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Abstract— The possibility of adapting online the way a robot
interacts with the environment is becoming more and more
important. Nevertheless, stability problems arise when the
environment (e.g. the human) the robot is interacting with gets
too stiff. In this work, we present a strategy for handling the
stability issues related to a change of stiffness of the human
arm during the interaction with an admittance-controlled robot.
Moreover, we introduce a method for detecting the rise of
instability and a passivity preserving strategy for restoring a
stable behavior.

I. INTRODUCTION

One of the most revolutionary and challenging features
of the new generation of robots is physical human-robot
interaction (pHRI). In pHRI tasks, robots are designed to
coexist and cooperate with humans in applications such
as assisted industrial manipulation, collaborative assembly,
domestic work, entertainment, rehabilitation or medical ap-
plications. In these contexts, due to the desired coexistence
of robotic systems and humans in the same workspace, main
concerns are related to safety and dependability. A widely
used approach consists in implementing interaction control
strategies that guarantee a compliant behavior of the robot.
In particular, admittance control is typically utilized for
controlling industrial robots, that are generally characterized
by a stiff and non-backdrivable mechanical structure [1].

For example, admittance control has been used to imple-
ment robot manual guidance in [2] and [3], by means of the
“walk-through programming” where the human operator be-
comes the teacher that physically guides the robot throughout
the desired trajectory.

When using admittance-controlled robots, instability can
arise when interacting with stiff environments [4]. Since
humans are dynamic systems characterized by a time-varying
impedance, they can behave in a stiff way and, consequently,
give rise to instability when interacting with admittance-
controlled robot. Instability induces, among other undesired
effects, a deviation of the robot from the desired admittance
behavior. Furthermore, it produces high amplitude oscilla-
tions of the end-effector, undermining the user safety during
the interaction. The deviations have to be first promptly
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Fig. 1. Control scheme of the admittance control with underlying motion
controller. The solution of the interaction model with the input F (t)
provides the value x̄ which the position-controlled robot must follow,
by computing the desired joint positions q̄ from inverse kinematics and
regulating the joint torque τ to let the actual joint positions q track q̄.

detected and then canceled (or reduced) to restore the sta-
bility of the system. The adaptation of the parameters of the
admittance control is a common strategy for recovering the
stability of the interaction as shown, e.g., in [5], [6] and [7].

In this work we show a novel strategy for detecting
the rise of oscillations during the interaction between a
human and an admittance-controlled robot and a passivity
based parametric adaptation of the admittance for restoring
a stable behavior. The proposed adaptation allows to keep
the adaptive dynamics similar to the nominal one in order
to avoid unbalancing effects and to increase the usability of
the system. Preliminary results have been presented in [8]
and [9], while in [10] a method for automatically setting
the detection threshold using a thorough statistical analysis
has been introduced. Moreover, a weighted energy allocation
strategy has been proposed in order to consider separately
translations and rotations. In this work we present the overall
framework and we show the experimental validation of the
control architecture.

II. ADMITTANCE CONTROL AND ISSUES IN
HUMAN-ROBOT INTERACTION

Consider a n-degree of freedom (n-DOF) manipulator
controlled by using the admittance control scheme shown in
Fig. 1. Given a desired interaction model, namely a dynamic
relation between the motion of the robot and the force
applied by the environment, and given the external force, the
admittance equation, via a suitable integration (see, e.g., [11],
[12] for explicit passive integration strategies), generates the
position and orientation to be used as a reference for a
low-level position controller. The goal of the admittance
control is to force the robot to behave compliantly with



the environment, according to a given mass-spring-damper
system. The elastic part of this system is used to attract the
robot end-effector towards a desired pose. However, since we
want to address the case of a robotic manipulator manually
driven by the human operator, in this paper we do not
consider the elastic part of the general admittance control
model. Indeed, the user guides the robot by means of the
force applied to its end-effector, without directly specifying a
desired pose. Let x̄(t) ∈ R6 be the set-point computed by the
admittance controller and x(t) ∈ R6 be the pose of the end-
effector, obtained from the joint positions q(t) ∈ Rm, m ≥ 6,
through the forward kinematics. For ease of notation we will
hereafter omit the dependency of q(t) from t. We expect
that the low-level position controller is designed and tuned
to minimize the tracking error and optimize the dynamic
response so that the robot can track a feasible set-point. Thus,
we will make the following assumption:

Assumption 1: The low-level position controller is de-
signed and tuned in such a way that x(t) ' x̄(t) as long
as

−Ẋ (q) ≤ ˙̄x(t) ≤ Ẋ (q)

−Ẍ (q) ≤ ¨̄x(t) ≤ Ẍ (q)
(1)

where
Ẋ (q) =

[
Ẋ1, . . . , Ẋ6

]T
∈ R6

Ẍ (q) =
[
Ẍ1, . . . , Ẍ6

]T
∈ R6

(2)

are configuration-dependent velocity and acceleration bounds
due to the robot dynamics and the inequalities are
component-wise.
We want to force the robot to interact with the environment
according to the following desired behavior:

Mdẍ(t) +Ddẋ(t) = F (t) (3)

where Md ∈ R6×6 and Dd ∈ R6×6 are the desired inertia
and damping symmetric and positive definite matrices. The
external force F (t) ∈ R6 in (3) is assumed to be measured
by a 6-DOF force/torque (F/T) sensor attached at the robot
wrist flange. The controlled robot behaves as (3) and it is
passive with respect to the pair (F (t), ẋ(t)), as proved in
[13].

During the execution of the cooperative task, the robot is
coupled with a human operator, whose dynamics (e.g. change
of compliance of the arm) can cause deviations from the
desired behavior that may produce robot oscillating motions
of high amplitude and frequency, making the interaction
unsafe for the user ([5]). Thus, the oscillations have to be
detected and then the desired behavior has to be recovered.

In order to be able to compensate the destabilizing effects
by adapting the parameters, the following, time-varying,
interaction model can be implemented:

M(t)ẍ(t) +D(t)ẋ(t) = F (t) (4)

where M(t) ∈ R6×6 and D(t) ∈ R6×6 are inertia and
damping symmetric and positive definite matrices such that
M(0) = Md and D(0) = Dd. While increasing the damping
is an intuitive and passivity preserving approach since it

increases the energy dissipated, changing the inertia is, in
general, a non passive operation ([13]). Thus, it may happen
that the procedure for stabilizing the interaction makes the
admittance dynamics non passive and possibly unstable.
Nevertheless, using the following method it is possible to
adapt both the damping and inertia parameters in (4) while
preserving the passivity of the initial dynamics.

In [8] the following simple heuristic for detecting the rise
of an oscillatory behavior during the cooperation has been
proposed:

‖F (t)−M(t)ẍ(t)−D(t)ẋ(t)‖ ≤ ε (5)

where ε ∈ R+ is an appropriately defined small thresh-
old. When (5) is not satisfied, the robot is considered to
be deviating from the interaction model imposed by the
admittance control. Unfortunately, since oscillating motions
have a high frequency, that corresponds to high values of
velocities and accelerations, the threshold indicating such a
deviation strongly depends on the maximum velocity and
acceleration achievable by the robot and on the time-varying
admittance parameters. This makes ε also time-varying and
hard to tune. In [9] a novel condition for detecting the rise of
high-frequency oscillations that is more robust than (5) has
been proposed. However, the value of the detection threshold
ε still has to be manually found through post-processing
operations.

III. ONLINE DETECTION OF RISING OSCILLATIONS IN
PHYSICAL HUMAN-ROBOT INTERACTION

In order to overcome the drawbacks introduced by the
use of real-time computations of (5) to detect the rising
oscillations, an improved heuristic and a practical procedure
for tuning the detection threshold ε can be used. Let us
define the vectors ˙̂x(t) ∈ R6 and ¨̂x(t) ∈ R6 as the tracking
error derivatives scaled with respect to the bounds Ẋ and Ẍ .
In particular, the j-th components of the scaled vectors are
defined as follows:

˙̂xj(t) =
˙̃xj(t)

Ẋj(q)
¨̂xj(t) =

¨̃xj(t)

Ẍj(q)
j = 1, . . . , 6 (6)

where

˙̃x(t) = ˙̄x(t)− ẋ(t) =
[

˙̃x1(t) . . . ˙̃x6(t)
]T ∈ R6

¨̃x(t) = ¨̄x(t)− ẍ(t) =
[
¨̃x1(t) . . . ¨̃x6(t)

]T ∈ R6
(7)

are the first and second order derivatives of the tracking error.
Robot velocities and accelerations can be measured using
specific hardware (e.g. gyroscopes and accelerometers) or
estimated using, for example, the quaternion-based Kalman
filter introduced in [14].

Moreover, we introduce the following damping to inertia
ratio matrix:

Rd(t) = M−1(t)D(t) (8)

The improved heuristic can be defined in terms of (6) and
(8), as follows:

ψ
(

˙̂x(t), ¨̂x(t)
)

= ‖¨̂x(t) +Rd(t) ˙̂x(t)‖ ≤ ε (9)



(9) can be used as the heuristic for detecting online when
oscillations occur. Namely, when (9) is not satisfied, we
claim that oscillations are rising.

According to the experimental results obtained in [10], the
distribution of the detection index ψ(t) can be characterized
as a log-normal. Thus, the following procedure can be used
for tuning the detection threshold ε:

1) Given initial values of inertia and damping matrices
and, therefore, of the desired damping to inertia ra-
tio matrix, the experienced operator applies persistent
force stimuli to the admittance-controlled robot to
move it in a wide portion of its workspace, while the
control system logs the values of ψ(t) for at least 60
seconds.

2) The potential presence of a significant number of out-
liers in the recorded series of ψ(t) is detected. Indeed,
outlying samples are potentially related to undesired
oscillations that even the experienced user may have
not perceived. Being the log-normal a skewed distri-
bution, the outliers detection is based on the adjusted
boxplot described in [15]. Following this approach, a
sample is considered to be an outlier if it falls outside
of the interval:[

Q1 − 1.5e−4MCIQR, Q3 + 1.5e3MCIQR
]

(10)

where Q1 and Q3 are respectively the first and third
quartile of the sampled data, IQR = Q3 − Q1 is
the interquartile range and MC is the medcouple,
a robust measure of skewness ([16]). Note that the
proposed boxplot formula assumes MC > 0, since
a log-normal distribution is right skewed. If the total
number of outliers does not exceed 5% of the sampled
data and consecutive outlying samples represent short
time intervals (e.g. smaller than 200 ms), it can be
concluded that experimental data do not include oscil-
lating behaviors and can be used for the subsequent
steps of the tuning procedure.

3) If outliers are negligible and the user acknowledges
that the experimental run is valid for the tuning of the
threshold, the PDF of ψ(t) is estimated from sampled
data. In particular, the parameters of a log-normal
distribution are estimated using the following MLE
formulas (see [17]):

µ̂ =

N−1∑
i=0

lnψ(i · T )

N
; σ̂ =

√√√√√N−1∑
i=0

(lnψ(i · T )− µ̂)
2

N
(11)

where T is the sampling period, N is the number of
discrete-time samples of ψ(t) collected during the test,
µ̂ and σ̂ are the estimated location and the estimated
scale of the log-normal distribution ([18]), respectively.

4) The threshold ε is fixed as the upper bound of the
prediction interval calculated as the value at which
the log-normal CDF reaches the confidence level α =
0.9999 (chosen with the aim to mostly avoid false
positive detections).

IV. PASSIVITY-BASED METHODOLOGY FOR PARAMETER
ADAPTATION

As already introduced, the parameters of the admittance
control can be adapted to restore the desired behavior of
the controlled robot in the presence of high-frequency os-
cillations, identified according to the technique described in
Section III. If the parameters have to be adapted, then the
desired interaction model becomes the variable admittance
model (4). The main drawback due to the introduction of
variable terms in an admittance control scheme is the loss
of passivity of the controlled robot (see, e.g., [13]). In order
to guarantee the passivity, we exploit the concept of energy
tanks that allows to use the (virtual) energy circulating in the
controlled system in a flexible and passivity preserving way
(see, e.g., [19], [20], [13]). Indeed, the energy dissipated by
the system is stored in a virtual energy reservoir, the tank, and
can be reused for implementing any desired control action in
a passivity preserving way. For this purpose, the dynamics
(4) is augmented as follows: M(t)ẍ(t) +D(t)ẋ(t) = F (t)

ż(t) =
ϕ(t)

z(t)
PD(t)− γ(t)

z(t)
PM (t)

(12)

where

PD(t) = ẋ(t)TD(t)ẋ(t) PM (t) = 1
2 ẋ(t)T Ṁ(t)ẋ(t)

(13)
are the dissipated power due to the damping, and the dissi-
pated/injected power due to the inertia variation, respectively,
and z(t) ∈ R is the state of the tank. Furthermore, let

T (z(t)) =
1

2
z(t)2 (14)

be the energy stored in the tank. We will hereafter assume
that ∃δ, T̄ , with 0 < δ < T̄ , such that δ ≤ T (z(t)) ≤ T̄ , ∀t.
The upper bound is guaranteed by the parameters ϕ(t) ∈
{0, 1} and γ(t) ∈ {0, 1} that disable the energy storage
in case a maximum, application dependent, limit T̄ ∈ R+

is reached. It is necessary to bound the available energy
because, if there were no bounds, the energy could become
very big as time increases and, even if the system keeps on
being passive, it would be possible to implement practically
unstable behaviors ([21]). In particular,

ϕ(t) =

{
1 if T (z(t)) ≤ T̄
0 otherwise (15)

enables/disables the storage of dissipated energy, while

γ(t) =

{
ϕ if Ṁ(t) ≤ 0
1 otherwise

(16)

enables/disables the injection
(
Ṁ(t) ≤ 0

)
of energy in the

tank due to the inertia variation but it always allows to
extract

(
Ṁ(t) > 0

)
energy from the tank. The lower bound,

required for avoiding singularities in (12), is guaranteed by
carefully planning/forbidding the extraction of energy when
T (z(t)) = δ is reached. Notice that the extraction of energy



is due only to PM (t). The tank initial state is set to z(0)
such that T (z(0)) > δ.

It can be formally proven that if T (z(t)) ≥ δ for all
t ≥ 0, the system (12) is passive with respect to the pair(
F (t), ˙̃x(t)

)
[10]. Thus, as long as there is energy available

in the tank, it is possible to implement any kind of inertia
variation. Nevertheless, it is important to guarantee that the
variation of the inertia does not deplete the tank. Indeed,
if this happens, all the active behaviors (e.g. increasing of
inertia) would be stopped and this would lead to unwanted
behaviors (e.g. oscillations) in the cooperative system. In the
following we propose a condition on the variation of the
inertia that guarantees that the tank never depletes and, as a
consequence, that the system remains passive.

We assume that the inertia variations take place in prede-
fined finite intervals (e.g. when the user stiffens his/her arm).
As clearly shown in (12) and in (13), energy can be extracted
by the tank only if Ṁ(t) > 0. Thus, it is necessary to bound
the increase of inertia depending on the energy stored in the
tank.

Since the desired inertia and damping are parameters that
can be freely chosen, provided that they are symmetric
and positive definite matrices, we consider the following
assumption.

Assumption 2: The desired inertia and damping in (4) are
diagonal matrices and they are defined as

M(t) = diag {m1(t), . . . ,m6(t)}
D(t) = diag {d1(t), . . . , d6(t)} (17)

Since M(t) is diagonal, Ṁ(t) is diagonal too and its eigen-
values are the elements on the diagonal.
With this assumption, we can decouple the different compo-
nents (e.g. the translational components from the rotational
ones).

A condition on the inertia variations that allows to preserve
passivity, with a weighted distribution of the energy extracted
from the tank within the adaptation interval, is derived and
stated in [10] as follows:

ṁj(t) ≤ ¯̇mj ≤
2αj(T (a)− δ)

¯̇X 2
j (b− a)

∀j = 1, . . . , 6 (18)

where [a, b] is the time interval of the inertia variation, ¯̇mj

(j = 1, . . . , 6) are bounds on ṁj(t) for all t ∈ [a, b] and
¯̇Xj = max

q
Ẋj(q) (j = 1, . . . , 6) are component-wise upper

bounds on the robot velocity limits defined in Assumption 1.
The vector A = {α1, . . . , α6}, is a vector of weights defined
such that:

6∑
j=1

αj = 1 (19)

This newer formulation of the passivity-preserving adap-
tation law, with respect to the one used in [9], [8], allows
to take into account that the velocity bounds of the robot
may be quite different on the different DOFs, especially
comparing translational and rotational ones. Thanks to the
component-wise definition of the inertia variation bound and

to a proper choice of the weights vector A, the adaptation
of the admittance parameters related to each DOF can be
tuned more precisely, according to the features of the robot
and to the desired task. Intuitively, lower weights should
be specified for the components related to rotational DOFs,
whose corresponding elements on the diagonal of M(t) tends
to be smaller than those related to translational DOFs (i.e.
the values in the inertia tensor of a rigid body are, in general,
quantitatively smaller than its mass). On the other hand, the
oscillating behavior of the human-robot interaction can be
counteracted with smaller inertia variations on those DOFs
for which higher velocities are admissible. More details on
the tuning of the weights vector are given in [10].

A. Algorithm for parameter adaptation in admittance control

The previous section provided a possible way for using
(18) to adapt the parameters of the admittance control to
recover a stable behavior of the human-robot interaction
when oscillations are detected. In the following will be
described a procedure for parameter adaptation, that allows
to increase the parameters only when it is required due
to the detection of rising oscillations, but then restores the
desired interaction model when such oscillations disappear
(e.g. due to a relaxation of the operator’s arm). The pa-
rameters will be adapted according to the component-wise
passivity-preserving bound defined by (18). The algorithm
will be provided in the discrete-time domain in order to be
implementable on a real robotic system. The conditions on
the time derivatives stated so far can be approximated using
the corresponding difference quotient for a sufficiently small
sampling period. We will then consider a set of time intervals
[ti, ti+1], with i = 1, 2, . . . and such that ti+1 − ti = ∆t,
within which the parameter adaptation takes place.

Once rising oscillations have been detected, the algorithm
allows to compute the variation of the inertia that satisfies
the passivity constraints and the stability of the system
is recovered. The variation of the damping is performed
according to a constant damping to inertia ratio (Rd(t) =
Rd(0),∀t ≥ 0). Thus, the first step of the algorithm is the
computation of the damping to inertia ratio according to (8)
and based on the desired inertia matrix M(0) and damping
matrix D(0).

Then, at each time instant ti, the detection index defined
in (9) is computed. If oscillations are rising, (9) is not
satisfied and the oscillatory behavior is detected. A vector
ζ is created to store all the instants in which oscillations are
detected. Thus, a new element ζk is inserted in ζ and it is
associated to the current instant of time ti which corresponds
to the instant of detection. In this case, the admittance
parameters have to be adapted for restoring the stability of
the system. In particular, integrating (18), we obtain that each
component of the inertia matrix can be passively increased
as follows

mj(ti+1)−mj(ti) =
2αj(T (ti)− δ)

¯̇X 2
j

∀j = 1, . . . , 6 (20)

It is worth noting that (20) represents the maximum allowed



inertia variation, based on the energy contained in the tank at
time t = ti. In practical cases, this value can be very large:
thus, direct application of (20) would lead to an excessively
large inertia variation. For this reason, we define an upper-
bound ∆M = diag{m̄1, · · · , m̄6} on the allowed inertia
variation as follows:

mj(ti+1)−mj(ti) ≤ m̄j ∀j = 1, . . . , 6 (21)

Under such a condition, the amount of variation of the inertia
can be computed component-wise as the minimum between
the allowed inertia variation (20) and the upper-bound (21):

sj = min

{
2αj(T (ti)− δ)

¯̇X 2
j

, m̄j

}
∀j = 1, . . . , 6 (22)

The empirical definition of the bounds m̄j is a practical
necessity and has been exploited in the experiments de-
scribed in [9], [8] also to take into account that some DOFs
(i.e. generally rotational ones) may require smaller values
of inertia variations. However, the newer definition of the
inertia adaptation law, based on the weighted distribution of
the tank energy, allows to modulate more precisely the inertia
variations, thanks to the choice of the weights vector and the
component-wise scaling by the velocity bounds ¯̇Xj . Indeed,
the conservative bounds m̄j are rarely enforced.

The single components computed in (22) are then used to
fill the matrix of inertia variation as follows:

Si = diag {s1, . . . , s6} ∀i = 1, 2, . . . (23)

The final part of the algorithm is the actual variation of the
admittance parameters. The inertia variation is computed as
follows:

M(ti+1) = M(0) +

k∑
p=0

Spβ
(ti+1−(τp+∆t)) (24)

where β (0 < β ≤ 1) is a forgetting factor that allows to
gradually restore the desired interaction model (3). Indeed,
the presence of the forgetting factor β in the second term
in the right-hand side of (24) makes the effect of each
inertia increase negligible after a certain amount of time.
In particular, this time is larger for higher values of β. Note
that the inertia increases only at each time instant when a
deviation is detected, as a consequence of (24). In all the
other instants, the inertia only decreases and this has been
shown in [8] to be a passivity-preserving operation.

Finally, the damping is updated preserving the constant
damping to inertia ratio as follows:

D(ti+1) = Rd(0)M(ti+1) (25)

More details on the algorithm can be found in [10].

V. EXPERIMENTS

In order to demonstrate the effectiveness of the overall
detection and adaptation strategy, we present experimental
results that show how the heuristic introduced in Section III
detects the oscillatory behavior of the robots and the way

(a) Velocity of the robot along the considered translational DOF
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(b) Evolution over time of the detection index ψ(t) (magenta line), and of
the subsequent inertia adaptation (blue line). A detection flag (red line) is
added to show when the heuristic detects that oscillations are rising.

Fig. 2. Detection and adaptation of the rising oscillations using the
proposed method.

stability is restored thanks to the adaptation strategy pre-
sented in Section IV. These specific experiments have been
performed restricting robot motion to only one translational
DOF. The inertia and damping initial parameters have been
set equal to m(0) = 0.5 kg and d(0) = 5 kg/m2, since
these values have been found in [5] to be the minimum
stable admittance gains for a KUKA LWR 4+, which is
also the robot used in our experiments. In these conditions,
the detection threshold has been properly tuned with the
proposed procedure and it resulted ε = 0.22. Whenever the
user excessively stiffens his/her arm, high-frequency oscil-
lations appear in the velocity of the robot (Figure 2(a)).
Figure 2(b) shows, in magenta, the evolution over time of the
detection index ψ(t) as defined in (9). A boolean detection
flag is depicted with a red line in Figure 2(b). As it can
be seen, the rising oscillations are rightly detected and the
inertia (blue line) is adapted accordingly. As shown in Figure
2(a), when an oscillating behavior arises (yellow regions), the
adaptation of the parameters allows to stabilize the system
0.48 s after the occurrence of the first oscillation and 0.68 s
after the occurrence of the second oscillation. Obviously,
the difference in the adaptation times is due to the different
attitude of the operator during the interaction, the different
amplitude of the oscillations and, finally, to the starting
values of the parameters when the adaptation is performed.
However, thanks to a usability study we could verify that,
from the user perspective, all the adaptation periods were
sufficiently short amounts of time, since the adaptation of
the parameters was achieved before the user could actually
feel the rising oscillations.



VI. CONCLUSIONS

Admittance control is a widely used approach for guaran-
teeing a compliant behavior of the robot in physical human-
robot interaction. When an admittance-controlled robot is
coupled with a human operator, the dynamics of the human
can cause deviations from the desired behavior, that is the
one imposed by the admittance control. The deviations result
in high amplitude oscillations of the robot end-effector that
may render the interaction with the robot unsafe for the user.

In this work we presented a strategy for detecting the
rising oscillations and adapting the parameters of the ad-
mittance control for restoring the stability. To detect the
rising oscillations, a heuristic has been defined. A procedure
for automatically tuning the detection threshold used in
the heuristic has been proposed, by exploiting statistical
methods. We then provided an algorithm for adapting the
parameters of the admittance control when it is necessary,
i.e. when a rising oscillation is detected, while preserving
the passivity of the system. The parameters are gradually
restored when the destabilizing factors are no longer active.
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