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Abstract— This paper presents a kinematically redundant
spatial parallel mechanism with 3 redundant dofs and how
it can be used for physical human-robot interaction. The
architecture of the mechanism is similar to the well-known
Gough-Stewart platform and it retains its advantages, i.e.,
the members connecting the base to the moving platform
are only subjected to tensile/compressive loads. The kinematic
redundancy is exploited to avoid singularities and extend the
rotational workspace which is very important in the context of
haptic devices. The architecture is described and the associated
kinematic relationships are presented. Solutions for the inverse
and direct kinematics are given, as well as a simple gravity
compensation model. Finally, a control scheme enabling physi-
cal human-robot interaction while controlling the 3 redundant
degrees of freedom is given.

I. INTRODUCTION

Despite being widely used in the flight simulation industry
(see for instance [1]), precision mechanisms (see [2]) and
pick and place tasks (see [3]), parallel robots still represent
a very small portion of the world total robot population 1.
Indeed, parallel robots lack the large workspace required in
most assembly and welding applications. Another field in
which parallel robots are commonly used is haptic interface.
Generally coupled with a serial mechanism for the orienta-
tion, parallel mechanisms are widely used in haptic interface
(such as the ones used to control surgical robot) because
of their high transparency. Indeed, their high stiffness/inertia
ratio is excellent compared to serial mechanisms. Their main
drawback remains their limited workspace though, which
explains why serial wrist are generally for the orientation.

The subject of workspace improvement of parallel robots
is not new (see [4], [5], [6], [7] ), especially for the Gough-
Stewart platform (GS platform). However, although signif-
icant efforts were deployed, the GS platform’s workspace
is still very limited by the so-called type II (or parallel)
singularities [8]. The determination of the geometric condi-
tions that lead to such singularities and the characterization
of the locus of these singularities in the workspace has
been the subject of several research studies (see [4], [5],
[9] for example). Notwithstanding the above efforts, the GS
platform has seen very few changes since its introduction in
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12943 parallel robots were sold in 2013 compared to 18100 scara robots
and 178132 total according to the International Federation of Robotics.

1954 [10], [11] and its orientational workspace is limited to
relatively small rotations. In most cases, the maximum tilt
angle that a platform can reach is approximately 45o.

Some researchers are nevertheless working on means of
expanding the workspace of parallel robots and some promis-
ing solutions have been proposed. One solution, among
others, is to include kinematic redundancy (see [12] for a
complete review of redundancy in parallel mechanisms). It
was shown in [13], [14] that this principle can completely
remove singularities from the workspace of some parallel
robots while still being simple to implement. It was also
shown in [15] that kinematic redundancy can be introduced
in the GS platform using an architecture that preserves
the force transmission properties while avoiding actuation
redundancy in order to improve the rotational workspace. In
this reference, it was shown that 3 redundant dofs are theo-
retically sufficient to avoid all singularities. Determining the
ideal configuration is relatively simple with one redundant
dof (see [13], [14] for examples with planar mechanisms),
but it can be more challenging when the number of redundant
dofs increases.

This paper explains how a (6+3)-dof parallel mechanism
can be used in physical human-robot interaction.

This paper is structured as follows. The architecture of the
redundant mechanism (which includes 3 redundant legs and
3 non-redundant legs) is first described. Then, the kinematic
modelling is developed. The velocity equations are obtained
and the Jacobian matrices associated with the mechanism
are derived. The solution of the inverse and direct kinematic
problem are given and an index of the force transmission
properties of the mechanism is introduced. A simple gravity
compensation model developed and, finally, a control scheme
enabling physical human-robot interaction while controlling
the 3 redundant degrees of freedom is given.

II. MANIPULATOR ARCHITECTURE

The architecture is based on the GS platform, a moving
platform connected to a fixed base via six legs of the HPS
type, where H stands for a Hooke (universal) joint, P stands
for an actuated prismatic joint and S stands for a spherical
joint.

The redundant leg used in the architecture proposed in
[15] is shown in Fig. 1. The leg comprises two actuated
prismatic joints, which are connected to the base via Hooke
joints. The prismatic actuators are joined at their tip by a
passive revolute joint which connects the two prismatic legs
to a link that is in turn connected to the moving platform
through a spherical joint.



Fig. 1: Architecture of the redundant leg (left) and complete
nine-actuator kinematically redundant parallel mechanism
(right) (from [15]).

For a given pose of the platform, the two actuated pris-
matic joints can be driven independently, which allows to
orient the link connecting the tip of the prismatic legs to the
platform. Moreover, the orientation of this link corresponds
to the orientation of the force vector applied to the plat-
form, which determines the Jacobian matrix and the singular
configurations. Hence, using the kinematic redundancy of
the leg to reorient the link connected to the platform, it
is possible to directly affect the Jacobian matrix and avoid
singularities, as it was shown in [15]. It is pointed out
that all links connecting the fixed base to the platform are
subjected to only tensile/compressive loads and since the
redundancy introduced in the mechanism is kinematic, there
is no actuation redundancy and no antagonistic loads can be
generated on the platform by the legs.

A simplified representation of the mechanism is shown
in Fig. 1, where three of the legs of a 3–3 GS platform
have been replaced with the kinematically redundant legs
described above, leading to a mechanism with nine actuators
and nine degrees of freedom. Other implementations are also
possible.

III. KINEMATIC MODELLING

Referring to Fig. 2, a fixed reference frame Oxyz is
defined on the base and a moving reference frame Px′y′z′

is defined on the platform. The position vector of the centre
of the Hooke joints (Universal joints) attached to the base,
points Aij or Ai, is noted ai for the non-redundant legs and
respectively ai1 and ai2 for redundant legs. Similarly, the
position vector of the centre of the spherical joint connecting
the ith leg to the platform, point Bi, is noted bi. For
redundant legs, the position vector of the centre of the
revolute joint connecting the two sub-legs, point Si, is noted
si. The length of the link connecting point Si to point Bi is
noted `i. Finally, the extension of the ith leg is noted ρi for
a non-redundant leg while the extension of the sublegs are
noted ρi1 and ρi2 for a redundant leg.

The Cartesian coordinates of the moving platform are
given by the position vector of the reference point P on
the platform, noted p, and the orientation of the platform,
given by matrix Q, which represents the rotation from the
fixed reference frame Oxyz to the moving reference frame
Px′y′z′. The position vector of point Bi can then be written
as

bi = p+Qvi0 = p+ vi, i = 1, . . . , 6 (1)
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Fig. 2: Kinematic modelling of the mechanism: only one
redundant leg and one non-redundant leg are shown.

where vi0 is the position vector of point Bi with respect
to point P , expressed in the reference frame Px′y′z′. For
a given mechanism, this vector is constant. This vector,
connecting point P to point Bi, is noted vi when expressed
in the fixed reference frame.

A. Constraint equations

The derivation of the velocity equations for the non-
redundant HPS legs is straightforward (see for instance [16]).
Indeed, the constraint on the leg lengths can be written as

(bi − ai)
T (bi − ai) = ρ2i . (2)

For the redundant legs, referring to Fig. 2, the constraint
corresponding to the length of the link connecting point Bi

to point Si can be written as

(si − bi)
T (si − bi) = `2i (3)

Similarly, the constraint corresponding to the length of each
of the sublegs can be written as

(si − aij)
T (si − aij) = ρ2ij , j = 1, 2 (4)

where ρi1 and ρi2 are the joint coordinates associated with
the two sublegs of the ith redundant leg. Additionally, since
the two sublegs are connected with a revolute joint located
at point Si and whose axis is orthogonal to the plane defined
by the sublegs, namely the plane defined by points Ai1, Ai2,
Si and Bi, vectors (bi − ai1), ei and (si − ai1) must be
coplanar. This condition can be expressed as

[(bi − ai1)× ei]
T (si − ai1) = 0, (5)

where ei is a unit vector passing through point Ai1 and
pointing in the direction of point Ai2.

These constraint equations are easily differentiated with
respect to time in order to obtain the velocity equations of
the mechanism. The complete derivation is presented in [15].



IV. INVERSE KINEMATICS

The inverse kinematics is used to find the actuator co-
ordinates from the Cartesian configuration of the platform.
This problem is generally straightforward in the case of
parallel manipulators since the computation of each actuator
coordinate is independent from the other actuated joint
coordinates. However for the proposed robot, because of
the redundant dofs, there are infinitely many solutions to
the inverse kinematic problem. This problem is akin to
the inverse kinematics of redundant serial manipulators (see
[17], [18]). The configuration of the redundant dofs must be
chosen carefully in order to avoid singular configurations.
These dofs are determined by the array γ containing the
angles γi, i = 1, 2, 3. The angle γi is the angle that the
redundant link (BiSi) is making relative to vector ei, as
shown in Fig. 3.

Methods using the velocity equations, similar to the ones
used in redundant serial manipulators, can be used also
for kinematically redundant parallel manipulators (see [15]).
Another option is to consider the redundant dofs as part
of the Cartesian coordinates. Determining γ is then part of
the trajectory planning and the inverse kinematic problem
itself becomes simpler. Indeed, with the extended Cartesian
coordinates defined as p,Q,γ, it is simple to calculate the
position of points Bi using eq. 1. Referring to Fig. 3, the
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Fig. 3: Geometric representation of a redundant leg.

position vector of point Si can then be expressed as

si = bi + ` cos γiei − ` sin γiki (6)

where vector ki = gi × ei and vector gi is a unit vector
normal to the plane of the redundant leg. Finally, with eqs.
2 and 4, the actuated joint coordinates can be found and there
is no need to use the velocity equations to solve the inverse
kinematics.

Nonetheless, it is of interest to express the relationship
between the time derivative of the extended Cartesian coordi-
nate vector defined as te =

[
ṗ ω γ̇

]T
and the actuator

velocities. This relationship can be expressed as

Jete = Keρ̇ (7)

which defines the extended Jacobian matrices of dimension
9 × 9, Je and Ke. In order to obtain these matrices, the
constraint equation of each actuator of the ith redundant leg
(eq. 4) as well as eq. 6 are differentiated with respect to time

(si − aij)
T
ṡi = ρij ρ̇ij , j = 1, 2. (8)

ṡi = ḃi − (` sin γiEi − ` cos γiki) γ̇i − ` sin γik̇i. (9)

Substituting eq. 9 into eq. 8, after some simplifications, yields
to matrix Je

Je =



cT11 [c11 × v1]
T je,11 0 0

cT12 [c12 × v1]
T je,12 0 0

cT21 [c21 × v2]
T 0 je,21 0

cT22 [c22 × v2]
T 0 je,22 0

cT31 [c31 × v3]
T 0 0 je,31

cT32 [c32 × v3]
T 0 0 je,32

uT
4 [u4 × v4]

T 0 0 0
uT
5 [u5 × v5]

T 0 0 0
uT
6 [u6 × v6]

T 0 0 0


(10)

. Finally, matrix can be expressed as
where je,ij = ‖[ui × cij ]

T ‖, vector cij is defined along
the subleg j of the redundant leg i, yielding to cij = si −
aij and matrix Ke is a diagonal matrix containing the joint
coordinates, namely Ke = diag(ρ).

V. DIRECT KINEMATICS

The direct kinematics is used to find the Cartesian configu-
ration c of the robot from the articular coordinates ρ. Solving
the constraint equations for c would lead to very complex
equations a high number of equations. The standard Gough-
Stewart platform is known to have 40 solution in its direct
kinematics. Since the current architecture as 3 suplementary
dofs, its direct kinematics is exponentially more complex.
Howerver, it is also possible to solve the direct kinematics
using a numeric algorythm. This procedure is standard for
the direct kinematics of parrallel manipulators and for the
inverse kinematics of non-decoupled serial manipulators. The
algorythm is based on the Newton-Gauss method and is
presented in algorythm 1.

VI. FORCE TRANSMISSION CAPABILITIES

The array of actuator forces (f ) generated by a given Carte-
sian wrench (w) is evaluated using the Jacobian matrices as

f = KTJ−Tw (11)

F = KTJ−T (12)

where w consists of the 6-dimensional vector of forces and
moments at the platform. Equation 12 defines the force
transmission matrix (F) of the mechanism which can be
divided into two separate matrices, one applied to the forces
and one to the moments (F = [Ft Fr]). In order to obtain
the maximal actuator force generated by any combination of
Cartesian force and moment unit vectors, the norm of each



Result: cn
n=1;
cn = pn,Qn,γn (initial estimation of Cartesian

coordinates;
while δcn < crit & n < nmax do

ρn = IK(cn) (find articular coordinates
corresponding to estimated Cartesian
configuration);
δρn = ρm − ρn where ρm is the measured

articular coordinates. (Find the error in articular
coordinates) ;
δcn = J−1Kδρn (find the Cartesian coordinates
adjustment to reduce the error);
pn+1 = pn + δpn (evaluate the new Cartesian

coordinates);
γn+1 = γn + δγn;
Qn+1 = Rx(δθx)Ry(δθy)Rz(δθz)Qn;
n=n+1;

end
Algorithm 1: Solving the direct kinematics using a
Newton-Gauss method

line of matrices Ft and Fr must be combined and then the
maximal actuator force can be selected, namely

κ = max

√√√√ 3∑
j=1

f2t,i j + cr

√√√√ 3∑
j=1

f2r,i j , i = 1..9

 (13)

where fx,i j is the ith, jth element of matrix Fx.
A weighting between the forces and the moments must be

applied since they do not bear the same units and since the
maximal Cartesian force value is different from the maximal
Cartesian moment value. The weighting between the forces
and moments should depend on the actual external forces
and moments of a specific application. A generic weighting
is therefore difficult to determine. In applications with only
gravity and inertial payloads, the distance between the centre
of mass of the effector and the reference point P can be used.
In applications like machine tools, the distance between the
end of the tool and the reference point P can be used. For
more insight on the characteristic length of manipulators, see
[19] and for more references about manipulator performance
indices, see [20], [21], [22]. The results presented in this pa-
per use a value of cr = 0.09m. It corresponds to the assumed
distance between the centre of mass of the platform and the
reference point P . Additionally, the force transmission index
results are scaled by a factor 1.45 in order to obtain a unit
value in the reference configuration of the mechanism. Doing
this, it is easy to compare the results along the trajectory with
the results of the reference configuration.

The maximal admissible value of the force index depends
on the ratio of actuator maximal force relative to the maximal
payload of the mechanism. Depending on the application, a
safety factor and the dynamic loading should be considered.
For this paper, no specific application and design are selected.
Therefore, a payload of 5 kg and actuators capable of produc-

ing 285 N are arbitrarily chosen. These characteristics fit the
small dimensions of the mechanism described in section ??.
The corresponding maximal force index is therefore equal to
285/(5∗9.81) ≈ 5.8 and once scaled by 1.45, becomes ≈ 4.

VII. STATIC MODEL

In order to compensate for gravity in the control loop, a
model of the statics forces is necessary. This model can be
obtained by expressing the position of the center of mass of
every rigid bodies in the mechanism. Because of the parallel
architecture, it is more convenient to express the potential
energy (V) relative to the Cartesian coordinates. The total
potential energy is the sum of all the masses (Mi) times the
gravity (g) and their z coordinates relative to the base frame
(zi).

V =

n∑
i=1

migzi (14)

Refering to Fig. 4, it is simple to express the position of all
the center of mass of the rigid bodies (mi) with the Cartesian
coordinates.
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Fig. 4: Parameters of the static model.

mi,j,1 = aij + di,j,1
ci,j
‖ ci,j ‖

(15)

mi,j,2 = si − di,j,2
ci,j
‖ ci,j ‖

(16)

mi,3 = bi − dj,2
(si − bi)

‖ (si − bi) ‖
(17)

mj,1 = aj − dj,1
uj

‖ uj ‖
(18)

mj,2 = bj − dj,2
uj

‖ uj ‖
(19)

Inserting eqs.(1) and (6) into eqs. (15 - 19), and then using
eq.(14), a expresssion of the type

Kp = f(p,Q,γ) (20)



is obtained. This expression can easily be differentiated with
respect to the Cartesian coordinates to obtain the resultant
equivalent Cartesian wrench wg generated by gravity, as
stated by Lagrange’s equations. Finally, eq. (11) can be used
to express this force in the articular space.

VIII. CONTROL SCHEME

IX. CONCLUSION

This paper briefly presented the kinematic modelling of
a kinematically redundant spatial parallel mechanism that is
akin to the GS platform. This architecture, first introduced
in [15], uses kinematic redundancy to avoid singularities and
improve the workspace of the mechanism.

Jacobian matrices which include the redundant dofs as
Cartesian dofs are presented in this paper. These matrices
can be used for a numerical direct kinematic resolution. The
inverse kinematics is shown to be very simple when the
redundant dofs are included in an extended Cartesian velocity
vector.

An algorithm for solving the direct kinematics is given. A
force transmission index is introduced and is used to evaluate
the performance of the robot. A static model is introduced
in order to compensate for gravity during the control of the
mechanism. Finally, a control scheme for physical human-
robot interaction is introduced.
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