting the actuator length equal to p,,;,, and pmqz respectively,
i.e., the minimum and maximum value that the actuator length can take. This leads to an
equation similar to eq.{5.31a) with the difference that the radii of the two concentric circles

are replaced by p,,;,, and ppqz. i€,
(- )2+ (w-w)?=ply,, 1=123 (5.524)

and
24 (- w) = Py 1=1,2,3 (5.520)

(z — z;)

where the z;’s, y;'s. for 1 = 1,2, 3 are defined in eqs.(5.316—¢g). The graphical representation
of the workspace is therefore identical to the one shown in Figs. (5.5-5.8) in which ({1 +1,)

and |l; — [y| should be replaced by pmqz and p,,;, -

The condition under which the manipulator has a non-vanishing workspace for
every angle ¢ can also be derived by imposing a non-vanishing workspace for ¢ = 7. This

leads to two conditions analog to inequalities (5.32a&b) and that can be written as:
3p2.00 > (V33 +1)? (5.53a)

and

3p%n < (V3I3 — 1) (5.53)
The manipulators verifying these conditions will have a non-vanishing workspace for every
angle ¢.
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As stated above, the workspace of this manipulator is very similar to the one of
the planar manipulator with revolute actuators which is shown in Fig. 5.7. Therefore, the
evaluation of the volume of the workspace presented in eqgs.(5.33a-5.36b) is also applicable
to the manipulator with prismatic actuators provided that the variables r and R are redefined
as follows:

T = DPmin and R = Pmasz (5'54)

The optimization performed on the global workspace of the manipulator in Sec-
tion 5.2.1 can be repeated here, leading to the same optimum curve, i.e., the one plotted
in Fig. 5.9, where the values of I3 that correspond to a maximum giobal workspace of
the manipulator, for a given value of R = pyq.. are shown. The fact that the maximum
acceptable value of r associated with these optimum designs is equal to zero is now inter-
preted as that p,,;, should be as small as possible for the volume of the workspace to be

a maximum.

5.3.2 Isotropy of the Jacobian Matrix

It is recalled from Section 4.2.3 that the Jacobian matrix of this manipulator is
defined as:
Je=p (5.55)

where ¢ = [i:,y,g'b]T and p = [pl,pz,pg,]T are the vectors of Cartesian and joint rates,

respectively, and the expression for J is given in eqgs.(4.42-4.43¢).

Contrary to the case of the manipulator with revolute actuators, the configu-
ration in which the centroid of the gripper is located at the centroid of the motors, i.e.,
z=1/2and y = \/§/6 and for which ¢ = 0°—which we termed the home configuration
in Section 5.2.2—is a singular configuration for the manipulator with prismatic actuators
for any value of I3 and py,q;. This is so because, in this configuration, the lines along
the three legs intersect at the centroid of the gripper, which leads to the second type of

singularity, as mentioned in Section 4.2.5. It is therefore impossible to render the Jacobian
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matrix isotropic in the home configuration. This is clearly seen in Fig. 5.11, where plots of
the local dexterity with respect to the orientation angle ¢ are given for z = 1/2, y = \/5/6
and for different values of 3. It is clear that, for any value of I3, the Jacobian matrix is
singular when ¢ = 0 or ¢ = « in the home configuration. Moreover, the configuration for
which the condition number is a minimum is attained when z = 1/2, y = \/5/6 ¢ = 0.75
rad and I3 = 0.79. which leads to a dexterity index of 0.98, i.e., a Jacobian matrix very

close to isotropy is obtained.

Figure 5.11 Reciprocal of the condition number of the planar manipulator with
prismatic actuators as a function of the angle of orientation ¢ when z = 1/2 and
y = \/5/6 i.e., when the centroid of the gripper is located at the centroid of the
motors, for different values of I3.
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5.3.3 Global Conditioning Index

Again, the GCl has been used and the integration carried out numerically over
the workspace in the Cartesian space, using eq.{5.51). A graphical representation of the
GClI of the manipulator as a function of I3 and ppqz is shown in Fig. 5.12. The maximum
value of the GCl is attained when I3 = 4.2 and pyq; = 4.6, which leads to a GCI of
0.498 when a value of p,,,;,, = 0.1 is assumed. It is pointed out that this value of the global
dexterity is lower than the ones that were found for the manipulator with revolute actuators,

which suggests that the manipulator with revolute actuators is better conditioned.

GClI

pma:c

Figure 5.12 GCl of the planar manipulator with prismatic actuators as a function
of 13 and Pmaz-

5.4 Spherical Three-Degree-of-Freedom Manipulator

The spherical manipulator studied in Section 4.3 will now be optimized for
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its workspace and dexterity. The symmetry assumptions used in Chapter 4 are again

maintained here.

5.4.1 Workspace Optimization

Since the purpose of this manipulator is to orient a rigid body in space. i.e., we
are concerned with the orientation of the gripper c;nly. the workspace of the manipulator will
be embedded in the space of rigid body rotations which can be represented, for instance,
using the linear invariants of the rotation matrix Q, introduced in Chapter 4 and described
in Appendix B. Again, the workspace is found by computing the intersection of the mobility
region of all the legs. The mobility region for each individual leg is given by the set of
possible orientations that the gripper can attain, given the link dimensions of this leg.
This region is bounded by the singularity surface, which can be found for each leg as
the closed surface separating the region where the leg has mobility from that in which
it does not. The global mobility region will then be the intersection of all these three
regions. As previously stated, we can represent the set of all possible rotations using
the linear invariants, which can be grouped in a 4-dimensional vector A = [qT gg]T
with q = [¢1, g3, q3]T. One possibility for this representation consists of using the three-
dimensional subspace (gp, g1, ¢7) in which the set of points located inside or on the surface

of the unit sphere centred at the origin, represent all possible rotations, the distance from

a given point to the origin being equal to /1 — qg.

The singularity surface can be obtained using eq.{4.64), where we set the dis-

criminant equal to zero:

z =B}~ 4,C; =0 (5.56)
This equation, written for the first leg, leads to:
q% = (1 + gp)(cos ag cos ay — gp) = (1 + gg) sin o sinay (5.57)

which represents two circles in the (gp,¢1) plane (Fig. 5.13), or two cylinders in the

(90,91, 92) space (the inner cylinder is shown in Fig. 5.14).
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a1

Figure 5.13 Mobility region for the first leg of the spherical manipulator.

The equations describing these circles are obtained by choosing alternatively

the plus and minus signs in equation (5.57), which gives:
2 1 2 1 2
& + {0 + 11 — cos(y — ag)]}? = 71+ cos(a — ay)] (5.58a)

Thus, eq.(5.58a) represents a circle of radius %_—[1 + cos{aq — ay)] centred at a point of

coordinates (C,0). where
1
C = E[cos(al —ap) — 1] {5.58b)
and
2 Ty 2 _1 2
&+ {ao+ 1 —cos(ag + )]} = [t + cos(y +ay)] (5.5%)

Similarly, eq.(5.59a) represents a circle of radius %_—[1 + cos{oyq + )] centred at a point of

coordinates (C',0), where:

O = %[cos(al + ay) — 1] (5.590)
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Moreover, it can be shown that the region located between these circles is the one where

the leg has mobility, i.e., where the discriminant is positive—this region is hatched on

Fig. 5.13.

U
L] S \
q0 \, o il
\\
p =S 1114841

qa

Figure 5.14 inner cylinder defining the mobility region of the first leg of the spherical
manipulator in the {qg, 91, 99) space.

A similar analysis is repeated for each of the legs. This defines two other pairs
of cylinders, which also have their axes in a plane parallel to the (g1,9,) plane. These axes
intersect the first ones on the g axis with and angle of £60° and the global mobility region
is therefore completely defined. It can be seen from equations (5.58a) and (5.59a) that the

conditions under which the manipulator is capable of producing all possible rotations are:
ag—ay=0 (5.60a)

and
o oy =7 (560b)
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which means

Q] = (g = ’/T/2 (5606)

If this condition is met, the singularity surface degenerates into three singularity curves
which are major circles on the surface of the unit sphere in the (gg, g1, g2) space at 60°
from each other as shown in Fig. 5.15. A projection of this figure onto the ¢; — ¢y plane
is given in Fig. 5.16 for clarity. This result is similar to the one obtained for an open-loop
three-axis spherical wrist (Gupta and Roth 1982), for which condition (5.60c) has to be
met if we want the wrist to be able to reach all possible orientations. Notice, however,
that in the case of the open-loop wrist having oy = ay = /2, there would be only one

singularity curve on the sphere of Fig. 5.15.

')

do

qa

Figure 5.15 Singularity curves for a manipulator with oy = ay = 90°.

Furthermore, notice that, in the case of a manipulator having a3 = ay = 7/2,
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the solution to the inverse kinematic problem simplifies to:

8 — tan=1 (COS 7;v;1 + sin ﬂi”iZ) (5.61)

1
U3

where the 7;'s and the v;;'s are defined in Section 4.3.

Figure 5.16 Projection of the singularity curves of Fig. 5.15 in the {g1,qy) plane.

5.4.2 Isotropy of the Jacobian Matrix

The definition of the Jacobian matrix of the spherical parallel manipulator was

given in Chapter 4. It is repeated here for quick reference. We have defined:

Jw=24 (5.62)
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where w is the angular velocity of the end-effector and 4 is the vector of powered joint rates

and J is given as
J=1j (5.63a)

with ,
(w; X v;) (5.630)

YT o)

A direct-search method has been used to minimize the condition number of this
Jacobian matrix. The minimization method referred to is that of bisection (Brent 1973)
on one of the variables, while the other ones are kept fixed. The procedure is repeated
alternatively for each of the variables until convergence is reached. This has been done for
the general case of a manipulator with arbitrary link angles and also.in the case where the
link angles are assumed to be both of 90° due to the particularly interesting properties of

this design that were discussed in Section 5.4.1. The results are given in Table 5.3. It is

pointed out that the manipulator cannot be rendered isotropic with any link angles.

Solution # aq oy e ey e3 @ LK
1 99.10 | 90.00 | —.2363 | .8818 4081 | 135.60 | 1.1103
2 91.17 | 128.56 | .8827 4700 | .0000 | 130.22 | 1.2073
3 123.36 | 60.00 6411 | —3176 | 6986 | 63.43 | 1.5502
4 140.02 | 100.00 | .5443 .3594 /580 | 40.05 | 1.9431
5 90.00 | 90.00 .0000 | £1.0000 | .0000 | 137.36 | 1.5728
6 90.00 | 90.00 | £.8660 | +.5000 | .0000 | 137.36 | 1.5728
7 90.00 | 90.00 9217 | —.2470 | 2992 | 146.69 | 1.1559
8 90.00 | 90.00 | .2470 | —.9217 | .2992 | 146.69 | 1.1559

Table 5.3 Solutions corresponding to local minima of the condition number of the
spherical manipuiator. Solutions 1-4 are unconstrained while solutions 5-8 have
been obtained when link angles of oy = ag = 90° are assumed.

5.4.3 Global Conditioning Index

The workspace of the spherical manipulator was described in Section 5.4.1 as
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a region in the (gg, g1, ¢2) space. A numerical integration can then be carried out on this

workspace in order to evaluate the GCI. This is done as:

A
n=g (5.64a)
with
1
A:/ / / <—> qudqldQZ :/ / / quodqlqu (5646)
g9 Jay Jgg \F 92 791 7490
and

B:/ / / dgpdgy dgy (5.64c¢)
92 V91 Y90

7 /10

Figure 5.17 GClI of the spherical parallel manipulator as a function of aq and o).

These integrations were performed for different values of a4 and ) and the

results are given in Fig. 5.17 where the GCl is plotted as a function of oy and «p. It is
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interesting to note that the maximum GCl (n = 0.52), is obtained for ay = 77/30 and
ay = 137 /30, approximately. A symmetry about the central point a; = ay = 7/2 is also
observed. This point is found to be the one having the minimum GCI (n = 0.056), which
indicates that, for this manipulator, the optimization of the GCI conflicts seriously with
the maximization of the workspace. Indeed, it was shown in the Workspaée optimization
performed in this chapter, that the central point of the oy — oy region of interest, shown in
Figs. 5.17 and 5.18, is the one having the maximuh workspace. This can be clearly seen
in Fig. 5.18, where the volume of the workspace of the manipulator is plotted as a function

of aq and oy, according to the results of Section 5.4.1.

9r/10

Figure 5.18 Normalized workspace of the spherical parallel manipulator as a func-
tion of aq and ay.

5.5 Spatial Three-Degree-of-Freedom Manipulator

The workspace and dexterity of the spatial three-degree-of-freedom manipulator
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will now be optimized. The approach used here is similar to the one used for planar and

spherical manipulators, i.e., it is based on the analysis performed in Chapter 4.
5.5.1 Workspace Optimization

In the first stage of the analysis, we will assume that the actuators have an
infinite range of motion and derive the corresponding workspace of the manipulator, i.e.,
the region that it can attain when only the constraints due to the architecture of the
manipulator are considered. It is recalled from Chapter 4 that the solution of the inverse
kinematic problem is obtained through two of the solutions of a quartic equation in g9r—a
component of the rotation matrix Q defining the orientation of the platform—, each of
which leads to two solution for the global problem. The roots of the quartic equation are

given in eq.(4.99) and repeated here for quick reference
(¢22)12 = - X +(VX2+Y2-1) (5.65a)

where

X==z/l and Y =y/l (5.65b)

The other components of the upper left corner of matrix Q are computed as follows:
g2 =g =Y (5.66a)

and

911 = qn +2X (5.660)

while the last row and the last column of Q are computed using the properties of the

orthogonal matrix (Appendix C).

The workspace of the manipulator can be determined by noting that the solu-
tions given above are components of an orthogonal matrix and hence have to be comprised

within the following range:
—1<¢; <1, ,7=1,2,3 (5.67)
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The foregoing constraint is now applied to each of the roots given inheq.(5.653).

Root 1

We obtain
g =VX2+Y2-X-1

g1 =VX24+Y24+ X -1

a2 =g =Y
and the first constraint to be applied is

2 2 2 2

a3 =31 =1—-q33 — 41, >0
Upon substitution of egs.(5.68b&¢) into eq.(5.69), this equation becomes
—2v? _2X2 42X - 2(X - 1)VX2+Y2>0

which can be further simplified to lead to

(1-VX2+Y2)(X+VX2+Y2) >0

(5.68a)
(5.68b)
(5.68¢)

(5.69)

(5.70)

(5.71)

Since the second factor on the left-hand side of eq.(5.71) is a positive semidefinite quantity,

we are left with only

1-vVX2+Y2>0

22 +y2<i?

The second constraint to be applied can be written as
2 _ 2 _ 2 2
03 =95 =1-q3 — g5 >0
Upon substitution of eqgs.(5.68a&c) into eq.(5.73). this equation becomes

—2v2 _2X? _2X + (X +1)VX2+ V2> 0

(5.72a)

(5.72b)

(5.73)

(5.74)
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which can be rewritten as
(VX24+Y2-1)(X - VX2+Y2) >0 (5.75)

Since the second factor on the left-hand side of eq.(5.75) is a negative semidefinite quantity,

eq.(5.75) leads to

VX2+Y2-1<0 (5.76a)

2yt <12 (5.76b)

Root 2

We obtain

0 =-VX2+Y2-X+1 (5.77a)
g1 =-VX2+Y24+ X +1 (5.77b)

912 = g1 = ~Y (5.77¢)

Again, the first constraint is written as
a3 =Gy =1 dj; — ¢fy 2 0 (5.78)
Upon substitution of egs.(5.77b&c) into eq.(5.78). this equation becomes
—2v? - 2x2 - 2X +2(X + 1)V X2+ Y2 >0 (5.79)
which is identical to eq.(5.74) and hence, the first constraint leads to:

2?4yt <12 (5.80)

The second constraint applied on the second root is

=0 =1-¢ — ¢} >0 ' (5.81)
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Upon substitution of eqs.(5.77a&c) into eq.(5.81), this equation becomes
—2¥2 —2x? 42X - 2(X - 1)VX24+Y2>0 (5.82)
which is identical to eq.(5.70) and hence, the second constraint leads to

2yt <1 . (5:83)

Since all the constraints lead to one and the same inequality, i.e., eqs.(5.72b).
(5.76b). (5.80) and (5.83). which are all identical, this inequality defines the boundary of
the workspace which is, in this case, a circular cylinder of radius [ whose axis of symmetry
is the z axis, i.e.,. an axis orthogonal to the base plane and located at the centroid of
the base triangle. Hence, if the actuators have an infinite range of motion, the foregoing
cylinder represents the set of points that the centroid of the platform can attain when all

mechanical interferences are neglected.

In a real manipulator, however, the actuators have a finite range of motion and
the workspace is consequently reduced. To find the workspace of a manipulator whose actu-
ators have limited motion, the cylinder described above will be discretized and a description

of the accessible region will be obtained in terms of a sum of elements of volume.

First of all. we have to compute the minimum and maximum height, from the

base plane, that the platform can reach in z. This is given by

Popin, = \/men —(1- l)2 it Prin < |11

Poppinn = 0 otherwise

(5.84)

and

ez = \ Phrag — (1 — )2 (5.85)

This potential region can then be divided in a certain number of sections, or
‘slices’, parallel to the base plane and located between z = h,,;, and z = hpyq,. In each

of these sections, the trace of the workspace on a plane parallel to the base is found using
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the following algorithm: A certain number of rays originating from the point z = y = 0 are
equally spaced around a circle centred at that point. For each of the rays, a direct-search
method is used to locate its intersection with the boundary of the workspace. The surface

of the element is then approximated by a sector of a circle, i.e.,

2
relﬁ

Sel = (5.86)

where 6 is the angle between two consecutive rays and r,; is the radius associated with a
given element. This is illustrated in Fig. 5.19. It is pointed out that, due to the symmetry
of the workspace, only one third of the rays need be actually computed. The surface of
all the elements of a planar region—or ‘slice’—are then summed and multiplied by the
increment in z to give the volume of that 'slice’ of the workspace, which is, in turn, added

to the volume of the other elements.

v

Sel

Tel

Figure 5.19 Discretization and approximation of the workspace of the spatial three-
degree-of-freedom manipulator.

An example of the workspace of a manipulator, with actuators having limited
motion, is plotted in Fig. 5.20. The workspace is represented by the projection of its
boundary, onto the base plane, for different values of z, or ‘slices’, used in the numerical

evaluation of the volume.
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S U B W N e
A

Sy

Figure 5.20 Example of the workspace of a spatial three-degree-of-freedom parallel
manipulator with ! = 0.5 and pmaxr = 1.5. The workspace is represented by the
projection of its boundary, in the base plane, for different values of z.

The problem of the optimization of the workspace is now formulated as follows:
For a given value of the range of motion of the actuators, find the value of [, the characteristic
dimension of the platform, that will produce the workspace with a maximum volume.
This problem will be solved as a series of workspace maximization problems obtained by

incrementing the value of the maximum extension of the actuators py,q;. The minimum
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extension of the actuators is assumed to be given by

1

Prun — Epmaz (5.87)

For a given value of py,,q,. we can compute the volume of the workspace corre-
sponding to a certain value of [ and, therefore, use a search technique to find the value of {
that leads to the maximum workspace. The results for different values of pp,q, are shown

in Fig. 5.21, where the values of | corresponding to a maximum workspace are plotted vs.

Pmazx -

w 4+

Pmarz

Figure 5.21 Optimum values of | that maximize the volume of the workspace as a
function of pymaz.

5.5.2 Isotropy of the Jacobian Matrix

The Jacobian matrix of the spatial three-degree-of-freedom parallel manipulator

is defined in eq.(4.109) and an explicit expression for this matrix is given in eq.(4.116a).
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It is now desired to find isotropic designs, i.e., to find kinematic parameters for
which at least one point of the workspace corresponds to a configuration for which the

condition number of the Jacobian matrix is equal to unity.

As a first analysis, the complex method (Box 1965) was used to minimize the
condition number over the variables z,y,z and [, i.e., over the whole set of kinematic
parameters and position variables. It was then observed that the minimization procedure
tends to converge to points for which z = y = 0. Therefore, a more detailed investigation
of these points was undertaken. This is shown in Fig. 5.22 where curves of the reciprocal of

the condition number as a function of z are shown for a few values of [ and for z = y = 0.

Figure 5.22 Reciprocal of the condition number of the spatial three-degree-of-
freedom parallel manipulator as a function of 2z, for £ = y = 0 and for a few
values of [.
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The following is readily observed: for every value of the characteristic dimension
1. there exists an isotropic point located on the z axis, i.e., the axis defined by £ = y =0,
at a certain height 2*. Moreover, the value of z* is a linear function of [, as it can clearly be
seen in Fig 5.23, where the value of z* is plotted as a function of [. This plot was obtained
by minimizing the condition number over z for every value of [. The linear relationship can

be expressed as

2" = |al — b| (5.88a)

where

a=b=1?2 (5.88b)

Figure 5.23 Values of 2*, i.e., values of z for which the spatial three-degree-of-
freedom parallel manipulator is isotropic when z = y = 0 as a function of [.
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No other point of the workspace was found to be isotropic. As an example
of the behaviour of the condition number over the workspace, this quantity is plotted as

a function of z in Fig. 5.24 for z = y = 0.2, and for a few values of the characteristic

dimension [.

()1

1.

! 3
4
5
6
RN
1 — 1=05
2 5 [=10
3 — = 1.5
4 — =20
5 — = 2.5
6 — =30
1 2 3 4 5
4

Figure 5.24 Reciprocal of the condition number of the spatial three-degree-of-

freedom parallel manipulator as a function of z for z — y = 0.2 and for different
values of [.

5.5.3 Global Conditioning Index

The global conditioning index of the spatial three-degree-of-freedom manipulator
can be evaluated by resorting to a numerical integration over the workspace. It is known,

from Section 5.5.1, that the workspace is included in a circular cylinder of radius ! and

190



5. OPTIMIZATION OF PARALLEL MANIPULATORS

length hpaz — h,y;y, Whose axis of symmetry is along the z axis. Therefore, this volume
can be discretized and a test can be performed on each of the elements then obtained
to check whether or not it is part of the workspace. When the element is part of the
workspace, the condition number of the Jacobian matrix is computed, for one point of the
element, as well as the volume of the element. These quantities are then summed over
all the elements to lead to the values of A and B as defined in eqs.(5.5b&¢c). Since the
integration is performed over a cylinder, it is natural to choose a cylindrical coordinate
system. After discretizing the potential workspace as shown in Fig. 5.25, the integrals to
be performed can be written as the following sums where, it is recalled, éach element has

to be tested before it is included:

A= iz: Y S{inn (5.89a)

1=17=1
and
Nz .
B=)Y" Z SEAh (5.898)
1i=17=1
where .
-
= agy | (5.90a)
k=1
and "
.
= biji . (5.900)
k=1
with
1 2 P NAYY

_if element :7k is in the workspace. Otherwise,

a5 =0 (5.91b)
Similarly,
Y
bijk = (rEs1 = 7R) 5 (5.92a)

if element ¢k is in the workspace. Otherwise,
bij/c =0 (592b)
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In the above expressions, we have

AR = (hmaz — hogn) /72 (5.93)
re = 1(i — 1) /n, (5.94)

and
A9 = 27 /3n, (5.95)

the variables n,, ny and n; representing the number of elements chosen when discretizing
in r, @ and z. respectively. It is pointed out that the symmetry of the workspace allows us
to integrate on only one third of the actual workspace, a fact that is taken into account by

eq.(5.95).

Af

Tet+1

Ah

Figure 5.25 Discretization of the workspace of the spatial three-degree-of-freedom
parallel manipulator.

The algorithm described above was used to compute the global conditioning

index of the manipulator under study for different values of p,,4, and [. Again, the relation
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given in eq.(5.87) was assumed. The results are shown graphically in Fig. 5.26, where the
GCl is plotted as a function of the two variables. The best design is obtained when we

have pmqez = 1.2 and | = 1.4, which leads to a GCl of 0.5783.

GCI

Pmaz

Figure 5.26 GCl of the spatial three-degree-of-freedom parallel manipulator as a
function of | and pmaz.
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KINEMATIC INVERSION AND TRAJECTORY
Chapter 6 PLANNING OF REDUNDANT PARALLEL
MANIPULATORS

The kinematics of manipulators in the presence of redundancies has attracted
the attention of many researchers over the past decade. Liégeois (1977), Klein and Huang
(1983), Baillieul (1985, 1986) and Stanii¢ and Pennock (1985), among others, have tackled
the associated inverse kinematic problem considering various types of approaches and opti-
mization criteria. This problem is still a subject of current research (Anderson and Angeles
1987: Suh and Hollerbach 1987; Wampler 1987; Mayorga and Wong 1987; Chevallereau
and Khalil 1987; Nakamura et al. 1987). Klein and Blaho {1987) presented a review of
different optimization criteria that have been used for the design and control of redundant
manipulators. However, to the knowledge of the author, the study of redundancies has so

far been limited to serial manipulators only.

The kinematic problem addressed in this chapter is associated with parallel ma-
nipulators. In many instances, it may be desirable to use a parallel manipulator with a
degree of freedom greater than the number of Cartesian coordinates to be controlled. This
allows one to optimize a performance index in the process of solving the inverse kinematic
problem. After having formulated this problem as one of condition-number minimization,
it will be shown that the optimum value of the free parameter that minimizes the condition

number is not a continuous function of the prescribed Cartesian coordinates. In fact, the
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performance index used, i.e., the condition number of the Jacobian matrix of the manip-
ulator, is a measure of the local dexterity, as stated in Chapter 5. In order to optimize
this index along a partially prescribed Cartesian trajectory, the concept of trajectory map
is introduced. The Cartesian trajectory to be followed is said to be partially prescribed
because, as stated above, the task to be performed—and hence the Cartesian trajectory to
be followed—requires less degrees of freedom than the manipulator can provide. Therefore,
the description of the task itself does not completely define the associated motions of the
manipulator. The trajectory map is, in fact, a representation of the field of possible solu-
tions over which the optimum trajectory will be chosen in order to fully specify the motion

of the manipulator.

An on-line trajectory planning solution is then derived and the results obtained
with this method for a planar three-degree-of-freedom parallel manipulator and a spherical
three-degree-of-freedom parallel manipulator, which were studied in Chapters 4 and 5, are

given.

6.1 Problem Formulation

The problem to be solved here can be described as follows: Given an incom-
pletely specified trajectory in the Cartesian space of the manipulator, find the joint histories
that will produce this trajectory while optimizing a certain performance index. Of course,
the choice Qf this performance index will strongly affect the resulting joint histories. It is
therefore crucial that the index chosen be a relevant meaningful quantity. The condition
number of the Jacobian matrix of the manipulator will be used here as a performance index
to be minimized. It is recalled, from Chapter 5, that the condition number of the Jacobian
matrix of a manipulator is a measure of the accuracy of the kinematic control of this manip-
ulator (Salisbury and Craig 1982), which makes it a very significant index. Moreover, since
the condition number becomes infinity at singularities, the minimization of this quantity
will tend to keep the manipulator away from these undesirable configurations. It is pointed

out here that the approach used in (Anderson and Angeles 1987), consisting of minimiz-
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ing the deviation of the joint angles from a certain value—this measure is termed JRAE
in (Klein and Blaho 1987)—, produced unsatisfactory results when tested on the planar
parallel manipulator. Hence, known results for serial manipulators cannot be extrapolated

to parallel manipulators.

6.1.1 Planar Three-Degree-of-Freedom Manipulator

The planar three-degree-of-freedom parallel manipulator considered here (Fig.
4.1) was studied in detail in Chapters 4 and 5. This manipulator can be thought of as a
redundant manipulator if one is interested in positioning a point of the gripper on the plane
disregarding its orientation. That case would arise, for instance, when the manipulator is
used to guide a mill, a drill, or any other axially symmetric object. The partially prescribed
Cartesian trajectory is therefore given by the position C(z,y) of the centroid of the gripper.
The inverse kinematic problem for this manipulator can be solved in closed form as shown

in Chapter 4, its solution @ being represented here as

0 =06(z,y,9) (6.1)

where 6 is the 3-dimensional vector of actuated joint coordinates. The problem consists,
then, of generating the joint histories that will guide point C of the gripper through the
prescibed positions (z,y) and will minimize the condition number of the manipulator over
the free variable, i.e., angle ¢. Once this angle is specified, we can explicitly compute
the joint variables 6 using the kinematic inversion mentioned above. Since this inversion
leads to two solutions per leg, we will choose these solutions so that the manipulator
remains on the same branch, the procedure being then capable of avoiding undesirable
’branching effects. In the discussion that follows, a coordinate frame is defined fixed to the
manipulator’s base, with its origin O located at the centroid of triangle M;M,M3 of Fig.
4.1. Moreover, the X and Y axes of this frame lie in the plane of motion and Y is directed
trom O to M3. The branching of the planar manipulator can be readily verified as follows:
We first define M,;(z,;,v0;) 1;(Z15,¥15) and G;(z9;,yp;). for « = 1,2,3, as the centres of

the driven joints, the intermediate joints and the joints attached to the gripper, respectively.
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Then we define s; = [zp; — 23,4 — y3;, 017 and t; = [z,; — 21, Yp; — ¥1:,0]T. which are

the vectors connecting I, to G; and I; to M;, respectively. We can then write:
s; Xt = a,e3 (62)
where ez = [0,0,1]7 and

o = T (Y15 — Y2i) + Yoi (2o — T45) + 715905 — T2, 01 (6.3)

The sign of e; will tell the branch for the ith leg and therefore, by recording this quantity
for each of the legs, at every configuration, we can ensure that the manipulator remains
on the same branch. A change in sign of this quantity would mean that we have chosen
the wrong root of the quadratic equation arising in the solution of the inverse kinematic

problem.
6.1.2 Spherical Three-Degree-of-Freedom Manipulator

The spherical three-degree-of-freedom parallel manipulator considered here is
represented in Fig. 4.9. This manipulator was studied in detail in Chapters 4 and 5, where
it was shown that it can be used to orient a gripper in the three-dimensional space. However.
we would like to use it here to orient a line of the gripper. regardless of the orientation of
the gripper itself about the said line. This task requires only two degrees of freedom, which
allows us to optimize a performance index. Applications requiring such a task definition

comprise, e.g., the orientation of solar panels, radar antennas and telescopes.

In what follows, a coordinate frame is defined, fixed to the manipulator’s base,
with its origin O located at the point of the gripper that remains fixed, with its X and ¥V
axes in the plane of the motors. Moreover, the X axis is defined along the axis of one of
the motors. We can, therefore, define the unit vectors u;, + = 1,2,3 along the motors’

axes (Fig. 4.10), i.e.,

u; = [cos ~;, sinn;, O]T, +=1,2,3 (6.4a)
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with
27 4r
3
{’Yi}l = {0’ ?) —3‘} (64b)
The orientation of the gripper is described by three unit vectors v, for 1 = 1,2, 3, fixed to

the gripper and directed from O to the joints attached to the gripper, which are represented
by points A, B,C in Fig. 4.9.

Let us assume that the line to be oriented is parallel to the unit vector g, which is
orthogonal to the plane defined by vectors vy,vy,v; (Fig. 4.9). In Chapter 4, the reference
configuration of the manipulator was defined as the one in which u; = v;, for 7 = 1,2, 3,
and therefore, in this configuration, the unit vector g would be coincident with the z axis,

since vectors u;, for 1 = 1,2, 3, are located in the zy plane.

We can then write tensor Q. describing the rotation of the gripper from the
reference configuration to the current configuration, as a combination of two rotations.
The first one, represented by the rotation tensor Qq, is specified as a rotation mapping
vector e3 into g and vector u4 into a unit vector r which is orthogonal to g and is located in
the zy plane. This first rotation is fully specified, for the task to be accomplished here, and
Is equivalent to a rotation carrying vector g into its desired orientation with an arbitrary
rotation about an axis parallel to g. The second rotation, represented by tensor Q). is a

rotation of a certain angle ¢ about vector g. We can then write:
Q = Q,Q (6.5a)
The rotation tensor Qq is, in turn, written as:
Q=[r h g (6.5b)

where

h=gxr (6.5¢)

which follows from the definitions of vectors r and g. Indeed, we want the unit vector

r= [r1,r2,r3]T to be orthogonal to g and located in the zy plane, which leads to:
r3 = 0 (660)
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2 2 2 _
rit+ry+r3=1 (6.60)

r191 + 7292 + 7393 =0 (6.6¢)

The solution of these equations can be written as:
g3 rig
le:{: —-2 2 s g = — 191 (67)
g + g3 92

To ensure continuity of the angle of rotation ¢ about the axis parallel to g in matrix Q,, we
will choose the positive sign in eq.(6.7) when gy > 0 and the negative sign when g, < 0.

Two special cases may also arise:

i) if g5 = 0, then we will have, from egs.(6.6), r; = 0 and 79 = 1. We will

choose the positive sign when g; < 0 and the negative sign when g; > 0.

) If g% + g% = 0. then we necessarily have g3 = £1, in which case we will specify

that r = Fu;y.

We can now write the second rotation, i.e., the rotation through an angle ¢

about an axis parallel to vector g, as (Angeles 1982)
R T .
Q) =gg" +cosy(1—gg’)—siny(l x g) (6.84)
where 1 denotes the 3 x 3 identity tensor. Therefore, eq.(6.5a) can be written as:
Q = Qy(¢)Q | (6.80)

from which it becomes obvious that once vector g is specified, matrix Q becomes a function
of angle 1, over which the optimization will be performed, since its value does not affect

the orientation of vector g.

Once the optimum angle ¢ has been determined, matrix Q can be computed
and the joint variables can be obtained from the kinematic inversion. Again, this inversion
leads to two solutions per leg and we will choose the solutions so that the manipulator

always remains on the same branch. The branching of the spherical manipulator can be
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verified as follows: we define two vectors that are tangent to the unit sphere associated
with the manipulator at the tip of w,. Therefore, these vectors are orthogonal to w;, and
can be written as:

s; = v; — (v, - wi)w; (6.9a)
t;=u; — (u; - w)w, (6.95)

These vectors play the same role as the corresponding ones for the planar manipulator. We
then have,

s; Xt = apwy (696)

Again, the sign of o, will tell the branch for the ith leg.

6.2 Local-Dexterity Maximization

As pointed out in the introduction, the optimization performed along the tra-
jectory will consist of a minimization of the condition number of the Jacobian matrix of
the manipulator. Since we are dealing with parallel manipulators, the Jacobian matrix is
defined as the matrix mapping the Cartesian velocities into the joint rates. For the planar

manipulator, we can write:

Je =4 (6.10)

where ¢ = [:i:,g),c}ﬁ] is the vector of Cartesian velocities and 8 is the vector of joint rates.

For the spherical manipulator, we have:
Jsw =40 (6.11)

where w is the angular-velocity vector of the gripper and 8 is the vector of joint rates.
The expressions of these matrices are given in Chapter 4 as functions of the Cartesian

coordinates and the joint angles. They are repeated next for quick reference:

—agfer —bifey —di/eq
o= | —ar/ca —by/ey —dy/c; (6.12)
—ag/cs —bgfe3 —d3/c3
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where
a; = —9192(z — z,;) + g9 cos 0; + g1 cos ¢;

b; = —9192(¥ — ¥;) + g2 sin b, + gy sin &;

(6.13)
¢; = 92l(y — Yoi) cos b; — (z — ;) sin 6;] + sin(; — ¢;)
d; = 91[(y — Yo) cOs & — (2 — ) sin ¢;] — sin(6; — ¢;)
with g1 and gy defined. in turn, as
g =1/ly, gy =1/I3 (6.14)

Ti5 Yo ) being the coordinates of the centre of the ith motor, angles ¢, being defined as:
ot ot 2

¢1=¢+7/6

by =+ 5n/6 (6.15)
¢3=¢— /2

For the spherical manipulator, the ith row of the Jacobian matrix, (JZS)T can be written as:
0 (wy X wy)

T < w) (6.16)

where u;,v;,w; are the unit vectors along the axes of the driven joint, the gripper joint and

the intermediate joint, respectively, for the ith leg.

We have chosen, as an optimization criterion, to minimize the value of the
-condition number of the Jacobian matrix. This quantity was .introduced in Section 5.1
where it was called the local dexterity of the manipulator. The definition of the condition
number is recalled to be:

k= (3] 1071 (6.17)

where the norm is the same as the one used in Chapter 5, i.e.,
]| = v/ r(dTWJ) (6.18)

with W = %1. n being the dimension of the square matrix J. From eqs.(6.12-6.18), we
can see that, given a set of fully specified Cartesian coordinates (from which we derive

the joint coordinates using the kinematic inversion), it is straightforward to compute the
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condition number of the Jacobian matrix. However, to compute derivgtives of the condition
number with respect to the free variable of a redundant manipulator would be a tremendous
task. Therefore, it was decided to use a direct-search technique to minimize the condition
number over the free parameter. The method used was taken from {Brent 1973). where it is
referred to as the localmin procedure. This method combines the golden-search technique
and successive parabolic interpolation. It leads to an algorithm retaining the advantages of

both of these methods, i.e., superlinear convergence is garanteed.

Since the condition number of a matrix becomes infinity when this matrix is
singular, it is preferable to use the reciprocal of the condition number as an optimization
parameter. Indeed, as stated in Chapter 5, this quantity has a very convenient behaviour,

for it is bounded as follows:

0< <-1—> <1 (6.19)

K
However, this quantity, which can be thought of as a measure of the distance to singularity,
should be maximized and, since the direct search technique we are using is devised to
minimize an objective function, we will rather use the complement of this quantity, which
can be thought of as a measure of the distance to isotropy for a certain matrix and which, ‘
therefore, is to be minimized. It ié recalled that isotropic matrices are the ones which have
a condition number of 1, i.e., the lowest value that this quantity can attain. As stated in
Chapter 5, only orthogonal matrices and their multiples have this property (Strang 1980).

= .

The procedure consists of minimizing this quantity over the free variable for
each point of the partially prescribed Cartesian trajectory. For the planar manipulator, this
amounts to a minimization over the angle of orientation ¢ when z and y are specified for
each of the m points of the trajectory, i.e.,

min [1 — ,H (6.21a)

(3
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st. z=z,,y=y;, 1=1,...,m (6.21b)

where

k; = k(¢;), 0< ¢, <2m (6.21¢)

Once the m values of ¢, {¢Z};n along the trajectory are obtained, we can compute the

joint histories 6,(t), for y = 1,2,3.

The procedure used for the spherical manipulator is very similar. Again, we do:

1
min [1 - __} (6.22a)
Y Ky
st. g=g,, 1=1,...,m (6.22b)
where
k; = k{;), 0<4 <27 (6.22¢)

Once the m values of ¥, {¢,}7*, are obtainéd, the joint histories 8,(¢) can be computed,
2 J1 7

for y =1,2,3.
6.2.1 Undesirable Side Effects

The general idea presented above has to be studied in more detail before we can
implement a stable algorithm that would minimize the condition number along a partially

prescribed Cartesian trajectory.

The reciprocal of the condition number of the planar manipulator is plotted in
Fig. 6.1 as a function of angle ¢ for three consecutive points of a circular trajectory. Two

important problems can arise, as shown by this graph.

First of all, one can realize that, in the case shown here, there are two feasible
regions, i.e., two ranges of values of ¢ that are attainable for a given point of the trajectory.
and that these regions are separated by unfeasible regions which have been assigned a value

of (1/k) = 0 on the plot. Therefore, when computing optimum values of ¢ for consecutive
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( 1) —— first point

second point

=== third point

Figure 6.1 Reciprocal of the condition number of the planar manipulator as a func-
tion of the angle of orientation ¢ for three consecutive points of a given trajectory.

points of a trajectory, one must avoid unfeasible regions and jumping from one feasible

region to another, disconnected, one.

Moreover, even though in the case presented here the solutions for the optimum
values of ¢ remain within the same feasible region, discontinuities can arise in these solu-
tions. This is clearly shown in Fig. 6.1, where points M, M' and M" denote the bptimum
values of ¢ for each of the three trajectory points. It can be realized from this piot that,
although the curve undergoes slight variations from point to point, there is a large ‘jump’
of the optimum value of ¢ (from point M' to M") between the second and third points.
Hence, as a result, the optimum value of ¢ that maximizes the reciprocal of the condition

number is not a continuous function of the prescribed Cartesian coordinates.
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The foregoing considerations will have to be taken into account in the trajectory-

planning procedure.

6.2.2 Trajectory Maps

As pointed out above, there may be values of angle ¢ that are not attainable for
a given point of the partially prescribed Cartesian trajectory. We can identify these regions
for each of the points and draw the resulting diagram which is here termed trajectory map.
Examples of these maps are shown in Fig. 6.2 and Fig. 6.3. The regions identified with a
minus sign are the unfeasible ones. The trajectories corresponding to these maps will be

described later.

The map shown in Fig. 6.2 was obtained for the planar manipulator. In this case,
it is possible to obtain a closed-form expression for the limits of the workspace for a given
point of the trajectory. It was shown in Chapter 5 that the boundary of the workspace can
be obtained by setting the discriminant equal to zero in the quadratic equation that arises
in the solution of the inverse kinematic problem for each of the legs of the manipulator.

In the aforementioned chapter, the equations obtained when equating the discriminant to

Zero are.
(X;— )2+ (Y, —w)? = (1 + L)% =123 (6.23a)
(Xi—z)+(Vi—w)=(-h?: =123 (6.23b)
where
z; =lzcos(¢+¢;), 1=1,2,3 (6.24a)
Y, =lgsin(¢ +¢;), =123 (6.24b)
X,=z—=z, 1=1,2,3 (6.24¢)
Y,=y—vyy 1=1,2,3 (6.24d)
and

7 b 37r} (6.25)

)z 200
wi={5 0%
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100

points along the trajectory

o
(=)
|

Figure 6.2 A trajectory map for the planar manipulator of example 1.

It is recalled that (z,y,¢) are the Cartesian coordinates of the gripper. Expansion of
eqs.(6.23a&b) leads to:

2X;l3 cos(d+ &) + 2Vilasin(é+ &) — ¢ =0,  i=1,2,3 (6.26a)
2X,l3cos(¢ + ¢;) + 2Y;l3sin(¢p + &;) — n; =0, 1=1,2,3 (6.265)

with
6=X24Y 48— (4 +1)%  i=1,23 (6.27a)
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m= XAV - (- b)?, =123

(6.27b)

It is then desired to find, for given values of z and y, the values of ¢ for which any one

of these six equations (6.26a&b) can be satisfied. Therefore, we introduce the following

substitutions:

(6+ ;) -1 ' =1,2,3
coSs )= , 1=1,2,
Y1412
and
2T
sin(¢ + ¢,) = —*, 1 =1,2,3
(¢+6)= 110
where

1 :
Ti:tan[§(¢+¢i)], 1=1,2,3
which leads to six quadratic equations, namely,
T?(2X,l3 + ¢) — 2T;(2Y,l3) + (¢ — 2X;13) =0,  i=1,2,3
TH2X 13 +m;) — 2T;(2Y,d3) + (n; — 2X,13) =0,  i=1,2,3

The solutions of these equations can be written as:

Wil \ AV - (- ax28)

‘ (6; +2X,13) e
and
2,2 (.2 2,2
T'_ZYZ-l3i\/4YZ» B-f-ax)
- (n; +2X,13) ’ T

(6.280)

(6.28b)

(6.29)

(6.30q)

(6.300)

(6.31q)

(6.31b)

We therefore have a maximum of twelve solutions, i.e., a maximum of four solutions per

leg. Equations {6.31a) and {6.31b) have been used to generate the trajectory map shown

in Fig. 6.2.

The equations describing the motion of the spherical manipulator being more

complicated, it is not possible to obtain closed-form expressions for the limits of the

workspace and hence, the frajectory map shown in Fig. 6.3 has been generated by mere

scanning of the values of angle v for each of the points of the trajectory.

207




6. REDUNDANT PARALLEL MANIPULATORS

100

points along the trajectory

(%]
o
1

optimum trajectory —

Figure 6.3 A trajectory map for the spherical manipulator of example 2.

6.2.3 On-Line Programming of Smooth Trajectories

Once a trajectory is decided upon and the corresponding trajectory map is
obtained, it is desired to compute a smooth path that would go from the bottom to the top
of the map while minimizing the condition number of the manipulator. This is accomplished

using the algorithm shown in Fig. 6.4, where superscripts denote the step numbers.

This algorithm seeks optimum values of the condition number which are within
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ALGORITHM

N

current trajectory point ot
(25"

Y max. 2nd derivative

define target range smoothing filter

(¢' - Ad) < ¢! < (¢ + A9)

/ does the
< target range 10 o |- use localmin over

wude roots"/, complete target range

A4

is ¢* within
a mobility range?

/

use localmin over
reduced target range

v

no‘ll

find closest
mobility range

Y

use localmin over
reduced target range

I

v

Figure 6.4 Algorithm for the on-line planning of smooth trajectories for redundant
parallel manipulators.

a certain neighbourhood of the current value of the free variable. This neighbourhood, or

target range, is defined as:
(¢' — Ag) < ¢ < (¢ + Ag) (6.32)

where A¢ is specified for a given trajectory or manipulator. The occurrence of roots, i.e.,
of boundaries of the accessible region, within the target range is also verified. Should roots
be present, the procedure would still garantee that the solution remains in a continuous

feasibility region. This is accomplished by reducing the target range, i.e., by keeping only
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the portion of this range lying in the feasible region which is contiguous to the current
trajectory point. The direct-search procedure (localmin) described in the first part of this
section is then used. Finally, one last stage is added to the procedure in order to smooth
the jumps that could occur within the feasible region, as described in Section 6.2.1. This
procedure consists of imposing a maximum value of the second derivative of the free variable
with respect to a normalized time, i.e., with respect to the progression along the trajectory.

The second derivative is approximated using central finite differences. We have

d2 x : : :
— = x _oxt 4 xt! (6.33)

At step ¢ + 1 of the trajectory, this quantity is computed. If its magnitude is greater than

the prescribed tolerance, we then use:

141 X " ) 1—1
X' = sgn( 2 ) X max +2X* — X (6.34)

where X! denotes the prescribed maximum value of the second derivative. This com-

pletes this algorithm.

6.3 Examples

Two examples of the application of the method proposed above are discussed

here.

planar manipulator 1 =201 | 1, =252 | 3 =124

spherical manipulator | oy = 60° | oy = 60°

Table 6.1 Link lengths and angles used in the examples.

The first example deals with the planar parallel manipulator. The problem here
consists of guiding the gripper along the contour of a cam that is to be cut with a mill.

The orientation of the gripper is therefore irrelevant to the task since the tool is axiallly
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Figure 6.5 Cam contour used as a trajectory for the planar parallel manipulator
(example 1).

symmetric. The cam contour is shown in Fig. 6.5, where the location of the fixed joints of

the manipulator is also represented.

The link lengths of the manipulator are given in Table 6.1. The trajectory map
and the optimum path were computed and are represented in Fig. 6.2. The neighbourhood
of a current point was taken as A¢ = 0.5 rad and, for the trajecfory shown here, no jump
discontinuity was observed, i.e., the filtering based on a maximum value of the second
derivative was not used. The reciprocal of the condition number obtained along the optimum

trajectory is shown in Fig. 6.6.

The second example presents an application of the method to the spherical

manipulator. The trajectory along which the manipulator is to be guided is prescribed as:

cos 3 cos A,
g = | cosfBsin ) (6.35a)
sin
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1
K
1.
5
time
Figure 6.6 Reciprocal of the condition number along the optimum trajectory for the
planar manipulator (example 1).
where

B=m/6, A =(i—1)r/50, i=1,101 (6.35b)

The link angles of the manipulator are given in Table 6.1. The trajectory map and the
optimum path were computed and are represented in Fig. 6.3. The value of Ay used to
define the target range was taken as 0.5 rad. The reciprocal of the condition number along

this trajectory is plotted in Fig. 6.7.
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T

time

Figure 6.7 Reciprocal of the condition number along the optimum trajectory for the
spherical parallel manipulator {example 2).
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CONCLUSIONS AND RECOMMENDATIONS

Chapter 7
FOR FUTURE RESEARCH

This thesis has presented several results concerning the kinematic analysis,

optimization and programming of parallel manipulators.

As a prelude to the study of these manipulators, some properties of simple
kinematic chains were revisited, which led to a graphical representation of the mobility
regions of planar and spherical four-bar linkages and which allowed the formulation of
the transmission quality problem for these linkages as a minimization of the transmission
defect. Further investigations could be carried on to apply these concepts to spatial linkages.
However, the simple graphical representation obtained here for the mobility regions of
planar and spherical linkages would not be possible due to the larger number of kinematic
parameters involved. Moreover, the concept of linkage discriminant used here takes on
more complicated forms when the input-output equation of a mechanism is of a degree

higher than two.

A solution of the branch identification problem for wrist-partitioned manipula-
tors which makes use of the eigenvalues of the Jacobian matrix was given. The Jacobian
matrix being the representation of the transformation mapping the joint rates of a serial
manipulator into the Cartesian velocities of its end-effector, it is conjectured that the eigen-
values and the determinant of this matrix contains the information necessary to identify the

branches, a fact that was verified for a 3 x 3 positioning Jacobian, leading to the solution
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mentioned above. However, in the case of a general six-axis manipulator for which the Ja-
cobian matrix has to be written as a matrix of order six which contains information on the
position and orientation, the eigenvalues and the determinant were found to be insufficient
for branch identification since different branches led to eigenvalues and determinants of the
same nature. A more detailed study could be pursued to find a function of the eigenvalues

or of other invariants of the Jacobian matrix that would distinguish between the branches.

Complex kinematic chains were then analyzed and a method to determine their
degree of freedom was derived. The fact that this method is based on both the topology
and the geometry of the chain makes it very general and applicable to any kinematic chain.
A detailed analysis of the singularities encountered in a complex kinematic chain was then
performed and led to the classification of all possible singularities into three types. The
physical interpretation of each of these singularities was also given. The classification
of singularities developed here provides a systematic way of describing the singularities
of complex kinematic chains and, hence, of parallel manipulators, which is of primary

importance in both analysis and design of robots.

The kinematic analysis of five types of parallel manipulators was conducted.
The direct and inverse kinematic problems were discussed together with the velocity and
acceleration inversions and a singularity analysis based on the classification mentioned
above. For most of the manipulators discussed, a simple closed-form solution of the inverse
kinematic problem can be found. However, it was pointed out that a six-degree-of-freedom
parallel manipulator with fully general architecture would not exhibit such a solution. It
was also shown that the direct kinematic problem does not lead to closed-form solutions
even for the simplest cases of parallel manipulators. Numerical methods have to be used

and methods of reducing the order of the systems of equations to be solved were discussed.

The optimization of the design of parallel manipulators presented was based on
two main performance criteria, i.e., the workspace and the dexterity. Workspace represen-
tations were obtained for four types of parallel manipulators and optimum designs were

derived. The dexterity criterion led to the definition of a new performance index for the
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optimization of manipulators which was shown to be applicable to both serial and parallel
manipulators. This index is based on the condition number of the matrix representing
the mapping between the Cartesian velocities and the joint rates—which is also an indi-
cation of the force transmission quality—over the whole workspace of the manipulator,
as opposed to existing indices which are based on the properties of the manipulator at
some particular points of the workspace. The new index seems to be more appropriate
to the design of manipulators since the tasks to be performed by a robot are unknown a
priori. The optimization of the Workspace of a fully general six-degree-of-freedom parallel
manipulator—which has to be described in a six-dimensional space—and the study of its
singularities and dexterity presents a formidable challenge. This is a subject for future
research. However, it was pointed out in Chapter 4 that this problem can be approached

as a set of serial manipulator analyses.

The programming of redundant parallel manipulators was discussed and an
algorithm for the trajectory planning of these robots was given. The cases on which
the algorithm was tested involved manipulators with a degree of redundancy of unity.
The scheme developed here could be extended to manipulators for which the degree of
redundancy with respect to a certain task is greater than one, in which case the local
dexterity maximization would have to be performed over a set of variables. This is an

avenue to be explored in the future.

Finally, it is pointed out that the analyses and optimizations presented in this
thesis involved only the kinematics of parallel manipulators and that the dynamics of these

manipulators still remains a subject which brings about several unsolved problems.
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Solution of a Quartic Equation

The solution of the inverse kinematic problem of the spatial three-degree-of-

freedom parallel manipulator given in Chapter 4 is derived through the solution of a quartic

equation. A method of solution of such an equation in closed-form is given here which was

taken from (Selby 1971).

Let a general quartic equation be given by

z4+ax3+bz:2+cz+d20

This equation has a resolvent cubic equation, which can be written as

y3—by2+(ac—4d)y—a2d+4bd—02:0

Now. let y be any root of this equation, and let

Then, if R #0, let

3
D:\/%_R2_2b+4ab~80—a

4 4R

4R

2 3
E:\/3—Z——R2—2b—4ab—86_a

(4.1)
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and

+ (A.6b)

r=—

R
2
This solution entails the computation of the roots of the resolvent cubic equa-

tion. This can be done as follows: Let a general cubic equation be written as

v+’ +qyutr=0 (4.7)

This equation can be reduced to the form

P tuztv=0 (A.8)
where
1
U= §(3q —p?) (A.9q)
1
v = ﬁ(2p3 — 9pq + 277) (A.90)
by using the following substitution:
y=z-2 (4.10)
3
Now, let
3w v2 Yl o
A=Al ==+ =+ — .
\ 5 + 1 + 7 (A11a)
and
3 v v oyl
B=Al——\|—+ = 116
\"2 V1'% (4.115)
then the values of the roots of eq.(A.8) will be given by
21 =A+B (A.12a)
A+B A-B
5= ‘; 223 (A4.12b)
A+B A-B »
= — ; - S52VE3 (A.12¢)

and the values of the roots of the original cubic equation are readily computed using

eq.(A.10).
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Appendix B. The Linear Invariants of a Rotation Tensor

Given any 3 x 3 tensor A, whose representation in a given coordinate frame
comprises the array of real numbers a;; fore,7 =1,2,3, its linear invariants are defined as
its vector, represented as vect(A) and its trace, represented as tr(A). Let a denote vect(A),
its representation in the given coordinate frame comprising the array of real numbers a;,

for : = 1,2,3. Resorting to index notation, the aforementioned invariants are defined as

1
a;, = Eeijkakj, tr(A) = a; (Bl)
in displayed form, we have
1|92~ an
vect(A) =a= 5 a3 —asy | . tI’(A) = aq1 +ayy + ass (BZ)
a1 — ajp

Moreover, from the foregoing definitions, it is apparent that the vector of a symmetric

tensor vanishes, whereas the trace of a skew symmetric tensor vanishes.

Now, if the 3 x 3 tensor is a rotation tensor. denoted by Q. i.e.. a proper

orthogonal tensor, it can be expressed as
Q = eel + cos (1 — ee”) +sin (1 x e) (B.3)

where e is the unit vector parallel to the axis of the rotation associated with Q and ¢ is
the angle of that rotation. Since the first two terms of the representation of Q given in

eq.(B.3) are symmetric, we can write the vector of Q as:
vect(Q) = vect(sin ¢1 x e) = sin ge (B.4)

Furthermore, the last term of the representation of Q given in eq.(B.3) being skew sym-

metric, we can write the trace as
tr(Q) = trfee” + cos ¢(1 — ee’)] = e-e+ cos #(3—e-e) =1+ 2cos ¢ (B.5)

The vector of Q can be denoted by q = [g4, g7, ¢3]%. and rather than using tr(Q) as the

other linear invariant, gy = cos ¢ is introduced to refer to the linear invariants of the rotation
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tensor. Hence, the rotation tensor is fully defined by four scalar parameters, namely {qz}g

which can be conveniently stored in the four-dimensional array A, defined as

_ T

A= g0, 15 92, 03] (B-6)
where -
tr(Q) —1

o= (B7)

It is pointed out. however, that the four components of A are not independent, for they

must obey the following:
NP =g+ @+ +d=lal> +¢f =sin2p+cos? =1 (B.8)

The rotation of a rigid body about a fixed point can therefore be described in a four-
dimensional space by the motion of a point of position vector A that moves on the surface

of the unit sphere centred at the origin of the said space.
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Appendix C. Computation of a Rotation Matrix Given its Four
Upper-Left Entries

This problem arose from the solution of the inverse kinematic problem for the
-positioning of the spatial three-degree-of-freedom manipulator presented in Section 4.4.1.
In the aforementioned solution. the four upper-left entries, i.e.. g11. g12. go1 and gyy of the
rotation matrix Q representing the orientation of the platform are found from the solution
of a quartic equation. It is then desired to find the rotation matrix or the set of rotation
matrices that are compatible with these four entries. The absolute value of each of the
entries of the last row and the last column of Q can be computed using the fact that each

of the rows and columns of Q should have a unit Euclidean norm. We can write, then,

43 = £\/1- ¢} - ¢}, 1=1,2 (C.1a)
= 4y/1-¢2 — g2 ' =1,2,3 (C.1b
q37. qh q21,’ ? 3 * )

Therefore, because of the sign ambiguities on five of the components of Q. a set of up

and

to 32 matrices can be found that will satisfy the column and row unit norm constraints.
However, since Q must be an orthogonal matrix, its rows and columns must be orthogonal
to each other. This additional constraint can be used to find which of the 32 matrices are
orthogonal and, moreover, the determinant can be used to find which of these are proper

-orthogonal matrices. The following is next shown:

Theorem C.1 Only up to two of the 32 matrices mentioned above are proper orthogonal

matrices.

Proof:

Let Q be a proper orthogonal matrix which satisfies all the constraints described

above and let

11 912 913
Q= {g1 o o3 (C.2)
@31 932 933
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It is now desired to find other matrices obtained from Q by changing the signs of some or all
of the entries of the last row and the last column and that would still be proper orthogonal
matrices. It is clear that, if the sign of only one or two of the entries of Q is changed.,
the orthogonality between the rows and the columns cannot be preserved. Furthermére.
if the sign of three of the entries of Q is changed, the orthogonality of the rows and
columns is again lost unless the three entries are chosen on a same row or column, i.e.. if
we change the sign of the entries of the third row or the third column. However, if these
signs are changed, the sign of the determinant will be changed and the resulting matrix
will be improper orthogonal, i.e., it will represent a reflexion rather than a rotation and it
is therefore not an acceptable solution. It is also readily seen that the orthogonality of the
rows and columns cannot be preserved when the sign of all the entries of the last row and
the last column of Q are changed. Finally, there is only one possibility that will preserve
both the orthogonality and the determinant and that is, when the signs of gq3. ¢93. ¢3; and

g3y are changed, i.e.,
q11 q12 413
Q=91 @ -o3 (C.3)
—431 —432 933

Indeed, the orthogonality conditions. on the columns of this new matrix Q' can then be

written as

911912 + 921922 + 931432 = 0 (C.4a)
—q11913 — 921923 — 931933 = 0 (C.4b)
—¢12913 — 922923 — 432933 =0 (C.4c)

which are equivalent to the orthogonality conditions of Q and the determinant can be

written as /
A(Q') =q11(922933 — 923932) — 921(912933 — 913932)

— @31(—aq12923 + 91392) (C.5)
=A(Q)

and hence, only up to two solutions to the original problem, Q and Q', can arise.
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Appendix D. Condition Number of a Matrix

Let us consider the following linear system:
Ax=0>b (D.1)

where A is an n x n matrix and x and b are n—dimensional vectors. The condition number
of the matrix A is a measure of its natural resistance to roundoff error when the solution
of the linear system is computed. This resistance is expressed by the amplification factor
by which a relative error ||6b]|/||b]| in the data is multiplied to lead to a relative error
|[6x]]/]|x|| in the solution and it is called the condition number of the matrix. We can write

the following:

A(x + 6x) = b + 6b (D2)
or, by subtraction of eq.(D.1),
A(é6x) = éb {D.3)
or
éx=A"16b (D.4)

We now define the norm of a matrix as its amplifying power, i.e.,
[|Ax|| < ||Al]||x]|, for all vectors x (D.5)

and equality holds for at least one nonzero vector. We can then write, from eqs.(D.1 &

D.4),

[b]] < [|A]]]Ix] (D.6)
and
16x]| < [|A=]j1sb] (D.7)
which leads to
where
k(A) = ||A][[]A7Y] (D.9)
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is the condition number of A, which defines an upper bound for the amplification of the
relative error. This definition of the condition number can be used with different matrix

“norms. In this thesis, the Euclidean —or Frobenius— norm was used. which is defined as:

IA]] = /tr(AWAT) (D.10a)

where

W = ;1;1 (D.10b)

and A is assumed to be n x n. Other definitions for the norm could be adopted. For
instance, the square root of the largest eigenvalue of ATA is often used. This definition
has the advantage of being applicable to non-square matrices. When this definition is
adopted. the condition number of a matrix A becomes the square root of the ratio of the
largest to the smallest eigenvalue of the matrix ATA. The Euclidean norm was used here

because it is frame-invariant and it is also very easy to compute.
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