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Résumé

Cette thèse étudie les forces potentielles des mécanismes parallèles plans à deux degrés de
liberté équipés d’embrayages de sécurité (limiteur de couple). Les forces potentielles sont étu-
diées sur la base des matrices jacobienne. La force maximale qui peut être appliquée à l’effecteur
en fonction des limiteurs de couple ainsi que la force maximale isotrope sont déterminées. Le
rapport entre ces deux forces est appelé l’efficacité de la force et peut être considéré ; comme
un indice de performance. Enfin, les résultats numériques proposés donnent un aperçu sur la
conception de robots coopératifs reposant sur des architectures parallèles.

En isolant chaque lien, les modèles dynamiques approximatifs sont obtenus à partir de l’ap-
proche Newton-Euler et des équations de Lagrange pour du tripteron et du quadrupteron. La
plage de l’accélération de l’effecteur et de la force externe autorisée peut être trouvée pour
une plage donnée de forces d’actionnement.
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Abstract

This thesis investigates the force capabilities of two-degree-of-freedom planar parallel mech-
anisms that are equipped with safety clutches (torque limiters). The force capabilities are
studied based on the Jacobian matrices. The maximum force that can be applied at the
end-effector for given torque limits (safety index) is determined together with the maximum
isotropic force that can be produced. The ratio between these two forces, referred to as the
force effectiveness, can be considered as a performance index. Finally, some numerical results
are proposed which can provide insight into the design of cooperation robots based on parallel
architectures.

Considering each link and slider system as a single body, approximate dynamic models are
derived based on the Newton-Euler approach and Lagrange equations for the tripteron and
the quadrupteron. The acceleration range or the external force range of the end-effector are
determined and given as a safety consideration with the dynamic models.

v





Contents

Résumé iii

Abstract v

Contents vii

List of Figures ix

Foreword xi

1 Introduction 1
1.1 Parallel Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 1.1.1 Development of Parallel Mechanisms . . . . . . . . . . . . . . . . . 2
1.1.2 1.1.2 Definition of a Parallel Mechanism . . . . . . . . . . . . . . . . . . 3
1.1.3 1.1.3 Characteristics and Applications . . . . . . . . . . . . . . . . . . . 4

1.2 Force Capabilities Analysis for Parallel Mechanisms . . . . . . . . . . . . . . . . 9
1.2.1 1.2.1 Relations Between Generalized and Articular Forces/Torques . . . 11
1.2.2 1.2.2 Literature Review on the Static Force Capabilities Analysis . . . . 13

1.3 Dynamic Capabilities Analysis for Parallel Mechanisms . . . . . . . . . . . . . . 15
1.3.1 1.3.1 Introduction of Dynamics . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 1.3.2 Literature Review on the Dynamic Capabilities Analysis . . . . . . 15

1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Force Capabilities of 2-DOF Parallel Mechanisms Equipped with Torque
Limiters 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Description of the Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Jacobian Matrices and Force Equations . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 2.3.1 General Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 2.3.2 Simplified Analysis and Special Cases . . . . . . . . . . . . . . . . 24

2.3.2.1 Special case 1: points ABC aligned and points AEF aligned . . 25
2.3.2.2 Special case 2: points ABC and points AEF respectively form

a right angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Analysis of the Force Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 2.4.1 Symmetric Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 2.4.2 Non-Symmetric Mechanisms . . . . . . . . . . . . . . . . . . . . . 30

2.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 2.5.1 Symmetric Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



2.5.2 2.5.2 Non-Symmetric Mechanisms . . . . . . . . . . . . . . . . . . . . . 33
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Force Capabilities of 2-DOF Parallel Mechanisms Equipped with Torque
Limiters and Force Limiters 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Structure and Kinematics of the Mechanism . . . . . . . . . . . . . . . . . . . 40
3.3 Jacobian Matrices and Force Equations . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 3.3.1 Mechanism with Force Limiters on the Proximal Links . . . . . . . 42
3.3.2 3.3.2 Mechanism with Force Limiters on the Distal Links . . . . . . . . . 43

3.4 Analysis of the Force Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 3.4.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1.1 Mechanism with Force Limiters on the Proximal Links . . . . . 43
3.4.1.2 Mechanism with Force Limiters on the Distal Links . . . . . . . . 46

3.4.2 3.4.2 Simplified Analysis for Singular Configurations . . . . . . . . . . . 46
3.4.2.1 Mechanism with Force Limiters on the Proximal Links . . . . . . 46
3.4.2.2 Mechanism with Force Limiters on the Distal Links . . . . . . . . 48

3.4.3 3.4.3 Simplified Analysis of the Force Capabilities . . . . . . . . . . . . . 48
3.4.3.1 Mechanism with Force Limiters on the Proximal Links . . . . . . 49
3.4.3.2 Mechanism with Force Limiters on the Distal Links . . . . . . . . 50

3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Dynamic Capabilities of the Tripteron and Quadrupteron Parallel Manip-
ulators 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Architecture and Kinematics of the Manipulators . . . . . . . . . . . . . . . . . 56

4.2.1 4.2.1 Tripteron Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 4.2.2 Quadrupteron Manipulator . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Approximate Dynamic Models and Force Analysis . . . . . . . . . . . . . . . . 60
4.3.1 4.3.1 Tripteron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 4.3.2 Quadrupteron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2.1 Lagrange Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2.2 Newton-Euler Approach . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2.3 Compact Dynamic Model . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Force Capability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 4.4.1 Tripteron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 4.4.2 Quadrupteron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusions 71

Bibliography 73

viii



List of Figures

1.1 Parallel structure used for entertainment (from US Patent No. 1789680). . . . . . . 2
1.2 Parallel structure proposed by Pollard (from US Patent No. 2213108). . . . . . . . 2
1.3 Gough platform (from [2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Stewart platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Schematic of the Delta robot (from US patent No. 4976582). . . . . . . . . . . . . 5
1.6 Applications of Delta mechanism: (a) Demaurex’s Line-Placer installation for the

packaging of pretzels in an industrial bakery (courtesy of Demaurex), (b) SurgiS-
cope in action at the Surgical Robotics Lab, Humboldt-University at Berlin (cour-
tesy of Prof. Dr. Tim C. Lueth), (c) Hitachi Seiki’s Delta robots for pick-and-place
and drilling (courtesy of Hitachi Seiki). . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 The agile eye (from [8]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 The 3-DOF spherical haptic device, SHaDe (from [9]). . . . . . . . . . . . . . . . . 7
1.9 MasterFinger-2: (a) Two-figure haptic device, (b) User inserts the index or thunb

in the timble (from [10]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 PreXYT: a planar 3-DOF parallel robot (from [12]). . . . . . . . . . . . . . . . . . 8
1.11 Translational 3-DOF micro-parallel mechanisms (from [13]). . . . . . . . . . . . . . 9
1.12 Schematic of a 3-DOF microparallel manipulator (from [15]). . . . . . . . . . . . . 9
1.13 Two decoupled micromanipulators (from [16,17]). . . . . . . . . . . . . . . . . . . . 10
1.14 An XYZ micromanipulator with three translational degrees of freedom (from [19]). 11
1.15 Two nano-manipulators based on parallel mechanisms (from [20,21]). . . . . . . . 12

2.1 The two variants of the planar parallel mechanism. . . . . . . . . . . . . . . . . . . 21
2.2 The lines defined by the inequality associated with the ith torque limiter in the

Cartesian force space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Example of a force polygon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Fmax and µ for the symmetric mechanism with θ2 = θ5 = 0. . . . . . . . . . . . . 34
2.5 Force polygons of the non-symmetric mechanism with θ2 = θ5 = 0 and α = π

4 . . . 34
2.6 The force effectiveness of the non-symmetric mechanisms with different values of α. 35
2.7 Force polygons for the non-symmetric mechanism with θ2 = 3π

2 , θ5 = π
2 and α = π

4 . 36
2.8 The angle between the two pairs of the force boundary lines determined by Eqn. (2.28)

and Eqn. (2.29). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9 The force effectiveness for different values of α with the maximum torque as ||ji||

when θ1 = π
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Force effectiveness for different values of τi,max. . . . . . . . . . . . . . . . . . . . 37

3.1 The structure of the mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 The geometry of the mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



3.3 One kind of singularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Force polygons for different configurations. . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 The minimum force, the maximum force and the index µ as a function of θ2. . . . 53
3.6 The minimum force, the maximum force and the index µ as a function of s. . . . . 54

4.1 The tripteron: a 3-DOF translational parallel mechanism, taken from [93]. . . . . . 57
4.2 The quadrupteron: a 4-DOF Schönflies-motion parallel mechanism, taken from [93]. 59
4.3 Transfer of the inertia matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 The range of the external force for the x, y and z directions. . . . . . . . . . . . . . 68
4.5 Force boundaries for the quadrupteron. . . . . . . . . . . . . . . . . . . . . . . . . 69

x



Foreword

First, I want to thank my supervisor Dr. Clément Gosselin for his support and guidance. I
am very gratefull not only for all the great advise and stimulating discussions, but his broad-
mindedness and generous support on my research and my life. He has shown me a professional
standard which will always stay with me.

I would like to thank my thesis committee Dr. Marc Richard and Dr. Alain Curodeau for
their precious time and support.

I would like to acknowledge all the members of the Robotics Laboratory for their help and
camaraderie.

Finally and most specially, my gratitude also belongs to my wife, Hanwei Liu. She has given
me her love and support throughout my graduate studies. And together with her, I look
forward to whatever the future may bring.

xi





Chapter 1

Introduction

Some of the parallel mechanisms that have been developed in the last several decades are
briefly described in this chapter. The research methodology regarding the force capability
analysis and the dynamic analysis are also introduced briefly. The literature review on force
capabilities and dynamic analysis for parallel mechanisms is presented in the following. In the
end, the main contributions of this thesis are introduced.
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Figure 1.1: Parallel structure used for entertainment (from US Patent No. 1789680).

Figure 1.2: Parallel structure proposed by Pollard (from US Patent No. 2213108).

1.1 Parallel Mechanisms

1.1.1 1.1.1 Development of Parallel Mechanisms

The first theoretical works on mechanical parallel structures appeared a long time ago, even
before the notion of robot. It can be said that the first parallel mechanism (shown in Fig. 1.1)
was patented in 1931 (US Patent No. 1789680) and was designed by James E. Gwinnett
(Gwinnett 1931). In 1940 Willard Pollard presented a robot with 5 degrees of freedom ded-
icated to painting tasks (US Patent No. 2213108). The robot was composed of three legs
of two links each. The three actuators of the base drive the position of the tool (shown in
Fig. 1.2).

More significant parallel mechanisms have been achieved since then. In 1947, Gough estab-
lished the basic principles of a mechanism with a closed-loop kinematic structure (shown in
Fig. 1.3), that allows the positioning and the orientation of a moving platform so as to test
tire wear and tear [1, 2]. In 1965, Stewart described a movement platform with 6 degrees of
freedom (shown in Fig. 1.4) designed to be used as a flight simulator. Contrary to the gen-
eral belief, the Stewart mechanism is different from the one previously presented by Gough.

2



Figure 1.3: Gough platform (from [2]).

The work presented by Stewart has had a great influence in the academic world, and it is
considered one of the first works of analysis of parallel structures [3].

Over the last three decades, parallel mechanisms evolved from rather marginal machines to
widely used mechanical architectures. Current applications of parallel mechanisms include
motion simulators, industrial robots, nano-manipulators and micro-manipulators, to name
only a few.

1.1.2 1.1.2 Definition of a Parallel Mechanism

The definition of a general parallel manipulator is a closed-loop kinematic chain mechanism
whose end-effector is linked to the base by several independent kinematic chains [4]. This type
of mechanism is interesting for the following reasons:
– a minimum of two chains allow us to distribute the load on the chains;
– the number of sensors necessary for the closed-loop control of the mechanism is minimal;
– when the actuators are locked, the manipulator remains in its pose. This is an important

3



Figure 1.4: Stewart platform.

safety aspect for certain applications, such as medical robotics.
Correspondingly, parallel robots can be defined as:

A parallel robot is made up of an end-effector with n degrees of freedom, and
of a fixed base, linked together by at least two independent kinematic chains.
Actuation takes place through n simple actuators [4].

1.1.3 1.1.3 Characteristics and Applications

In comparison with serial mechanisms, properly designed parallel mechanisms generally have
higher stiffness and higher accuracy, although their workspace is usually smaller (except for
cable-driven parallel mechanisms). The variety of applications in which parallel mechanisms
are used is constantly expanding.

One of the most successful parallel robot designs is Delta parallel robot. In the early 80’s,
Professor Reymond Clavel came up with the idea of using parallelograms to build a parallel
robot with three translational and one rotational degree of freedom (schematically shown in
Fig. 1.5). During the last decades, Delta robots have been used for packaging, aiding surgery
and industry product (Fig. 1.6) [5].

Also, there are many other applications for different parallel mechanisms. There are parallel
mechanisms used for camera orienting devices, haptic devices [6] and alignment devices. The
agile eye [7, 8](Fig. 1.7) developed in the robotics laboratory of Laval University is based on
a spherical 3-DOF parallel manipulator. It is capable of an orientation workspace larger than
that of the human eye and it can be used as a high performance camera-orienting device. The
haptic device SHaDe [9] which was also developed based on the spherical parallel mechanism is

4



Figure 1.5: Schematic of the Delta robot (from US patent No. 4976582).

shown in Fig. 1.8. The general spherical kinematics lead to an optimal design, well-conditioned
and without singularities in a large workspace. The two figure haptic device MasterFinger-
2 [10] (Fig. 1.9) can be used for capturing one massage technique and one joint manipulation
technique, and also for simulating this manipulation technique that can be used in both
assessment and treatment of the hand. The PreXYT [11, 12] (Fig. 1.10) is both partially
decoupled, rigid in all directions, and having a relatively large workspace, and proposes a
geometric procedure for the kinematic calibration of the robot. It is one of the best candidates
for alignment.

In order to meet the needs for the development of nanotechnology and microsystem or micro-
electromechanical systems, nano-manipulators and micro-manipulators were developed based
on parallel mechanisms. The finger module mechanism for micromanipulation is proposed
in [13, 14]. The 3DOF parallel mechanisms (Fig. 1.11) can succeed in performing basic mi-
cro manipulations, including the grasp and release. And a planar three-degree-of-freedom
parallel-type micropositioning mechanism, schematically shown in Fig. 1.12, is designed with
the intention of accurate flexure hinge modeling [15], the design has mobility six and exhibits
good position accuracy. Li and Xu proposed a totally decoupled flexure-based XY parallel
micromanipulator and a nearly decoupled XYZ translational compliant parallel micromanipu-
lator in [16–18] as shown in Fig. 1.13. In [19], many XYZ micromanipulators (Fig. 1.14) have
been fabricated and tested successfully using two surface micromachining processes and found
to achieve out-of-plane displacement with three linear inputs while maintaining a horizontal
position of the platform throughout its motion. Culpepper [20] proposed a low-cost nano-
manipulator which uses a six-axis compliant mechanism which is driven by electromagnetic
actuators (Fig. 1.15(a)) and a pure spatial translational nanomanipulator is also introduced
in [21,22].
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(a) (b)

(c)

Figure 1.6: Applications of Delta mechanism: (a) Demaurex’s Line-Placer installation for the
packaging of pretzels in an industrial bakery (courtesy of Demaurex), (b) SurgiScope in action
at the Surgical Robotics Lab, Humboldt-University at Berlin (courtesy of Prof. Dr. Tim C.
Lueth), (c) Hitachi Seiki’s Delta robots for pick-and-place and drilling (courtesy of Hitachi
Seiki).
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(a) Prototype (b) CAD model

Figure 1.7: The agile eye (from [8]).

(a) Prototype of SHaDe (b) CAD model of SHaDe

Figure 1.8: The 3-DOF spherical haptic device, SHaDe (from [9]).
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(a) (b)

Figure 1.9: MasterFinger-2: (a) Two-figure haptic device, (b) User inserts the index or thunb
in the timble (from [10]).

(a) Experimental setup (b) Schematic diagram

Figure 1.10: PreXYT: a planar 3-DOF parallel robot (from [12]).
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Figure 1.11: Translational 3-DOF micro-parallel mechanisms (from [13]).

Figure 1.12: Schematic of a 3-DOF microparallel manipulator (from [15]).

1.2 Force Capabilities Analysis for Parallel Mechanisms

The analysis for the relations existing between the articular forces or torques of the robot and
the wrench (constituted of the force and the torque) that is applied on the end-effector is called
static analysis. The wrench that may be applied on the platform when the articular forces
are bounded and the extrema of the articular forces when the wrench applied on the robot is
bounded should be analyzed. This is particularly important in the context of the development
of human-friendly robots in which the external forces should be limited mechanically, for safety
reasons.
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(a) Symmetric XY TDPS with displacement amplifier

(b) CAD model of the compliant parallel mechanism

Figure 1.13: Two decoupled micromanipulators (from [16,17]).
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(a) A rendering of the XYZ micromanipulator in a raised position

(b) Schematic of top view for offset three degree of freedom
XYZ micromanipulator

Figure 1.14: An XYZ micromanipulator with three translational degrees of freedom (from [19]).

1.2.1 1.2.1 Relations Between Generalized and Articular Forces/Torques

The fundamental relation between the articular and the end-effector forces/torques, which is
valid for serial manipulators as well as for parallel manipulations, is the following:

τ = JTF

where τ is the vector of the articular forces, F is the vector of the generalized end-effector or
Cartesian forces and J is the kinematic Jacobian matrix. From this relation we get

F = J−Tτ

Being given the pose of the moving platform and the articular forces, we may calculate the
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(a) Prototype in [20] (b) Prototype in [21]

Figure 1.15: Two nano-manipulators based on parallel mechanisms (from [20,21]).

inverse kinematic Jacobian matrix, therefore allowing us to determine the wrench that acts
on the moving platform.

When designing a parallel robot, it is quite common to know the wrench that will be applied
on the moving platform. It will therefore be useful to calculate the extremal values of the
articular forces in order to choose the linear actuators and passive joints. On the other hand
we may have limited possibilities for the actuators and passive joints, which determine the
maximal value of the articular forces, and may want to calculate what will be the corresponding
maximal Cartesian forces.

The simple relation existing between the Cartesian forces and the articular forces enticed
numerous researchers to use parallel structures as force sensors. For example, a general robot
with segments that are submitted almost only to traction-compression stresses will require
only a force cell in each link to get the measurement of the articular forces. Then, we may
calculate the Cartesian forces acting on the moving platform with the help of the inverse
Jacobian matrix. This principle was suggested as early as 1979 by Jones [23], and later by
Berthomieu [24], and is now widely used.

The stiffness of a manipulator has many consequences for its control since it conditions its
bandwidth. For serial manipulators, the bandwidth is low, only reaching a few Hz at best.
The stiffness of a parallel robot may be evaluated by using an elastic model for the variations
of the articular variables as functions of the forces that are applied on the end-effector. In this
model the change ∆Θ in the articular variable Θ when an articular force τ is applied at the
joints is

∆τ = K∆Θ (1.1)

where K is the diagonal elastic stiffness matrix of the joints. However, we have

∆Θ = J−1∆X, (1.2)
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where ∆X is the small Cartesian displacement corresponding to ∆Θ. Also, from the above,
one has

∆F = J−T∆τ , (1.3)

Substituting Eqn. (1.1) and Eqn. (1.2) into Eqn. (1.3) leads to

∆F = J−TKJ−1∆X. (1.4)

The Cartesian stiffness matrix Kc and the Cartesian compliance matrix Cc are therefore

Kc = J−TKJ−1, Cc = JK−1JT . (1.5)

1.2.2 1.2.2 Literature Review on the Static Force Capabilities Analysis

The force or the wrench capabilities analysis are essential for the design and performance
evaluation of parallel manipulators. For a given pose, the end-effector is required to move
with a desired force and to sustain a specified wrench. Thus, the information of the joint
velocities and joint torques that will produce such conditions could be investigated. These
studies are referred to as the inverse velocity and static force problems. An extended problem
can be formulated as the analysis of the maximum force or wrench that the end-effector can
apply in the force or wrench spaces.

A methodology of using scaling factors to determine the force capabilities of non-redundantly
and redundantly-actuated parallel manipulators is presented in [25]. The optimization-based
solution generated larger maximum applicable force magnitudes for redundantly-actuated par-
allel manipulator in comparison to the force magnitudes provided by the pseudo-inverse solu-
tion. Using this method, the force-moment capabilities of redundantly-actuated planar parallel
manipulator architectures are investigated in [26]. One approach using screw theory for a 3-
RPS parallel mechanism is proposed in [27]. It is able to markedly reduce the number of
unknowns and even make the number of simultaneous equations to solve not more than six
each time, which may be called force decoupling. With this approach, first the main-pair
reactions need to be solved, then, the active forces and constraint reactions of all other kine-
matic pairs can be simultaneously obtained by analyzing the equilibrium of each body one by
one. The static force capabilities of the proposed 2SPS+PRRPR parallel manipulator with
3-leg 5-DOF is analyzed in [28]. The R, P, S are used to denote a revolute joint, a prismatic
joint and a spherical joint. And the underline means that the joint is an actuated joint. The
wrench capabilities of redundantly actuated parallel manipulators are studied in [29–31]. The
wrench polytope concept is presented and wrench performance indices are introduced for pla-
nar parallel manipulators in [29]. The concept of wrench capabilities is extended to redundant
manipulators and the wrench workspace of different planar parallel manipulators is analyzed
in [30]. Wrench capabilities represent the maximum forces and moments that can be applied
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or sustained by the manipulator. In [29,30], the wrench capabilities of planar parallel manip-
ulators are determined by a linear mapping of the actuator output capabilities from the joint
space to the task space. The analysis is based upon properly adjusting the actuator outputs to
their extreme capabilities. The linear mapping results in a wrench polytope. It is shown that
for non-redundant planar parallel manipulators, one actuator output capability constrains the
maximum wrench that can be applied with a plane in the wrench space yielding a facet of the
polytope. Two methods, namely, a numerical, optimization-based scaling factor method and
an analytical method, have been proposed for determining the wrench capabilities of redun-
dant actuated planar parallel manipulators. In [31], the methods are extended to redundant
6-DOF spatial manipulators. The results show that the analytical method is more efficient in
determining maximum wrench capabilities than the scaling factor method.

In order to have an overall insight about the force capabilities of the mechanisms, the stiffness
and the natural frequencies of the manipulators can be investigated [32]. Many different
methodologies [33, 34] have been used to obtain the stiffness matrix which relates an applied
external wrench to the displacements it produces:
– Jacobian matrix-based methods — [35] analyzes the stiffness of the parallel mechanisms

considering only the stiffness of the actuators, while passive joints and links are assumed
to be rigid. The Jacobian matrix is used to calculate a stiffness matrix and the analysis
is carried out for the entire workspace. In [36, 37], this Jacobian-based method has been
extended, the stiffness of the actuators and the links are both taken into account.

– Matrix product method —The stiffness matrix can be produced with several matrices.
In [38, 39], a formulation is proposed as a combination of three characteristic matrices so
that both numerical and experimental evaluations can identify the entries of the stiffness
matrix of a given parallel manipulator.

– Structural or finite element method —In [40,41], structural matrices of the components are
built and assembled including joint stiffness, while in [42], a finite element software package
is used to model the links of a decoupled manipulator and stiffness is calculated using the
relationship between the tension and deformation.

– Analytical-experimental method —In [43], an analytical procedure combined with finite el-
ements is completed with experimental results to calculate the static stiffness of a 3T1R
manipulator and in [38], a tracking system is designed to measure experimental displace-
ments.
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1.3 Dynamic Capabilities Analysis for Parallel Mechanisms

1.3.1 1.3.1 Introduction of Dynamics

Dynamics plays an important role in the control of parallel robots for some applications like
flight simulators or pick-and-place operations involving fast manipulators. It is therefore nec-
essary to establish the dynamics relations for closed-loop mechanisms before we can establish
a control scheme for fast manipulators.

A classical method for establishing the dynamics equations for closed-loop mechanism was
suggested in various forms in [44–46]. For a mechanism containing N rigid bodies and L links,
the method consists in calculating the dynamics equations of a tree mechanism that is obtained
from the original mechanism by opening the loops at certain passive links so that the obtained
tree mechanism has as many independent loops B = L−N as the original mechanism.

Simplifying assumptions can also be used in order to obtain approximate dynamic models as
it will be done in this thesis.

1.3.2 1.3.2 Literature Review on the Dynamic Capabilities Analysis

Ordinarily, there are two problems of dynamic analysis of parallel mechanisms, namely the
inverse and forward dynamics. The former solves the actuation forces of actuators once the
trajectories are planned, while the latter deals with the output motion of the parallel mecha-
nisms when the actuation forces are given. The inverse dynamics can be used for the design of
a dynamics controller, whereas the forward dynamics can be adopted for dynamic simulation
of the parallel mechanisms which can also be conducted by resorting to effective dynamic
software packages such as ADAMS, DADS, and RecurDyn, etc. .

As far as the approaches to generate the parallel mechanisms’ dynamic model are concerned,
most traditional methods are used, such as Newton-Euler formulation, Lagrangian formulation,
virtual work principle, and some other methods. Many research works about the dynamic
analysis of parallel mechanisms are described in the following.

In [50], the dynamic model and the virtual reality simulation for two 3DOF medical parallel
robots are presented. A closed form dynamic model has been set up in the rigid link hypoth-
esis, and an evaluation model from the Matlab/SimMechanics environment was used for the
simulation. The dynamic performance comparison of the 8PSS redundant parallel manipula-
tor and the 6PSS parallel manipulator was presented in [49]. The dynamic models of the two
parallel manipulators have been formulated by means of the principle of virtual work and the
concept of link Jacobian matrices. The research shows that their kinematics characteristics
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are equivalent while the dynamic performance of the 8PSS redundant parallel manipulator is
better than that of the 6PSS parallel manipulator. In [48], the dynamic model of spherical 2-
DOF parallel manipulator with actuation redundancy was established by Lagrangian method,
and driving moment was optimized by force optimization method and energy consumption
optimization method. In [47], the dynamic model of the proposed asymmetric mechanism,
which was successfully obtained for both the lumped mass and distributed mass assumptions.
The simulation results showed that although the mechanism has a parallel architecture its
actuators influences are quite decoupled, according to its particular asymmetric configuration.
In [54], a double parallel manipulator has been designed by combining two parallel mecha-
nisms with a central axis for enlarging workspace and avoiding singularities. The motion of
the device is decoupled and constrained by the central axis. With virtual coefficient, a dy-
namic model is developed for the parallel mechanism possessing one passive and n-active link
trains to compute the wrenches acting at the passive joints as well as the active ones including
gravity and inertia loads.

In [52], dynamic finite element analysis of a fully parallel planar platform with flexible links has
been performed. The method [53] used leads to a set of linear ordinary differential equations of
motion. The effect of structure parameters on the dynamic characteristics of a planar PRRRP
parallel manipulator is studied in [55], the sensitivity model of the dynamic characteristic to
critical structure parameters is proposed. The thickness of column and leg, the radial stiffness
of bearing, and the lumped mass on the end-effector are determined based on the natural
frequency and sensitivity index. In [56], the dynamic performance of two 3-DOF parallel
manipulators, the HALF [57] and the HALF∗ [58], is compared and a new optimization method
for the counterweight masses is proposed for the development of a new hybrid machine tool.
The dynamic models of the manipulators are derived via the Lagrangian formulation and
the translational and rotational quantities are separated due to the unit inhomogeneity. The
proposed dynamic capability indices and counterweight optimization method provide insights
into the dynamic models and are very useful to improve the dynamic characteristics, and they
can be used for other manipulators, especially for those with both translation and rotation.
In [59], using the Lagrange-D’Alembert formulation, a simple and straightforward approach is
used to develop the dynamic models of closed-chain manipulators with normal or redundant
actuation. It showed the structural properties of the dynamic equations needed for applying
the vast control literature developed for serial manipulators. The dynamic modeling and
robust control for a three-prismatic-revolute-cylindrical(3-PRC) parallel kinematic machine
with translational motion have been investigated in [60]. By introducing a mass distribution
factor, the simplified dynamic equations have been derived via the virtual work principle and
validated on a virtual prototype with the ADAMS software package.
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1.4 Overview of the thesis

This thesis has five chapters. In Chapter 1, there are some introductions about parallel
mechanisms and review of some current research about parallel mechanisms. The research for
this program are mainly in two part. The first part is about the force capabilities analysis of
2-DOF parallel mechanisms which are equipped with torque limiters and force limiters, it is
described in Chapter 2 and Chapter 3. Chapter 4 considers the dynamic capabilities of the
tripteron and quadrupteron decoupled parallel manipulators. Then, the conclusions are stated
in Chapter 5. More details are given in the following.

In Chapter 1, the development of parallel mechanisms is introduced at first, then the definition
and characteristics the parallel mechanisms are given. The applications of parallel mechanisms
are mentioned. The force capabilities analysis and dynamic analysis for parallel mechanisms
are stated briefly. A literature review on the force capabilities analysis and dynamic analysis
for parallel mechanisms is also given in this chapter.

In Chapter 2, the force capabilities of the 2DOF parallel mechanisms equipped with torque
limiters are analyzed. First, the structure of the parallel mechanisms is described and the
kinematic equations are given. Then, the Jacobian matrices and the static force equation
are derived. Although the equations derived are conceptually simple, their component form
is rather cumbersome, which makes it difficult to gain useful insight. In order to make the
analysis more intuitive, two special designs of the robot are also studied more specifically and
the corresponding equations are developed. The force characteristics are analyzed based on
the force equations and a performance index referred to as the force effectiveness is proposed.
Finally, numerical simulation results for the different special 2DOF parallel mechanisms are
presented.

In Chapter 3, two force limiters take the place of the torque limiters of proximal links of
the mechanism described in Chapter 2. The two force limiters are mounted on the proximal
links on one mechanism, and the force limiters are on the distal links on another mechanism.
Two Passive torque limiters are mounted at the actuators of the robot. The structure of
the mechanisms are described at first. Then, the Jacobian matrices and the static force
equations are derived. The force characteristics are analyzed based on the force equations
and a performance index referred to as the force effectiveness is proposed. Finally, numerical
simulation results are presented.

In Chapter 4, the external force range of the end-effector for the tripteron and quadrupteron
manipulators are found for the given actuating force limit. First, the architecture and kine-
matics of the tripteron and the quadrupteron are briefly recalled. Then, an approximate
dynamic model is obtained based on the Newton-Euler approach, Lagrange equations and the
compact dynamic models obtained in [93]. The feasible external force of the end-effector for
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the tripteron and quadrupteron manipulators can be found based on these dynamic models.
At the end, certain numerical simulation results are given.

Finally, a summary of the results obtained in this thesis and some discussion as well as
directions on future research work are given in Chapter 5.
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Chapter 2

Force Capabilities of 2-DOF Parallel
Mechanisms Equipped with Torque
Limiters

In this chapter, the design of intrinsically safe planar 2-DOF parallel mechanisms is addressed.
Passive torque limiters are mounted at four points of the structure of the robot. The design
problem then consists in finding geometric parameters and maximum allowable torques at the
limiters that ensure a safe and effective behaviour of the robot throughout its workspace. The
structure of the two variants of the mechanism are described at first. Then, the Jacobian
matrices and the static force equation are derived. The force characteristics are analyzed
based on the force equations and a performance index referred to as the force effectiveness is
proposed. Finally, numerical simulation results are presented.
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2.1 Introduction

Collaborating with humans is becoming a major trend in both industrial and non-industrial
(such as service or medical) robotics [61–63]. Human safety is one of the most important
aspects to be considered for robots working in a human environment.

Different strategies can be used to build safe robots. One way is to develop control algorithms
that use sensors to anticipate and avoid potentially harmful contacts. In [64], a system using
many different sensors for automatically locating and tracking a human in the vicinity of a
robot is described. Another approach consists in developing a flexible robot skin for safe
physical human-robot interaction such as the concept developed in [65]. However, active
control has several disadvantages, which includes higher cost and lower reliability of the control
system and limited absorption capability of the initial collision force due to the response time
of a control system [66].

Safe robots can also be realized by detecting a collision with the monitoring of joint torques
and by maintaining the contact forces under a certain level. Safe robot arms can be achieved
by either a passive or active compliance system. Several types of compliant joints and flexible
links of manipulators have been proposed for safety, which can guarantee that the force within
the joint cannot exceed a given reference. One approach consists in using springs to realize
compliance [67–72]. Alternatively, a double actuator unit composed of two actuators and a
planetary gear train is proposed in [73]. In this concept, the torque exerted on the joint can
be estimated without the use of a torque or force sensor. A series clutch actuator based on
magnetorheological fluid is proposed in [74]. It allows a fast electrical change of the impedance
while maintaining good force tracking. However, in all these concepts, the safety features
remain dependent on the controller of the robot. Also, the performance and the safety level
are configuration dependent and require on-line adaptation [75].

In this context, there is a need for intrinsically mechanically safe robots [76, 77] whose safety
features are independent from the controller. In [78], a 2-DOF Cartesian Force Limiting Device
(CFLD) that can be installed between a suspended robot and its end effector is presented.
Such a device is completely passive and does not require controller actions. Similarly, a 3-DOF
CFLD using the Delta architecture which is sensitive to collisions occuring in any direction is
presented in [79].

In this chapter, the design of intrinsically safe planar 2-DOF parallel mechanisms is addressed.
Passive torque limiters are mounted at four points of the structure of the robot. The design
problem then consists in finding geometric parameters and maximum allowable torques at the
limiters that ensure a safe and effective behaviour of the robot throughout its workspace. The
structure of the two variants of the mechanism are described at first. Then, the Jacobian
matrices and the static force equations are derived. The force characteristics are analyzed
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Figure 2.1: The two variants of the planar parallel mechanism.

based on the force equations and a performance index referred to as the force effectiveness is
proposed. Finally, numerical simulation results are presented.

2.2 Description of the Mechanisms

The structure of each of the two planar parallel mechanisms analyzed in this chapter is shown
in Fig. 2.1. The only difference between the two mechanisms is that the non-symmetric
mechanism has a link DP rigidly attached on link DF where the constant angle between DP
and FD is defined as α, as shown in the figure. In both mechanisms, there are two actuators
located at joint A that independently drive links ABC and AEF respectively. Links ABC and
AEF are normally rigid. However, there are two torque limiters placed at points B and E.
When the torque at these joints exceeds a prescribed maximum value, the link will dislocate
and a message will be sent to the controller (collision or excessive force). Similarly, there are
also two torque limiters in series with the actuators at joint A. Finally, joints C, F and P (or
D for the non-symmetric mechanism) are free joints which are not actuated and which do not
have torque limiters. Globally, the mechanism has two degrees of freedom, two fixed actuators
located at A and four torque limiters (two limiters located at A and two others located at B
and E respectively). The torque limiters can be considered as rigid joints until the prescribed
maximum torque is exceeded, which corresponds to a fault situation.

In order to maximize the workspace of the robot, ACPF forms a parallelogram for the sym-
metric mechanism while ACDF is a parallelogram for the non-symmetric mechanism. Vector
ri, i = 1, . . . , 7 is defined as the vector connecting consecutive joints, as illustrated in Fig. 2.1.
Also, li is defined as the length of vector ri. One then has

r6 = r1 + r2, r3 = r4 + r5.
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For the symmetric mechanism, one has

r1 + r2 + r3 = p (2.1)

r4 + r5 + r6 = p (2.2)

while for the non-symmetric mechanism, one has

r1 + r2 + r3 + r7 = p (2.3)

r4 + r5 + r6 + r7 = p (2.4)

where p is the position vector of the end-effector point P with respect to the base (point A)
of the mechanism.

2.3 Jacobian Matrices and Force Equations

2.3.1 2.3.1 General Jacobian Matrices

The objective of the force analysis is to determine the relationship between the Cartesian force
capabilities at the end-effector (point P ) and the joint torques at the torque limiters located
at points A, B and E, in order to be able to assess the safety features of the robot. Therefore,
in the analysis presented here, it is assumed that joints B and E are moveable ‘actuated’
joints so that the torque at these joints can then be obtained through the application of the
principle of virtual work.

First, Eqn. (2.3) is solved for vector r3 and its magnitude is taken, leading to

rT3 r3 = (p− r7 − r1 − r2)
T (p− r7 − r1 − r2) = l23. (2.5)

Derivating Eqn. (2.5) with respect to time and collecting terms, one has

rT3 ṗ = (p− r2 − r7)
T ṙ1 + (p− r1 − r7)

T ṙ2 + (p− r1 − r2)
T ṙ7,

where ṙ1 = θ̇1Er1, ṙ2 = (θ̇1 + θ̇2)Er2, ṙ4 = θ̇4Er4, ṙ5 = (θ̇4 + θ̇5)Er5, and θi, i = 1, 2, 4, 5, are
the joint coordinates of the corresponding joints and

E =

[
0 −1

1 0

]
.

A similar equation can be obtained based on Eqn. (2.4).

Since AC is parallel to FD in the non-symmetric mechanism, then the vector for link DP is
r7 = l7[cos θ7, sin θ7]

T where

θ7 = arctan

[
l1 sin θ1 + l2 sin(θ1 + θ2)

l1 cos θ1 + l2 cos(θ1 + θ2)

]
− α.
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Therefore, the velocity of link 7 is readily computed as a fonction of the joint velocity of joints
1 and 2, namely

ṙ7 =
(ṙ1 + ṙ2)

TE(r1 + r2)

(r1 + r2)T (r1 + r2)
Er7 = θ̇1Er7 +

θ̇2r
T
2 (r1 + r2)

(r1 + r2)T (r1 + r2)
Er7.

Based on the above derivations, the Jacobian matrices can then be constructed. The matrices
are first defined as

Aṗ = Bθ̇ (2.6)

where θ = [θ1, θ2, θ4, θ5]
T and where A is a 2 × 2 matrix while B is a 2 × 4 matrix. The

Jacobian matrices are written as

A =

[
rT3
rT6

]
, B =

[
b1 b2 b3 b4

]
,

with

b1 =

[
(p− r2 − r7)

TEr1 + (p− r1 − r7)
TEr2 + z

(p− r4 − r5)
TEr7

]
,

b2 =

 (p− r1 − r7)
TEr2 +

rT2 (r1+r2)z

(r1+r2)T (r1+r2)
rT2 (r1+r2)

(r1+r2)T (r1+r2)
(p− r4 − r5)

TEr7

 ,
b3 =

[
0

(p− r5 − r7)
TEr4 + (p− r4 − r7)

TEr5

]
,

b4 =

[
0

(p− r4 − r7)
TEr5

]
,

where
z = (p− r1 − r2)

TEr7. (2.7)

The Jacobian matrix B of the symmetric mechanism is readily obtained by setting r7 to zero
in the above equations.

The principle of virtual work is now applied in order to obtain the static equations. The
virtual input power at the actuators is equal to the virtual output power at the end-effector,
i.e.,

FT ṗ = τT θ̇ (2.8)

where F = F [cosφ, sinφ]T is the external force at the end-effector and τ = [τ1, τ2, τ3, τ4]
T

is the generalized joint torque vector for the actuators and the torque limiters.

Based on Eqn. (2.6), the velocity of the end-effector can be expressed as

ṗ = A−1Bθ̇ (2.9)
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Substituting Eqn. (2.9) into Eqn. (2.8) and noting that the equation obtained must be valid
for any vector θ̇, the force equation can be found as

τ = JTF, (2.10)

where JT = BTA−T is a 4× 2 matrix that maps the Cartesian forces F into the joint torques
τ .

Note that A−1 can be written as

A−1 =
1

rT3 Er6

[
Er6 −Er3

]
(2.11)

hence

A−T =
1

rT3 Er6

[
−rT6 E
rT3 E

]
. (2.12)

2.3.2 2.3.2 Simplified Analysis and Special Cases

Referring to the architecture of the robots shown in Fig. 2.1, it can be observed that, since
both actuators are located at point A, a rotation of both actuators of a same given angle
does not change the force properties of the robot. Indeed, rotating the two input joints by
a same angle is equivalent to rotating the base frame of the robot. Therefore, the properties
of the Jacobian matrix of the robot — and hence its force capabilities — remain unchanged.
As a consequence, in order to analyze the force capabilities of the mechanisms, it suffices to
consider a one-dimensional workspace obtained with the following constraint: θ4 = −θ1. In
other words, the joint connecting links 3 and 6 is moved radially from point A to the maximum
extension of the robot. Moreover, the equations are further simplified by defining the x axis
of the fixed frame in the radial direction along which the end-effector is moved.

Although the equations derived in the preceding section are conceptually simple, their com-
ponent form is rather cumbersome, which makes it difficult to gain useful insight. In order
to make the analysis more intuitive, two special designs of the robot are also studied more
specifically and the corresponding equations are now developed.
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2.3.2.1 Special case 1: points ABC aligned and points AEF aligned

In this case, one has θ2 = θ5 = 0 and it is assumed that l1 = l2 = l3 = l4 = l and l3 = l6 = 2l.
Therefore one can write

r1 = r2 =

[
l cos θ1

l sin θ1

]
, r3 =

[
2l cos θ1

−2l sin θ1

]
,

r4 = r5 =

[
l cos θ1

−l sin θ1

]
, r6 =

[
2l cos θ1

2l sin θ1

]
,

r7 =

[
l7 cos(ψ − α)

l7 sin(ψ − α)

]
=

[
l7 cos(θ1 − α)

l7 sin(θ1 − α)

]
,

and the Jacobian matrices simplify to

A =

[
rT3
rT6

]
=

[
2l cos θ1 −2l sin θ1

2l cos θ1 2l sin θ1

]
,

B =
[
b1 b2 b3 b4

]
,

and

b1 =

[
−4l2 sin 2θ1 − 2ll7 sin(2θ1 − α)

2ll7 sinα

]
,

b2 =

[
−2l2 sin 2θ1 − ll7 sin(2θ1 − α)

ll7 sinα

]
,

b3 =

[
0

2l2 sin 2θ1

]
, b4 =

[
0

l2 sin 2θ1

]
.

2.3.2.2 Special case 2: points ABC and points AEF respectively form a right
angle

In this case one has θ2 = 3π
2 and θ5 = π

2 , and it is assumed that l1 = l2 = l3 = l4 = l and
l3 = l6 =

√
2l. Then one has

r1 =

[
l cos θ1

l sin θ1

]
, r2 =

[
l sin θ1

−l cos θ1

]
, r3 =

[ √
2l sin(θ1 + π

4 )√
2l cos(θ1 + π

4 )

]
,

r4 =

[
l cos θ1

−l sin θ1

]
, r5 =

[
l sin θ1

l cos θ1

]
, r6 =

[ √
2l sin(θ1 + π

4 )

−
√

2l cos(θ1 + π
4 )

]
,

r7 =

[
l7 cos(ψ − α)

l7 sin(ψ − α)

]
=

[
l7 cos(θ1 − α− π

4 )

l7 sin(θ1 − α− π
4 )

]
,
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and the Jacobian matrices can be written as

A =

[
rT3
rT6

]
=

[ √
2l sin(θ1 + π

4 )
√

2l cos(θ1 + π
4 )√

2l sin(θ1 + π
4 ) −

√
2l cos(θ1 + π

4 )

]
,

B =
[
b1 b2 b3 b4

]
,

and

b1 =

[
2l2 cos 2θ1 +

√
2ll7 cos(2θ1 − α)√

2ll7 sinα

]
,

b2 =

[ √
2l2 sin(2θ1 + π

4 ) +
√
2
2 ll7 cos(2θ1 − α)

√
2
2 ll7 sinα

]
,

b3 =

[
0

−2l2 cos 2θ1

]
, b4 =

[
0

−
√

2l2 sin(2θ1 + π
4 )

]
.

2.4 Analysis of the Force Capabilities

The analysis of the force capabilities is based on the assumption that the mechanism is working
in a static or quasi-static mode. Additionally, it is assumed that the mechanism is operating
in a horizontal plane and hence gravity is not considered. Assuming that the limit torque of
the ith joint is τi,max, then the following inequality should be satisfied

− τi,max ≤ τi ≤ τi,max. (2.13)

Hence, the external static force F = Fe = F [cosφ, sinφ]T that can be applied at the end-
effector must satisfy the following relationship

− τi,max
F

≤ jTi e ≤
τi,max
F

. (2.14)

where ji is the ith column of matrix J. Letting ji = [jix, jiy]
T , inequality (2.14) can be written

as
− τi,max

F
≤ Si sin(φ− ϕi) ≤

τi,max
F

(2.15)

where Si = ||ji|| =
√
j2ix + j2iy and ϕi = arctan(− jix

jiy
).

Based on inequality (2.15), the two boundary lines in the Cartesian force space (shown in
Fig. 2.2) can be found. The inequality reaches the extreme values when

sin(φ− ϕi) = ±1.

And the extreme value should satisfy

τi,max
SiF

= 1.
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Figure 2.2: The lines defined by the inequality associated with the ith torque limiter in the
Cartesian force space.

Then, the angle giving the direction of the boundary lines in the force space is

φi = ϕi ±
π

2
,

and the slope of the boundary lines is − cotφi, the equation for the boundary line can be
written as

fy =
jiy
jix
fx + b (2.16)

where b is the intercept which can be found with a given point on the boundary line. The line
which passes through the origin of the force plane and which is perpendicular to the boundary
lines can be expressed as

fy = tanϕifx.

The distance between the origin and the intersection point of this line with the force boundary
line can be written as √

f2y + f2x =
√

tan2 ϕif2x + f2x = F =
τi,max
Si

,

The intersection points can be found as
[
± τi,max

Si
cosϕi, ± τi,max

Si
sinϕi

]
. Substituting them

into Eqn. (2.16), the intercept can be obtained and the two boundary lines defined by inequal-
ity (2.15) are

fy =
jiy
jix
fx ±

τi,max
jix

. (2.17)

With the force boundary lines determined by the actuators and the torque limiters, the force
polygons in the Cartesian force space can be found. Similarly to what was done in [75], the
maximum force that can be applied in any direction at the end-effector while guaranteeing that
no torque limit is exceeded is defined as Fmin (maximum isotropic force) while the maximum
force that can be applied by the mechanism, noted Fmax, can be obtained based on the force
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Figure 2.3: Example of a force polygon.

polygons. Then, the performance-to-safety index, referred to as the force effectiveness, is
proposed as

µ =
Fmin
Fmax

. (2.18)

In order to give an example, a force polygon is shown in Fig. 2.3. There are three paires of
force boundary lines which are illustrated with the solid lines, dashed lines and dash point
lines. A hexagon force polygon is determined by the six lines. The maximum value of the
distances between the centre to the vertics of the force polygon is Fmax. The redius of the
hexagon inscribed circle is Fmin, which is the maximum force that can be applied in any
direction at the end-effector.

2.4.1 2.4.1 Symmetric Mechanisms

For the symmetric mechanism, when θ2 = θ5 = 0, the Jacobian matrix J can be written as

Js,0 = A−1B =

[
−2l sin θ1 −l sin θ1 2l sin θ1 l sin θ1

2l cos θ1 l cos θ1 2l cos θ1 l cos θ1

]
.

while when θ2 = 3π
2 and θ5 = π

2 , the Jacobian matrix is written as

Js,π =

[
l(cos θ1 − sin θ1)

l(cos 2θ1+sin 2θ1)
2(cos θ1+sin θ1)

l(sin θ1 − cos θ1) − l(cos 2θ1+sin 2θ1)
2(cos θ1+sin θ1)

l(cos θ1 + sin θ1)
l(cos 2θ1+sin 2θ1)
2(cos θ1−sin θ1) l(cos θ1 + sin θ1)

l(cos 2θ1+sin 2θ1)
2(cos θ1−sin θ1)

]
.

It can be readily observed that for these two Jacobian matrices, one has

j1y
j1x

=
j2y
j2x

= −j3y
j3x

= −j4y
j4x

. (2.19)

These relationships are satisfied for any values of the angles ABC and AEF . Indeed, the
Jacobian matrices A and B for the symmetric mechanisms can always be written in the
following form

As =

[
r3x r3y

r3x −r3y

]
, Bs =

[
b1 b2 0 0

0 0 b3 b4

]
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and then, the Jacobian matrix J is written as

Js =
1

−2r3xr3y

[
−r3yb1 −r3yb2 −r3yb3 −r3yb4
−r3xb1 −r3xb2 r3xb3 r3xb4

]
. (2.20)

It can be noted that the relationships shown in Eqn. (2.19) are always satisfied for the Jacobian
matrix Js. This means that the force polygons in the Cartesian force space are composed of
two groups of four parallel lines, for all configurations of the symmetric parallel mechanisms.
On one hand, this situation simplifies the analysis. On the other hand, it reduces the ability of
the mechanism to produce well balanced force polygons since the force polygons always have
only four edges.

The maximum external force that can be applied from all directions is

Fmin = min

([
τi,max
||ji||

])
, i = 1, 2, 3, 4. (2.21)

Considering the structure of the two symmetric mechanisms, the range of values of θ1 that
should be considered are different. For the symmetric mechanism for which θ2 = θ5 = 0, if
the maximum torque of the torque limiters are τ1,max = 2τ2,max = τ3,max = 2τ4,max = 2τmax,
the maximum force is

Fmax =


τmax
l sin θ1

, when θ1 ∈ (0,
π

4
],

τmax
l cos θ1

, when θ1 ∈ [
π

4
,
π

2
).

(2.22)

and Fmin = τmax
l . The force effectiveness can then be written as

µ =
Fmin
Fmax

=

 sin θ1, when θ1 ∈ (0,
π

4
],

cos θ1, when θ1 ∈ [
π

4
,
π

2
).

(2.23)

For the symmetric mechanism with θ2 = 3π
2 and θ5 = π

2 , if τ1,max = τ3,max and τ2,max = τ4,max,
then one has

Fmin = min

([
τ1,max√

2l
,

2 cos2(2θ1)τ2,max
(sin 4θ1 + 1)l

])
. (2.24)

and

Fmax =



min

(
τ1,max

l(sin θ1 + cos θ1)
,

∣∣∣∣(cos θ1 − sin θ1)τ2,max
l(cos 2θ1 + sin 2θ1)

∣∣∣∣) ,
when θ1 ∈ (

π

4
,
π

2
],

min

(
τ1,max

l(sin θ1 − cos θ1)
, −(cos θ1 + sin θ1)τ2,max

l(cos 2θ1 + sin 2θ1)

)
,

when θ1 ∈ [
π

2
,
3π

4
).

(2.25)
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2.4.2 2.4.2 Non-Symmetric Mechanisms

The case for which α = 0 is first considered. Suppose l1 = l4, l2 = l5, θ4 = −θ1 and
θ5 = 2π − θ2, the Jacobian matrix J for such mechanisms can be found as

Jn,0 =
[
j1,n,0 j2,n,0 j3,n,0 j4,n,0

]
, (2.26)

where

j1,n,0 =

 [sin θ1 + sin(θ1 + θ2)]
[
−l − 2l7

1√
2+2 cos θ2

]
[cos θ1 + cos(θ1 + θ2)]

[
−l − 2l7

1√
2+2 cos θ2

]  ,
j2,n,0 =

[
1

cos θ1+cos(θ1+θ2)
dj2

1
sin θ1+sin(θ1+θ2)

dj2

]
,

j3,n,0 =

[
l[sin θ1 + sin(θ1 + θ2)]

−l[cos θ1 + cos(θ1 + θ2)]

]
,

j4,n,0 =

[
l

cos θ1+cos(θ1+θ2)
[sin(2θ1 + θ2) + sin(2θ1 + 2θ2)]

−l
sin θ1+sin(θ1+θ2)

[sin(2θ1 + θ2) + sin(2θ1 + 2θ2)]

]
,

and

dj2 = −l[sin θ1 + sin(θ1 + θ2)]−
1

2
l7

sin 2θ1 + sin(2θ1 + 2θ2) + 2 sin(2θ1 + θ2)√
2 + 2 cos θ2

.

It can be observed that the relationships shown in Eqn. (2.19) are satisfied for this mechanism.
That is to say, the force polygons for the non-symmetric mechanisms with α = 0 are always
composed of two groups of four parallel lines, like in the case of the symmetric mechanisms.

Next, the case for which α 6= 0 is considered. Two situations are investigated, namely θ2 =

θ5 = 0 or θ2 = 3π
2 and θ5 = π

2 .

When θ2 = θ5 = 0, assuming that l1 = l2 = l4 = l5 = l and l3 = l6 = 2l, the Jacobian matrix
J can be found as

Jα,0 = Js,0 +

[
−l7 sin(θ1 − α) −1

2 l7 sin(θ1 − α) 0 0

l7 cos(θ1 − α) 1
2 l7 cos(θ1 − α) 0 0

]

It can be seen that

j1x,α,0
j1y,α,0

=
j2x,α,0
j2y,α,0

,
j3x,α,0
j3y,α,0

=
j4x,α,0
j4y,α,0

,
j1x,α,0
j1y,α,0

6= j3x,α,0
j3y,α,0

.

Hence, the force polygon formed by the force boundary lines determined by this Jacobian
matrix is a parallelogram with four edges but not necessarily a diamond shaped polygon like
in the previous cases.
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If τ1,max = 2τ2,max and τ3,max = 2τ4,max, there are four force boundary lines, given by

fy =
2l cos θ1 + l7 cos(θ1 − α)

−2l sin θ1 − l7 sin(θ1 − α)
fx ±

τ1,max
2l sin θ1 + l7 sin(θ1 − α)

,

fy = cot θ1fx ±
τ3,max

2l sin θ1
.

and Fmin can be found as

Fmin = min

[
τ1,max√

4l2 + l27 + 4ll7 cosα
,

τ3,max
2l

]
. (2.27)

The maximum force that can be applied at the end-effector is obtained by computing the
intersection of all the lines associated with the torque limiters and determining the intersection
point that is the furthest from the origin while satisfying all torque limit constraints.

When θ2 = 3π
2 and θ5 = π

2 , assuming l1 = l2 = l4 = l5 = l and l3 = l6 =
√

2l, the Jacobian
matrix J can be found as

Jα,π = Js,π +

[
−l7 sin(θ1 − π

4α) −1
2 l7 sin(θ1 − π

4 − α) 0 0

l7 cos(θ1 − π
4 − α) 1

2 l7 cos(θ1 − π
4 − α) 0 0

]
Matrix Jα,π is such that only the following relationship is satisfied, namely

j3x,α,0
j3y,α,0

=
j4x,α,0
j4y,α,0

.

Therefore, there may be three pairs of parallel lines to form the force polygon, which may now
have more than four edges. The lines can be defined as

a1fx − b1fy = ±c1 (2.28)

a2fx − b2fy = ±c2 (2.29)

a3fx − b3fy = ±c3 (2.30)

where

a1 = l(cos θ1 + sin θ1) + l7 cos(θ1 −
π

4
− α),

b1 = l(cos θ1 − sin θ1)− l7 sin(θ1 −
π

4
− α), c1 = τ1,max,

a2 = l(cos θ1 + sin 3θ1) + l7 cos 2θ1 cos(θ1 −
π

4
− α),

b2 = l(cos 3θ1 + sin θ1)− l7 cos 2θ1 sin(θ1 −
π

4
− α),

c2 = 2 cos 2θ1τ2,max, a3 = cos θ1 + sin θ1, b3 = sin θ1 − cos θ1,

c3 = min

[∣∣∣τ3,max
l

∣∣∣ , ∣∣∣∣ −2τ4,max cos 2θ1
l(cos 2θ1 + sin 2θ1)

∣∣∣∣] .
The maximum external force that can be applied from all directions can be found with
Eqn. (2.21). The maximum applicable force can be found by calculating the intersection
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of all the lines associated with the torque limiters and determining the intersection point that
is the furthest from the origin while satisfying all torque limit constraints.

First, calculating the intersection points of Eqn. (2.28) and Eqn. (2.29),

f1 =

[
f1x

f1y

]
=

[
a1 −b1
a2 −b2

]−1 [
c1

c2

]
,

f2 =

[
f2x

f2y

]
=

[
a1 −b1
a2 −b2

]−1 [
−c1
c2

]
,

f3 =

[
f3x

f3y

]
=

[
a1 −b1
a2 −b2

]−1 [
−c1
−c2

]
,

f4 =

[
f4x

f4y

]
=

[
a1 −b1
a2 −b2

]−1 [
c1

−c2

]
.

Substituting the coordinates of these points into the third pair of equations,
– if (a3fxi − b3fyi − c3)(a3fxi − b3fyi + c3) < 0, it means that point fi is located between the

two lines, this point is one vertex of the force polygon;
– if (a3fxi − b3fyi − c3)(a3fxi − b3fyi + c3) = 0, it means that point fi is located at one of the

two lines, this point is one vertex of the force polygon;
– if (a3fxi − b3fyi − c3)(a3fxi − b3fyi + c3) > 0, it means that point fi is located at one side

of the two lines, this point is not one vertex of the force polygon;
We should select the points which are located between the two lines or at one of the two lines
as the vertices of the force polygon.

Similarly, we can find the intersection points of Eqn. (2.28) and Eqn. (2.30) which are located
between the lines determined by Eqn. (2.29) and the intersection points of Eqn. (2.29) and
lines determined by Eqn. (2.28).

After all the vertices of the force polygon vi have been found, the maximum isotropic force is
determined using

Fmax = max([||vi||]). (2.31)

The force effectiveness is given as

µ =
Fmin
Fmax

. (2.32)

There is an interesting configuration for such mechanisms. When θ1 = π
2 , Eqn. (2.28) and

Eqn. (2.29) can be modified as

fy = −
l + l7 cos(π4 − α)

l + l7 sin(π4 − α)
fx ±

τ1,max
l + l7 sin(π4 − α)

, (2.33)

fy = −
l + l7 cos(π4 − α)

l + l7 sin(π4 − α)
fx ±

2τ2,max
l + l7 sin(π4 − α)

. (2.34)
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Hence, the force boundary lines defined by the four torque limiters are two pairs of parallel
lines at the configuration of θ1 = π

2 when τ1,max = 2τ2,max.

The angle between the two pairs of the force boundary lines determined by joint 1 and 2 can
be found as

γ = arctan

[
l(cos θ1 + sin θ1) + l7 cos(θ1 − π

4 − α)

l(cos θ1 − sin θ1)− l7 sin(θ1 − π
4 − α)

]
− arctan

[
l(cos θ1 + sin 3θ1) + l7 cos 2θ1 cos(θ1 − π

4 − α)

l(cos 3θ1 + sin θ1)− l7 cos 2θ1 sin(θ1 − π
4 − α)

]
.

2.5 Numerical Examples

Numerical results are given in this section in order to provide insight on the use of the force
effectiveness index µ.

2.5.1 2.5.1 Symmetric Mechanisms

The link lengths of the mechanism are normalized as l = 1. For the mechanism with θ2 =

θ5 = 0, the maximum torques at the torque limiters are chosen as τmax = 1 and the maximum
isotropic force Fmin can be easily found as Fmin = 1. The maximum force Fmax and the force
effectiveness µ are plotted in Fig. 2.4.

It can be seen that the force effectiveness goes to 0 when the mechanism is in a singular
configuration (θ1 = 0 and θ1 = π

2 ). Since the force polygon is a diamond, the maximum value
of µ is

√
2
2 when the diamond is a square and it occurs at the configuration for which θ1 = π

4 .
This configuration is noted with a square point in Fig. 2.4(b).

Since the Jacobian matrices of all the symmetric mechanisms with different given θ2, θ5 and
the non-symmetric mechanisms with α = 0 satisfy the relationships shown in Eqn. (2.19), the
shape of the force effectiveness plots for these mechanisms are similar to that of Fig. 2.4(b),
possibly with a shift along the θ1 axis.

2.5.2 2.5.2 Non-Symmetric Mechanisms

Non-symmetric mechanisms with θ2 = θ5 = 0 are first considered. Assuming α = π
4 and li = 1,

i = 1, 2, . . . , 7, τ1,max = 2τ2,max =
√

4l2 + l27 + 4ll7 cosα =
√

5 + 2
√

2, τ3,max = 2τ4,max = 2.
The force polygons for different configurations (θ1 = π

6 , θ1 = π
3 ) are shown in Fig. 2.5.
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Figure 2.4: Fmax and µ for the symmetric mechanism with θ2 = θ5 = 0.
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Figure 2.6: The force effectiveness of the non-symmetric mechanisms with different values of
α.

The plots of the force effectiveness for the non-symmetric mechanisms with θ2 = θ5 = 0 and
different values of α are shown in Fig. 2.6. Since the force polygons are parallelograms, the
maximum force effectiveness µ is still equal to

√
2
2 .

Non-symmetric mechanisms with θ2 = 3π
2 , θ5 = π

2 and α = π
4 are now considered. The link

lengths are chosen as l1 = l2 = l4 = l5 = 1 and l3 = l6 = l7 =
√

2l and the maximum torques
of the torque limiters are determined as τi,max = ||ji||, i = 1, 2, 3, 4, with θ1 = π

2 . That is

to say, τ1,max =
√

2l2 + l27 + 2
√

2ll7 cosα =
√

4 + 2
√

2, τ2,max =

√
1 +

√
2
2 , τ3,max =

√
2 and

τ4,max =
√
2
2 .

The force polygons for different configurations ( θ1 = 5π
12 , θ1 = π

2 , θ1 = 7π
12 ) are shown in

Fig. 2.7.

The angle between the two pairs of the force boundary lines determined by the joints in the
distal part of the linkage is shown in Fig. 2.8.

For the mechanisms with different values of α (α = π
6 , α = π

4 and α = π
3 ), if the maximum

torques at the torque limiters are set to ||ji|| with θ1 = π
2 , the plot of the force effectiveness is

shown in Fig. 2.9.

For the mechanism with α = π
4 , the maximum torques at the torque limiters are set to the

value of ||ji|| with θ1 = 100◦ or θ1 = 120◦ and the plots of the force effectiveness are shown
in Fig. 2.10. The dashed curves are for the maximum torques with the value of ||ji|| when
θ1 = 100◦ while the solid curves are for the maximum torques with the value of ||ji|| when
θ1 = 120◦.

It can be observed from Fig. 2.9 that the force effectiveness is generally smaller than
√
2
2 .

However, the smallest force effectiveness of the non-symmetric mechanisms with θ2 = 3π
2 and

θ5 = π
2 is larger than the smallest force effectiveness of the symmetric mechanisms and the

non-symmetric mechanisms with θ2 = θ5 = 0.
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Figure 2.8: The angle between the two pairs of the force boundary lines determined by
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Figure 2.10: Force effectiveness for different values of τi,max.
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Although the examples presented in this section are chosen rather arbitrarily and are only
illustrative, they demonstrate that the force capabilities of the mechanisms can be modulated
by choosing the geometric parameters and the torque limits.

2.6 Conclusion

The force characteristics of symmetric and non-symmetric planar 2-DOF parallel mechanisms
are analyzed in this chapter. Four torque limiters (clutches) are mounted on the mechanism
in order to produce a feasible force polygon at the end-effector. The most favorable force
polygon that can be achieved is a square for the symmetric mechanisms, the non-symmetric
mechanisms with linkage FDP as a straight link and the non-symmetric mechanisms with
ABC and AEF as straight links. This result arises from the observation that only two pairs
of parallel lines form the force polygon in these cases.

For the non-symmetric mechanisms with ABC and AEF as triangular links, three pairs of
parallel lines form the force polygon. If the torque limiters are set properly, it is expected that
this kind of mechanism can lead to more balanced force polygons. Further work is required
in order to develop a synthesis procedure that would allow a designer to select the geometric
parameters and the torque limits based on a prescribed desirable force polygon.
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Chapter 3

Force Capabilities of 2-DOF Parallel
Mechanisms Equipped with Torque
Limiters and Force Limiters

This chapter is similar to the preceding chapter. Two force limiters now replace the torque
limiters of the proximal links of the mechanism. The two force limiters are mounted on the
proximal links on one mechanism, and the force limiters are on the distal links on another
mechanism. Two passive torque limiters are mounted at the actuators of the robot. The
structure of the mechanisms are described at first. Then, the Jacobian matrices and the static
force equations are derived. The force characteristics are analyzed based on the force equations
and a performance index referred to as the force effectiveness is proposed. Finally, numerical
simulation results are presented.
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(a) Force limiters on the proximal links (b) Force limiters on the distal links

Figure 3.1: The structure of the mechanisms.

3.1 Introduction

Similarly to the analysis performed in Chapter 2, the force capabilities of the planar 2-DOF
planar mechanisms with two torque limiters and two force limiters is analyzed in this chapter.
At first, the structure and the kinematics of the mechanism are described. Then, the static
force equations are derived with the Jacobian matrices. The force characteristics are then
analyzed based on the force equations and numerical simulations are presented in the end.

3.2 Structure and Kinematics of the Mechanism

The architecture of the 2-DOF planar parallel mechanisms studied in this chapter is shown
in Fig. 3.1. There are two revolute actuators located at joint A that independently drive
links AB1 and AB2 respectively. The four links AB1, AB2 B1P and B2P are normally
rigid. However, there are two force limiters placed at the proximal links AB1 and AB2 of
the mechanism shown in Fig. 3.1(a), while the mechanism shown in Fig. 3.1(b) has two force
limiters placed at the distal links B1P and B2P . The torque limiters and the force limiters
will dislocate and a message will be sent to the controller when one of their limits has been
reached. Joints B1 and B2 are free joints which are not actuated and do not have torque
limiters.

For the mechanism with force limiters on the proximal links, the geometric relationship can
be found as follows. As shown in Fig. 3.2, one has

p = b1 + l

[
cos(π − θl − θx)

sin(π − θl − θx)

]
= b2 + l

[
cos θy

sin θy

]
(3.1)

and θl = θx + θy. The values of θx and θy can be found using the following method.
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Figure 3.2: The geometry of the mechanism.

According to the law of cosines and sines, one has

B1B2
2

= s21 + s22 − 2s1s2 cos(θ2 − θ1),
B1B1

sin(θ2 − θ1)
=

s2
sin(θ1 + θx)

.

Then, the value of θx can be found as

θx = arcsin

(
s2 sin(θ2 − θ1)√

s21 + s22 − 2s1s2 cos(θ2 − θ1)

)
− θ1. (3.2)

Since PB1B2 is an isosceles triangle, one has

cos θl =
B1B2

2

l
, (3.3)

leading to

θl = arccos

(√
s21 + s22 − 2s1s2 cos(θ2 − θ1)

2l

)
, (3.4)

then, the value of θy can be found as

θy = θl − θx = arccos

(√
s21 + s22 − 2s1s2 cos(θ2 − θ1)

2l

)

− arcsin

(
s2 sin(θ2 − θ1)√

s21 + s22 − 2s1s2 cos(θ2 − θ1)

)
+ θ1.

(3.5)

For the mechanism with force limiters on the distal links, the position of the end-effector can
be found with the following equations when the angles of the actuators and the length of distal
links are given.

s2i = (p− bi)
T (p− bi), i = 1, 2. (3.6)
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3.3 Jacobian Matrices and Force Equations

The Jacobian matrices and the force equations are established in this section.

3.3.1 3.3.1 Mechanism with Force Limiters on the Proximal Links

Based on the structure of the mechanism, one obtains

(p− bi)
T (p− bi) = l2, i = 1, 2 (3.7)

where

bi =

[
si cos θi

si sin θi

]
, i = 1, 2

Derivating the above equation, we obtain

(p− bi)
T (ṗ− ḃi) = 0 (3.8)

where ḃi = ṡiei + siθ̇iEei, ei = [cos θi, sin θi]
T , and

E =

[
0 −1

1 0

]
.

Equation (3.8) can be written in matrix form as

Aṗ = Bθ̇ (3.9)

where

A =

[
(p− b1)

T

(p− b2)
T

]
,

B =

[
s1(p− b1)

TEe1 0 (p− b1)
Te1 0

0 s2(p− b2)
TEe2 0 (p− b2)

Te2

]
,

and θ̇ = [θ̇1, θ̇2, ṡ1, ṡ2]
T . The velocity of the end-effector can be expressed as

ṗ = A−1Bθ̇. (3.10)

Based on the principle of virtual work, the static equations can be established as

τ = JTF (3.11)

where JT = BTA−T is a 4× 2 matrix and τ = [τ1, τ2, f1, f2]
T .

42



3.3.2 3.3.2 Mechanism with Force Limiters on the Distal Links

Differenting Eqn. (3.6), one has

(p− bi)
T (ṗ− ḃi) = siṡi, i = 1, 2 (3.12)

and ḃi = lθ̇iEei. Combining these two equations and written in matrix form, we have

Aṗ = Bθ̇ (3.13)

where

A =

[
(p− b1)

T

(p− b2)
T

]
, B =

[
l(p− b1)

TEe1 0 s1 0

0 l(p− b2)
TEe2 0 s2

]
.

The velocity equations and the static equations can be established as

ṗ = Jθ̇, τ = JTF. (3.14)

where J = A−1B and τ = [τ1, τ2, f1, f2]
T .

For both of the mechanisms, note that A−1 can be calculated as

A−1 =
1

−(p− b1)TE(p− b2)

[
−E(p− b2) E(p− b1)

]
(3.15)

hence

A−T =
1

−(p− b1)TE(p− b2)

[
−(E(p− b2))

T

(E(p− b1))
T

]
. (3.16)

3.4 Analysis of the Force Capabilities

The force capability analysis can be performed using the method described in Chapter 2. The
force boundaries equations, the maximum isotropic force Fmin and the maximum force that
can be applied by the mechanism Fmax for both of the planar mechanisms will be found.

3.4.1 3.4.1 General Case

3.4.1.1 Mechanism with Force Limiters on the Proximal Links

The Jacobian matrix can be calculated as

JT =
−1

(p− b1)TE(p− b2)


(y − s2 sin θ2)s1(p− b1)

TEe1 (−x+ s2 cos θ2)s1(p− b1)
TEe1

(−y + s1 sin θ1)s2(p− b2)
TEe2 (x− s1 cos θ1)s2(p− b2)

TEe2

(y − s2 sin θ2)(p− b1)
Te1 (−x+ s2 cos θ2)(p− b1)

Te1

(−y + s1 sin θ1)(p− b2)
Te2 (x− s1 cos θ1)(p− b2)

Te2

 .
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It can be observed that

j1x
j1y

=
j3x
j3y

=
y − s2 sin θ2
−x+ s2 cos θ2

and
j2x
j2y

=
j4x
j4y

=
−y + s1 sin θ1
x− s1 cos θ1

which means that two of the four pairs of force boundary lines are parallel and the other two
are parallel to each other.

If the external force is represented with F = F [cosφ, sinφ]T , the joint forces and torques can
be found as

τ =
−F

(p− b1)TE(p− b2)


s1(p− b1)

TEe1[cosφ(y − s2 sin θ2) + sinφ(−x+ s2 cos θ2)]

s2(p− b2)
TEe2[cosφ(−y + s1 sin θ1) + sinφ(x− s1 cos θ1)]

(p− b1)
Te1[cosφ(y − s2 sin θ2) + sinφ(−x+ s2 cos θ2)]

(p− b2)
Te2[cosφ(−y + s1 sin θ1) + sinφ(x− s1 cos θ1)]


Suppose the limit torque and force of the revolute actuators and the linear force limiters are
τi,max and fi,max, i = 1, 2, respectively, then the following inequalities should be satisfied

τ1,max(p− b1)
TE(p− b2)

Fs1(p− b1)TEe1
≤ a1 sin(φ− ψ1) ≤

−τ1,max(p− b1)
TE(p− b2)

Fs1(p− b1)TEe1
(3.17)

τ2,max(p− b1)
TE(p− b2)

Fs2(p− b2)TEe2
≤ a2 sin(φ− ψ2) ≤

−τ2,max(p− b1)
TE(p− b2)

Fs2(p− b2)TEe2
(3.18)

f1,max(p− b1)
TE(p− b2)

F (p− b1)Te1
≤ a1 sin(φ− ψ1) ≤

−f1,max(p− b1)
TE(p− b2)

F (p− b1)Te1
(3.19)

f2,max(p− b1)
TE(p− b2)

F (p− b2)Te2
≤ a2 sin(φ− ψ2) ≤

−f2,max(p− b1)
TE(p− b2)

F (p− b2)Te2
(3.20)

where

a1 =
√

(y − s2 sin θ2)2 + (−x+ s2 cos θ2)2, ψ1 = arctan

(
y − s2 sin θ2
x− s2 cos θ2

)
a2 =

√
(−y + s1 sin θ1)2 + (x− s1 cos θ1)2, ψ2 = arctan

(
y − s1 sin θ1
x− s1 cos θ1

)
The force boundary lines determined by these inequalities are

fy =
−x+ s2 cos θ2
y − s2 sin θ2

fx ±
τ1,max(p− b1)

TE(p− b2)

(y − s2 sin θ2)s1(p− b1)TEe1
(3.21)

fy =
x− s1 cos θ1
−y + s1 sin θ1

fx ±
τ2,max(p− b1)

TE(p− b2)

(−y + s1 sin θ1)s2(p− b2)TEe2
(3.22)

fy =
−x+ s2 cos θ2
y − s2 sin θ2

fx ±
f1,max(p− b1)

TE(p− b2)

(y − s2 sin θ2)(p− b1)Te1
(3.23)

fy =
x− s1 cos θ1
−y + s1 sin θ1

fx ±
f2,max(p− b1)

TE(p− b2)

(−y + s1 sin θ1)(p− b2)Te2
(3.24)

The maximum isotropic force Fmin can be found as

Fmin = min
([

τ1,max
||j1|| ,

τ2,max
||j2|| ,

f1,max
||j3|| ,

f2,max
||j4||

])
(3.25)
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where

||j1|| =
∣∣∣∣ s1(p− b1)

TEe1
(p− b1)TE(p− b2)

∣∣∣∣ a1, ||j2|| =
∣∣∣∣ s2(p− b2)

TEe2
(p− b1)TE(p− b2)

∣∣∣∣ a2,
||j3|| =

∣∣∣∣ (p− b1)
Te1

(p− b1)TE(p− b2)

∣∣∣∣ a1, ||j4|| =
∣∣∣∣ (p− b2)

Te2
(p− b1)TE(p− b2)

∣∣∣∣ a2.
Let

bmin,1 = min

[ ∣∣∣∣ τ1,max(p− b1)
TE(p− b2)

(y − s2 sin θ2)s1(p− b1)TEe1

∣∣∣∣ , ∣∣∣∣f1,max(p− b1)
TE(p− b2)

(y − s2 sin θ2)(p− b1)Te1

∣∣∣∣] (3.26)

bmin,2 = min

[ ∣∣∣∣ τ2,max(p− b1)
TE(p− b2)

(−y + s1 sin θ1)s2(p− b2)TEe2

∣∣∣∣ , ∣∣∣∣ f2,max(p− b1)
TE(p− b2)

(−y + s1 sin θ1)(p− b2)Te2

∣∣∣∣ ] (3.27)

The force polygon formed by the four following equations

fy =
−x+ s2 cos θ2
y − s2 sin θ2

fx ± bmin,1, (3.28)

fy =
x− s1 cos θ1
−y + s1 sin θ1

fx ± bmin,2. (3.29)

The coordinates of the intersection points of these lines can be found as

f1 =


bmin,2−bmin,1

−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

−x+s2 cos θ2
y−s2 sin θ2

bmin,2−bmin,1
−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

+ bmin,1


f2 =


bmin,2+bmin,1

−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

−x+s2 cos θ2
y−s2 sin θ2

bmin,2+bmin,1
−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

− bmin,1


f3 =


−bmin,2+bmin,1

−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

−x+s2 cos θ2
y−s2 sin θ2

−bmin,2+bmin,1
−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

− bmin,1


f4 =


−bmin,2−bmin,1

−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

−x+s2 cos θ2
y−s2 sin θ2

−bmin,2−bmin,1
−x+s2 cos θ2
y−s2 sin θ2

− x−s1 cos θ1
−y+s1 sin θ1

+ bmin,1


and it can be seen that

||f1|| = ||f3||, ||f2|| = ||f4|| (3.30)

Then, the maximum applicable force Fmax is the norm of coordinates of the intersection point
having the largest norm.

Fmax = max [||f1||, ||f2||] (3.31)

The performance-to-safety index, µ, can be calculated by the ratio of Fmin and Fmax.
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3.4.1.2 Mechanism with Force Limiters on the Distal Links

For this architecture, one has

JT =
−1

(p− b1)TE(p− b2)


l(p− b1)

TEe1(y − l sin θ2) l(p− b1)
TEe1(−x+ l cos θ1)

l(p− b2)
TEe2(−y + l sin θ1) l(p− b2)

TEe2(x− l cos θ1)

s1(y − l sin θ2) s1(−x+ l cos θ2)

s2(−y + l sin θ1) s2(x− l cos θ2)


It can be seen that

j1x
j1y

=
j3x
j3y

=
y − l sin θ2
−x+ l cos θ2

and
j2x
j2y

=
j4x
j4y

=
−y + l sin θ1
x− l cos θ1

which means that the four pairs of force boundary lines of the mechanism with force limiters
on distal links are also parallel two by two.

The equations of force boundary lines, the maximum isotropic force Fmin and the maximum
applicable force Fmax can be found with the same method that has been applied on the
mechanism with force limiters on the proximal links.

3.4.2 3.4.2 Simplified Analysis for Singular Configurations

The force analysis for mechanisms with two torque limiters and two force limiters, one-
dimensional workspace obtained with the constraint θ1 = −θ2 will be analyzed for degenerate
situations. Indeed, in some cases the above defined force polygon can degenerate.

3.4.2.1 Mechanism with Force Limiters on the Proximal Links

From the above derivations, the force boundary equations can be written as

s1(p− b1)
TEe1(y − s2 sin θ2)fy − s1(p− b1)

TEe1(−x+ s2 cos θ2)fx

±τ1,max(p− b1)
TE(p− b2) = 0

(3.32)

s2(p− b2)
TEe2(−y + s1 sin θ1)fy − s2(p− b2)

TEe2(x− s1 cos θ1)fx

±τ2,max(p− b1)
TE(p− b2) = 0

(3.33)

(p− b1)
Te1(y − s2 sin θ2)fy − (p− b1)

Te1(−x+ s2 cos θ2)fx

±f1,max(p− b1)
TE(p− b2) = 0

(3.34)

(p− b2)
Te2(−y + s1 sin θ1)fy − (p− b1)

Te1(x− s1 cos θ1)fx

±f2,max(p− b1)
TE(p− b2) = 0

(3.35)
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These four equations define the lines that constitute the boundaries of the force polygon.

Suppose s1 = s2 = s and θ1 = −θ2, we have

θy = arccos

(
s sin θ2

l

)
− π

2
(3.36)

and

p =

[
s cos θ2 + l cos θy

s sin θ2 + l sin θy

]
=

[
s cos θ2 +

√
l2 − s2 sin2 θ2

0

]
(3.37)

– In Eqn. (3.32), the common factor of fy and fx can be simplified as

s1(p− b1)
TEe1 = s1(y cos θ1 − x sin θ1)

= s1x sin θ2

= s(s sin θ2 cos θ2 + sin θ2
√
l2 − s2 sin2 θ2)

When 1) θ2 = 0 or 2) s = l and θ2 = π
2 , the above expression is equal to 0.

1) When θ2 = 0, p = [s+ l, 0]T , and

(p− b1)
TE(p− b2) =

[
l 0

] [ 0 −1

1 0

][
l

0

]

=
[

0 −l
] [ l

0

]
= 0

(3.38)

2) When s = l and θ2 = π
2 , p = [0, 0]T , and

(p− b1)
TE(p− b2) =

[
−s cos θ1 −s sin θ1

] [ 0 −1

1 0

][
−s cos θ2

−s sin θ2

]

=
[
s sin θ2 s cos θ2

] [ −s cos θ2

−s sin θ2

]
= −2s2 cos θ2 sin θ2

= 0

(3.39)

– Similarly, in Eqn. (3.33), the common factor of fy and fx can be simplified as

s2(p− b2)
TEe2 = s2(y cos θ2 − x sin θ2)

= s(−s sin2 θ2 − sin θ2
√
l2 − s2 sin2 θ2)

When 1) θ2 = 0 and s = −l and θ2 = π
4 , the above expression equals to 0.

1) When θ2 = 0, the analysis is the same as Eqn. (3.32).
2) When s = −l and θ2 = π

4 , p = 0 so we have (p− b1)
TE(p− b2) = 0
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Figure 3.3: One kind of singularities.

– In Eqn. (3.34) and Eqn. (3.35), the common factors of fy and fx are

(p− b1)
Te1 = (p− b2)

Te2

= cos θ2
√
l2 − s2 sin2 θ2 − s sin2 θ2

(3.40)

when s = l cot θ2, (p− b1)
Te1 = (p− b2)

Te2 = 0 and p =
[

l
sin θ2

, 0
]T

. And

(p− b1)
TE(p− b2) = 2l2 cos θ2 sin θ2 (3.41)

Equations (3.34) and (3.35) degenerate and they cannot be used as the force boundary.
The corresponding degenerate configuration is represented in Fig. 3.3. This situation occurs
when OB2 ⊥ B2P and OB1 ⊥ B1P .

3.4.2.2 Mechanism with Force Limiters on the Distal Links

For the mechanism with force limiter on the distal links, the analysis is similar.
– Torques τ1 and τ2 cannot give out the boundary equations when (p − b1)

TEe1 = 0 or
(p− b2)

TEe2 = 0 which means OB1 ⊥ B1P or OB2 ⊥ B2P respectively.
– Forces f1 and f2 cannot give out the boundary equations when s1 = 0 or s2 = 0.

3.4.3 3.4.3 Simplified Analysis of the Force Capabilities

The one-dimensional workspace obtained with the constraint θ1 = −θ2 will now be analyzed
for the special case for which it is assumed that the quadrilateral AB1PB2 is a parallelogram
which means that s1 = s2 = l. The force capabilities of the two mechanisms are found in the
following.
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3.4.3.1 Mechanism with Force Limiters on the Proximal Links

For the mechanism with force limiters on the proximal links, when θ2 = −θ1 = θ and s1 =

s2 = l, the position of joints B1, B2 and the position of the end-effector are

b1 =

[
l cos θ

−l sin θ

]
, b2 =

[
l cos θ

l sin θ

]
, p =

[
2l cos θ

0

]
.

Then, the Jacobian matrices can be calculated as

A−1 =

[
1

2l cos θ
1

2l cos θ
1

2l sin θ − 1
2l sin θ

]
, B =

[
l2 sin 2θ 0 l cos 2θ 0

0 −l2 sin 2θ 0 l cos 2θ

]
,

and

J = A−1B =

[
l sin θ −l sin θ cos 2θ

2 cos θ
cos 2θ
2 cos θ

l cos θ l cos θ cos 2θ
2 sin θ − cos 2θ

2 sin θ

]
(3.42)

It can be seen that
j1x
j1y

=
j3x
j3y

= −j2x
j2y

= −j4x
j4y

=
sin θ

cos θ
(3.43)

which means that the force polygon is a diamond.

If the external force is represented with F = F [cosφ, sinφ]T , the vector of joint forces and
torques can be found as

τ = F


l sin(φ+ θ)

l sin(φ− θ)
cot 2θ sin(φ+ θ)

− cot 2θ sin(φ− θ)

 (3.44)

The force boundary equations are

fy =
cos θ

sin θ
fx ±

τ1,max
l sin θ

(3.45)

fy = −cos θ

sin θ
fx ±

τ2,max
l sin θ

(3.46)

fy =
cos θ

sin θ
fx ±

2 cos θf1,max
cos 2θ

(3.47)

fy = −cos θ

sin θ
fx ±

2 cos θf2,max
cos 2θ

(3.48)

where τi,max, fi,max, i = 1, 2 are the limit torque or limit force of the ith revolute or prismatic
joint.

The maximum external force which can be applied from all directions is

Fmin = min
([

τ1,max
l ,

τ2,max
l , |f1,max sin 2θ

cos 2θ |, |f2,max sin 2θ
cos 2θ |

])
. (3.49)
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If τ1,max = τ2,max = τmax and f1,max = f2,max = fmax, the pitch of the lines which form the
force polygon is

bmin = min
([

τmax
l sin θ ,

2 cos θfmax
cos 2θ

])
. (3.50)

The coordinates of the vertices of the force polygon is

(0, ±bmin), (± tan θbmin, 0) (3.51)

The maximum force which can applied at the end-effector is

Fmax =


bmin = min

([
τmax
l sin θ ,

2 cos θfmax
cos 2θ

])
, when θ1 ∈ (0,

π

4
],

tan θbmin = min
([

τmax
l cos θ , −

2 sin θfmax
cos 2θ

])
, when θ1 ∈ [

π

4
,
π

2
).

(3.52)

Then, the force effectiveness µ can then be found with the ratio of Fmin and Fmax.

µ =
Fmin
Fmax

(3.53)

3.4.3.2 Mechanism with Force Limiters on the Distal Links

For the mechanism with force limiters on the distal links, when θ2 = −θ1 = θ and s1 = s2 = l,
the expression for the position of the joints B1, B2 and the position of the end-effector are the
same as these obtained with the mechanism with force limiters on the proximal links. The
Jacobian matrices are

A−1 =

[
1

2l cos θ
1

2l cos θ
1

2l sin θ − 1
2l sin θ

]
, B =

[
l2 sin 2θ 0 l 0

0 −l2 sin 2θ 0 l

]
,

J = A−1B =

[
l sin θ −l sin θ 1

2 cos θ
1

2 cos θ

l cos θ l cos θ 1
2 sin θ − 1

2 sin θ

]
(3.54)

It can be seen that the Jacobian matrix J for the mechanism with force limiters on the distal
links and the Jacobian matrix J for the mechanism with force limiters on the proximal links
only have a factor difference on the third and fourth columns. The force boundary equations,
the maximum isotropic force Fmin and the maximum applicable force Fmax can be found out
easily. Then, the force effectiveness µ can be obtained.

3.5 Numerical Examples

The force boundary lines for the mechanism with force limiters both on proximal links and on
distal links are four pairs of parallel straight lines. Since two of the four pairs are parallel to
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each other, the other two pairs are also parallel to each other. Examples are now provided to
illustrate these results. Consider a mechanism with force limiters on the proximal links.

Suppose l1 = l2 = 1, τ1,max = τ2,max = 1, f1,max = f2,max = 1, and s1 = s2 = s = 1,
−θ1 = θ2 = θ, the force polygons for θ = π

3 , θ = π
4 and θ = π

6 are shown in Fig. 3.4.

Suppose l1 = l2 = 1, τ1,max = τ2,max = 1, f1,max = f2,max = 1, s1 = s2 = s = 1, and
−θ1 = θ2 = θ, for different values of θ2, the maximum isotropic force Fmin, the maximum
applicable force Fmax and the index µ are ploted in Fig. 3.5.

Suppose l1 = l2 = 1, τ1,max = τ2,max = 1, f1,max = f2,max = 1, −θ1 = θ2 = pi
4 , and

s1 = s2 = s, for different values of s, the minimum force, the maximum force and the index µ
are ploted in Fig. 3.6.

3.6 Conclusion

The force characteristics of the planar 2-DOF mechanism with force limiters in the proximal
links and the mechanism with force limiters in the distal links are analyzed in this chapter. Two
torque limiters are mounted on the actuators and two force limiters are located on the links
in order to produce a feasible force polygon at the end-effector. Similarly to the symmetric
mechanism analyzed in the preceding chapter, the most favorable force polygon that can be
achieved is square for both of these mechanisms with force limiters. That is because the force
polygon is formed by only two pairs of parallel lines.
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(a) θ = π
3

(b) θ = π
4

(c) θ = π
6

Figure 3.4: Force polygons for different configurations.
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Figure 3.5: The minimum force, the maximum force and the index µ as a function of θ2.
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Figure 3.6: The minimum force, the maximum force and the index µ as a function of s.

54



Chapter 4

Dynamic Capabilities of the Tripteron
and Quadrupteron Parallel
Manipulators

Based on the dynamic models for the tripteron, a three-degree-of-freedom (DOF) transla-
tional parallel manipulator and the quadrupteron, a 4-DOF Schönflies-motion parallel ma-
nipulator, this chapter determines the acceleration range or the external force range of the
end-effector for given security considerations. The architecture and kinematics of the tripteron
and quadrupteron are briefly recalled at first. Considering each link and slider system as a
single body, approximate dynamic models are derived based on the Newton-Euler approach
and Lagrange equations. For a given range of actuating forces, the range of the acceleration of
the end effector and the feasible external force can be found. Numerical examples are provided
in the end.
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4.1 Introduction

The tripteron is a 3-DOF translational parallel robot with fully-decoupled input-output equa-
tions [80] while the quadrupteron is a partially decoupled robot with Schöenflies motions
[81, 82]. Other works have also targeted the development of decoupled parallel manipula-
tors [83–85].

For the traditional parallel manipulators, the dynamic analysis is a complex task due to the
numerous constraints imposed by the closed kinematic loops. Still, many works can be found
on the dynamics of parallel manipulators [86–88]. Several approaches have been applied to the
dynamic analysis of parallel manipulators. They can be classified mainly into four categories:
Newton-Euler method [89,93], Lagrange method [90], Kane’s method [91] and the virtual work
principle [92].

The dynamic model for the multipteron manipulators might be simpler than the traditional
manipulators due to the compactness of the architectures. Reference [93] proposed compact
dynamic models for the tripteron and the quadrupteron manipulators. The dynamic model
is obtained by applying the Newton-Euler approach on each of the moving bodies composing
the manipulator. It is shown that, by a judicious choice of the solution strategy, the model
can be made computationally inexpensive and conceptually simple. However, the dynamic
models can be approximated simply due to the decoupling characteristics of the manipulators.
It is intended to obtain an approximate dynamic model by considering each leg and the corre-
sponding actuator of the manipulators as a single body. Then, simplified and more compact
but reasonably accurate dynamic models can be established. The relationships between the
accelerations, the actuating forces and the external forces can then be established simply.

In this chapter, the external force range of the end effector of the tripteron and quadrupteron
manipulators are found for a given actuating force limit. First, the architecture and kinemat-
ics of the tripteron and the quadrupteron are briefly recalled. Then, the dynamic model is
obtained based on the Newton-Euler approach and Lagrange equations. The feasible external
force of the end effector for the tripteron and quadrupteron manipulators can be found based
on these dynamic models.

4.2 Architecture and Kinematics of the Manipulators

4.2.1 4.2.1 Tripteron Manipulator

The tripteron is a parallel mechanism composed of three legs, each consisting of a 4-DOF
serial mechanism whose links are connected by, from base to platform, an actuated prismatic
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(a) Schematic representation

(b) The phototype

Figure 4.1: The tripteron: a 3-DOF translational parallel mechanism, taken from [93].

joint fixed to the base, and three revolute joints whose axes are parallel to each other but not
orthogonal to the direction of the prismatic joint. The terminal revolute joints of the three
legs are connected to the mobile platform in such a manner that their axes are orthogonal.
Although several versions of the tripteron are possible [80], the most notable is the orthogonal
tripteron, shown in Fig. 4.1. In this version, the axes of the actuated prismatic joints are
orthogonal to each other and the axes of the passive revolute joints on a given leg are parallel
to the direction of the prismatic joint of the leg. Each of the actuators controls the motion of
the platform in one of the Cartesian directions. The manipulator is singularity-free and com-
pletely decoupled: its Jacobian matrix is equal to the identity matrix, it is globally isotropic
and, with a proper geometric design of the legs, its workspace is a parallelepiped. Its kine-
matics is equivalent to that of a serial so-called Cartesian manipulator which consists of three
orthogonal prismatic sliders mounted in series. The inverse and direct kinematic problem of
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the (orthogonal) tripteron can be written as

ρ1 = x, ρ2 = y, ρ3 = z, (4.1)

where ρ1, ρ2 and ρ3 denote the actuated joint coordinates, that is to say the linear displacement
of the actuators, while x, y and z are the Cartesian coordinates of the moving platform.

4.2.2 4.2.2 Quadrupteron Manipulator

The general architecture of the 4-PRRU mechanism on which the quadrupteron manipulator
is based consists of a platform connected to a fixed base by four legs each having five joints
namely, from base to platform, a P joint and four R joints. The axes of the last two revolute
joints intersect, and the latter can thereby be replaced by a universal or Hooke joint, noted
U. The P joints, mounted directly on the base, are the only actuated joints. The joints in one
leg are numbered from 1 to 5 from the actuator to the moving platform. In order to produce
the Schönflies motions and to be drivable by the prismatic actuators, the following geometric
constraints must be satisfied: (i) the axes of the four R joints attached to the moving platform
are all parallel; (ii) the axes of joints 2, 3, and 4 within a given leg are all parallel; (iii) the
axes of joints 1 and 2 within a same leg are not orthogonal to each other; (iv) the axes of
joints 2 of the four legs are not all parallel to a plane; (v) the axes of joints 2 and 5 are not
orthogonal to each other in at least one of the legs.

Several versions of the quadrupteron are possible [81]. Arguably the most interesting archi-
tecture is the one in which the linear actuators are mounted orthogonally (similarly to the
orthogonal tripteron). This geometric arrangement, represented in Fig. 4.2, leads to a partial
decoupling of the motion. The inverse kinematics simplifies to

ρ1 = x+ sx1 cosφ− sy1 sinφ− rx1, (4.2)

ρ2 = y + sx2 sinφ+ sy2 cosφ− ry2, (4.3)

ρ3 = z + sz3 − rz3, (4.4)

ρ4 = y + sx4 sinφ+ sy4 cosφ− ry4, (4.5)

where si = [sxi, syi, szi]
T , i = 1, 2, 3, 4, is the vector connecting the origin of the moving

frame attached to the platform to the intersection of the axes of the last two R joints of leg i
and ri = [rxi, ryi, rzi]

T is the vector connecting the origin of the fixed frame located on the
base to the reference point (ρi = 0) on the axis of the prismatic joint of the ith leg. Variables
ρ1 to ρ4 are the actuated joint variables, vector p = [x, y, z]T is the position vector of the
origin of the moving frame with respect to the origin of the fixed frame and φ is the angle
representing the rotation of the platform with respect to the base.

The velocity equations of the quadrupteron can be written as

Jt = Kρ̇, (4.6)
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(a) Schematic representation

(b) The phototype

Figure 4.2: The quadrupteron: a 4-DOF Schönflies-motion parallel mechanism, taken from
[93].
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where t = [ṗT , φ̇]T is the four-dimensional vector of Cartesian velocities, ρ̇ = [ρ̇1, ρ̇2, ρ̇3, ρ̇4]
T

is the vector of actuated joint velocities and J and K are 4× 4 Jacobian matrices. With the
orthogonal geometry, matrix K becomes the identity matrix while matrix J simplifies to

J =


1 0 0 (−sx1 sinφ− sy1 cosφ)

0 1 0 (sx2 cosφ− sy2 sinφ)

0 0 1 0

0 1 0 (sx4 cosφ− sy4 sinφ)

 ,
and Jacobian matrix J becomes singular for only two orientations, that is those for which

tanφ =
sx2 − sx4
sy2 − sy4

. (4.7)

With the velocity equations Eqn. (4.6), the acceleration equations can be found as

Kρ̈ = Jṫ + J̇t, (4.8)

where

J̇ =


0 0 0 (−sx1 cosφ+ sy1 sinφ)φ̇

0 0 0 (−sx2 sinφ− sy2 cosφ)φ̇

0 0 0 0

0 0 0 (−sx4 sinφ− sy4 cosφ)φ̇

 .

4.3 Approximate Dynamic Models and Force Analysis

4.3.1 4.3.1 Tripteron

Since each leg of the tripteron mechanism is constrained to be moving in a plane that translates
along the actuated prismatic joint, it is possible to directly write Newton’s equations for the
entire leg in the direction of the prismatic joint. Strictly speaking, Newton’s second law can
only be applied on a single rigid body. However, because of the specific arrangement of the
leg, it can be applied here to the entire leg, although only in the direction of the prismatic
joint. Thus, it can be written as

fa = (mpK + Md)(ap − g) + fe, (4.9)

where fa = [fax, fay, faz]
T is the actuating force, fe = [fex, fey, fez]

T is the external force,
K is a 3× 3 unit matrix, Md = diag[mx, my, mz] is the mass matrix for the legs, including
the mass of the slider, the proximal link and the distal link, mp and ap are the mass and
the acceleration of the end effector, and g is defined as [0, 0, g]T with g representing the
gravitational acceleration.

60



This model is an approximation because it does not consider the motion of the intermedi-
ate links of leg induced by the motion of the other legs. However, in practice this effect is
likely to be small because the intermediate links are small and light. The advantage of this
approximation is that it makes the model very simple.

4.3.2 4.3.2 Quadrupteron

For the quadrupteron manipulator, Lagrange method and Newton-Euler approach are used
to build the dynamic model. Similarly to the tripteron, the legs of the quadrupteron are also
constrained to be moving in a plane that translates along the actuated prismatic joints. As
an approximation, it is reasonable to consider the legs as a mass moving with the prismatic
joints.

4.3.2.1 Lagrange Method

First, Lagrange method is used to establish the dynamic model. The kinetic energy and the
gravitational potential energy of the manipulator can be expressed as

T =
1

2
mpṗ

T ṗ +
1

2
Iφ̇2 +

4∑
i=1

1

2
miρ̇i

2, (4.10)

V = mpgz +m3g(ρ3 + rz3), (4.11)

where mp is the mass of the moving platform, I is the moment of inertia of the platform in
the direction of the allowed rotation, mi, i = 1, 2, 3, 4, is the mass of the ith leg.

Suppose the actuating force of the prismatic joints are fa = [fρ1, fρ2, fρ3, fρ4]
T , according

to the Lagrange equations, we have

d

dt

(
∂L

∂ρ̇i

)
− ∂L

∂ρi
= fρi, i = 1, 2, 3, 4. (4.12)

where L = T − V .

Observing the kinematic equations for the quadrupteron, it can be noticed that φ is related
with ρ1, ρ2 and ρ4, but it is independent from ρ3, so one has

∂L

∂ρ3
= −(mp +m3)g, (4.13)

and
∂L

∂ρi
=
∂L

∂φ

∂φ

∂ρi
, i = 1, 2, 4. (4.14)
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Calculating the partial derivative of Eqn. (4.2), Eqn. (4.3) and Eqn. (4.5) with respect to ρi,
i = 1, 2, 4, one has

A


∂x
∂ρ1
∂y
∂ρ1
∂φ
∂ρ1

 =

 1

0

0

 , A


∂x
∂ρ2
∂y
∂ρ2
∂φ
∂ρ2

 =

 0

1

0

 , A


∂x
∂ρ4
∂y
∂ρ4
∂φ
∂ρ4

 =

 0

0

1

 ,
where

A =

 1 0 (−sx1 sinφ− sy1 cosφ)

0 1 (sx2 cosφ− sy2 sinφ)

0 1 (sx4 cosφ− sy4 sinφ)

 .
Then, the partial derivative of φ with respect to ρi, i = 1, 2, 4, can be calculated as

∂φ

∂ρ1
= 0,

∂φ

∂ρ2
=

1

∆
,

∂φ

∂ρ4
= − 1

∆
,

where ∆ = (sx2 − sx4) cosφ − (sy2 − sy4) sinφ. Calculating the partial derivative of L with
respect to φ and substituting the expressions of ρ̇i and ρ̈i to simplifiy the formula, one has

∂L

∂φ
=mp

[
sx1(sx2 − sx4) + sy1(sy2 − sy4)

∆
ẋφ̇+

sx2sy4 − sx4sy2
∆

ẏφ̇

]
+ I

(sx2 − sx4) sinφ+ (sy2 − sy4) cosφ

∆
φ̇2.

Then, the partial derivative of L with respect to ρi, i = 1, 2, 4, can be found as

∂L

∂ρ1
= 0,

∂L

∂ρ2
= − ∂L

∂ρ4
=mp

[
sx1(sx2 − sx4) + sy1(sy2 − sy4)

∆2
ẋφ̇+

sx2sy4 − sx4sy2
∆2

ẏφ̇

]
+ I

(sx2 − sx4) sinφ+ (sy2 − sy4) cosφ

∆2
φ̇2.

The expressions of the partial derivative of L with respect to ρ̇i are deduced as

d

dt

(
∂L

∂ρ̇1

)
=(mp +m1)ẍ−m1(sx1 sinφ+ sy1 cosφ)φ̈

+m1(−sx1 cosφ+ sy1 sinφ)φ̇2

d

dt

(
∂L

∂ρ̇2

)
=

[
m2(sx2 cosφ− sy2 sinφ) +

I

∆

]
φ̈

+
mp

∆
(sx1 sinφ+ sy1 cosφ)ẍ+

[
m2 +

mp

∆
(−sx4 cosφ+ sy4 sinφ)

]
ÿ

+
mp

∆2
{[sx1(sx2 − sx4) + sy1(sy2 − sy4)] ẋ+ (sx2sy4 − sx4sy2)ẏ} φ̇+ φ̇2{

I

∆2
[(sx2 − sx4) sinφ+ (sy2 − sy4) cosφ]−m2(sx2 sinφ+ sy2 cosφ)

}

62



d

dt

(
∂L

∂ρ̇3

)
= (mp +m3)z̈,

d

dt

(
∂L

∂ρ̇4

)
=

[
m4(sx4 cosφ− sy4 sinφ)− I

∆

]
φ̈

− m

∆
(sx1 sinφ+ sy1 cosφ)ẍ+

[
m4 +

m

∆
(sx2 cosφ− sy2 sinφ)

]
ÿ

− m

∆2
{[sx1(sx2 − sx4) + sy1(sy2 − sy4)] ẋ+ (sx2sy4 − sx4sy2)ẏ} φ̇− φ̇2{

I

∆2
[(sx2 − sx4) sinφ+ (sy2 − sy4) cosφ] +m4(sx4 sinφ+ sy4 cosφ)

}

Collecting the above terms, the expressions of actuating forces can be found with Eqn. (4.12).

4.3.2.2 Newton-Euler Approach

In the Lagrange method, the external force is not considered. Here, it is intended to find
the dynamic model while considering the external force fe = [fex, fey, fez, τe]

T . For the
four moving directions, based on the Newton-Euler method, the dynamic equations can be
established as

x : fρ1 = m1ρ̈1 +mpẍ+ fex, (4.15)

y : fρ2 + fρ4 = m2ρ̈2 +m4ρ̈4 +mpÿ + fey, (4.16)

z : fρ3 = m3ρ̈3 +mpz̈ + fez + (mp +m3)g, (4.17)

φ : (fρ2 −m2ρ̈2)dy1 + (fρ4 −m4ρ̈4)dy2 − (fρ1 −m1ρ̈1)dx = Iφ̈+ τe. (4.18)

where dy1 and dy2 are the moment arm applied by the links y2 and y4 to the end effector and
they are the distances between the end of the link to the y axis. dx is the moment arm applied
by link x to the end effector and it is the distance between the end of the link to the x axis,
and

dy1 = sx2 cosφ− sy2 sinφ,

dy2 = sx4 cosφ− sy4 sinφ,

dx = sx1 sinφ+ sy1 cosφ.
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The above equations can be modified as

x : fρ1 =(mp +m1)ẍ−m1(sx1 sinφ+ sy1 cosφ)φ̈

+m1(−sx1 cosφ+ sy1 sinφ)φ̇2 + fex,
(4.19)

y : fρ2 + fρ4 = (mp +m2 +m4)ÿ + [m2(sx2 cosφ− sy2 sinφ)

+m4(sx4 cosφ− sy4 sinφ)]φ̈− [m2(sx2 sinφ+ sy2 cosφ)

+m4(sx4 sinφ+ sy4 cosφ)]φ̇2 + fey,

(4.20)

z : fρ3 = (mp +m3)z̈ + (mp +m3)g + fez, (4.21)

φ : − dxfρ1 + dy1fρ2 + dy2fρ4 = Iφ̈+m1ρ̈1dx +m2ρ̈2dy1 +m4ρ̈4dy2 + τe. (4.22)

Forces fρ2 and fρ4 can be solved for using Eqn. (4.20) and Eqn. (4.22) as

fρ2 =

[
I

∆
+m2(sx2 cosφ− sy2 sinφ)

]
φ̈+

mp

∆
(sx1 sinφ+ sy1 cosφ)ẍ

+
[
m2 −

mp

∆
(sx4 cosφ− sy4 sinφ)

]
ÿ −m2(sx2 sinφ+ sy2 cosφ)φ̇2

+
τe
∆
− fey

∆
(sx4 cosφ− sy4 sinφ) +

fex
∆

(sx1 sinφ+ sy1 cosφ),

fρ4 =

[
− I

∆
+m4(sx4 cosφ− sy4 sinφ)

]
φ̈− m

∆
(sx1 sinφ+ sy1 cosφ)ẍ

+
[
m4 +

m

∆
(sx2 cosφ− sy2 sinφ)

]
ÿ −m4(sx4 sinφ+ sy4 cosφ)φ̇2

− τe
∆

+
fey
∆

(sx2 cosφ− sy2 sinφ)− fex
∆

(sx1 sinφ+ sy1 cosφ).

Using the above equations, the actuating forces which are required to support the acceleration
and the external forces can be found. It has been verified that the expressions of the actuating
forces obtained with the Newton-Euler approach with zero external force are the same as those
obtained with the expressions obtained with the Lagrange method.

4.3.2.3 Compact Dynamic Model

The dynamic model for the platform of the quadrupteron obtained in [93] can be expressed as

t1d1 + t2d2 + t3d3 + t4d4 + w3 = If ω̇ + ω × Ifω + τ e (4.23)

where If is the inertia tensor of the platform, ω is the angular velocity of the platform, ω̇ is
the angular acceleration of the platform, and ti is the vector connecting the platform mass
centre to the attachment point (centre of the spherical joint) of the ith leg,

ti =

 sxi cosφ− syi sinφ

sxi sinφ+ syi cosφ

0

 , i = 1, 2, 3, 4.
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Also the interaction forces between the legs and the platform — forces di — can be found as

d1 =

 fρ1 −m1ρ̈1

0

0

 , d2 =

 0

fρ2 −m2ρ̈2

0

 ,

d3 =

 0

0

fρ3 −m3ρ̈3 −m3g

 , d4 =

 0

fρ4 −m4ρ̈4

0

 .

w3 has two non zero components, w3 = [w3x, w3y, 0]T and τ e = [0, 0, τez]
T .

Suppose the moving platform is a regular shape plane (square), If has the forms like

If =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =

 Ixx 0 0

0 Iyy 0

0 0 Izz

 (4.24)

and

ω =

 0

0

φ̇

 (4.25)

For example, if the moving platform is a square with
√

2s side length. As shown in Fig. 4.3,
the inertia matrix for the o− x′y′ coordinate is

Ix′y′z′ = m


(
√
2s)2

12 0 0

0 (
√
2s)2

12 0

0 0 2(
√
2s)2

12

 = m


s2

6 0 0

0 s2

6 0

0 0 s2

3

 (4.26)

Since the vectors expressed in o−x′y′ coordinate and in o−xy coordinate has the relationship
as

v =

 x

y

z

 =

 cos π4 sin π
4 0

− sin π
4 cos π4 0

0 0 1


 x′

y′

z′

 = Tv′ (4.27)

Then, the inertial matrix with respect to coordinates o− xy is

Ixyz = TIx′y′z′T
T = Ix′y′z′ (4.28)
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Figure 4.3: Transfer of the inertia matrix.

We have

t1d1 =

 0

0

−(fρ1 −m1ρ̈1)(sx1 cosφ+ sy1 sinφ)

 ,

t2d2 =

 0

0

(fρ2 −m2ρ̈2)(sx2 cosφ− sy2 sinφ)

 ,

t3d3 =

 (fρ3 −m3ρ̈3 −m3g)(sx3 sinφ+ sy3 cosφ)

−(fρ3 −m3ρ̈3 −m3g)(sx3 cosφ− sy3 sinφ)

0

 ,

t4d4 =

 0

0

(fρ4 −m4ρ̈4)(sx4 cosφ− sy4 sinφ)

 .
Then, Eqn. (4.23) can be written as three equations as

(fρ3 −m3ρ̈3 −m3g)(sx3 sinφ+ sy3 cosφ) + ω3x = 0 (4.29)

− (fρ3 −m3ρ̈3 −m3g)(sx3 cosφ− sy3 sinφ) + ω3y = 0 (4.30)

− (fρ1 −m1ρ̈1)(sx1 cosφ+ sy1 sinφ) + (fρ2 −m2ρ̈2)(sx2 cosφ− sy2 sinφ)

+ (fρ4 −m4ρ̈4)(sx4 cosφ− sy4 sinφ) = Izzφ̈+ τez
(4.31)

For the rotation direction, we get the same dynamic equation as the one obtained in the above
section. If If is not a diagonal matrix, we have

If ω̇ + ω × Ifω =

 Ixzφ̈− Iyzφ̇2

Iyzφ̈+ Ixzφ̇
2

Izzφ̈

 (4.32)

Then, Eqn. (4.29) to Eqn. (4.31) become

(fρ3 −m3ρ̈3 −m3g)(sx3 sinφ+ sy3 cosφ) + ω3x + Ixzφ̈− Iyzφ̇2 = 0 (4.33)
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− (fρ3 −m3ρ̈3 −m3g)(sx3 cosφ− sy3 sinφ) + ω3y + Iyzφ̈+ Ixzφ̇
2 = 0 (4.34)

− (fρ1 −m1ρ̈1)(sx1 cosφ+ sy1 sinφ) + (fρ2 −m2ρ̈2)(sx2 cosφ− sy2 sinφ)

+ (fρ4 −m4ρ̈4)(sx4 cosφ− sy4 sinφ) = Izzφ̈+ τez
(4.35)

We still have the same dynamic model for the rotation direction. Combining the dynamic
equations for the x, y, and z directions which have been expressed in the above section as
Eqn. (4.15), Eqn. (4.16) and Eqn. (4.17), we can get the same expressions for the driving
forces fρi, i = 1, 2, 3, 4.

4.4 Force Capability Analysis

In this section, it is intended to analyze the force capabilities of the manipulators. Based on
the dynamic models, the external force boundaries can be obtained with the given range of
actuating forces.

4.4.1 4.4.1 Tripteron

Suppose the maximum and minimum force which can be provided by the actuators are
fρ,max = [fρ1,max, fρ2,max, fρ3,max]T and fρ,min = [fρ1,min, fρ2,min, fρ3,min]T , then the fol-
lowing relationships should be satisfied

fρ,min � fa � fρ,max (4.36)

where � means that the corresponding components should satisfy the relationship (compo-
nentwise inequality). Inequality (4.36) can be written as

fρ1,min − (mp +mx)ax ≤ fex ≤ fρ1,max − (mp +mx)ax,

fρ2,min − (mp +my)ay ≤ fey ≤ fρ2,max − (mp +my)ay,

fρ3,min − (mp +mz)(az − g) ≤ fez ≤ fρ3,max − (mp +mz)(az − g).

Suppose the legs have the same mass (mx = my = mz), in order to have the same force range
for every direction of the external force while the end effector has the same acceleration in
each direction, that is to say ax = ay = az, one has

fρ1,min = fρ2,min = fρ3,min + (mp +mz)g,

fρ1,max = fρ2,max = fρ3,max + (mp +mz)g.
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4.4.2 4.4.2 Quadrupteron

If the boundary of the actuating forces are

fρi,min ≤ fρi ≤ fρi,max, i = 1, 2, 3, 4 (4.37)

Based on Eqn. (4.15) to Eqn. (4.18), the following relationships should be satisfied

fρ1,min − cx ≤ fex ≤ fρ1,max − cx, (4.38)

fρ2,min + fρ4,min − cy ≤ fey ≤ fρ2,max + fρ4,max − cy, (4.39)

fρ3,min − cz ≤ fez ≤ fρ3,max − cz, (4.40)

min(Fρ)− cτ ≤ τe ≤ max(Fρ)− cτ (4.41)

where

Fρ = −dxfρ1 + dy1fρ2 + dy2fρ4,

cx = m1ρ̈1 +mẍ,

cy = m2ρ̈2 +m4ρ̈4 +mÿ,

cz = m3ρ̈3 +mz̈ + (m+m3)g,

cτ = Iφ̈+m1ρ̈1dx +m2ρ̈2dy1 +m4ρ̈4dy2.

and

ρ̈1 = ẍ+ (−sx1 sinφ− sy1 cosφ)φ̈+ (−sx1 cosφ+ sy1 sinφ)φ̇2,

ρ̈2 = ÿ + (sx2 cosφ− sy2 sinφ)φ̈+ (−sx2 sinφ− sy2 cosφ)φ̇2,

ρ̈3 = z̈,

ρ̈4 = ÿ + (sx4 cosφ− sy4 sinφ)φ̈+ (−sx4 sinφ− sy4 cosφ)φ̇2,

The extreme values of Fρ depend on the configuration and the actuating force range of the
three prismatic joints, where min(Fρ) and max(Fρ) are the minimum and maximum values of
the expression −dxfρ1 + dy1fρ2 + dy2fρ4.

When the required acceleration are given for certain tasks, and the safety range of acceptable
external force are proposed, then, the required actuating forces can be found.

4.5 Numerical Examples

For the tripteron manipulator, suppose the mass of the end effector is mp = 1kg, the force
boundaries of the force limiters in the x and y directions are −10N to 10N, the force boundaries
of the force limiters in the z directions are −10−mpg = −19.81N to 10−mpg = 0.19N, the
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Figure 4.4: The range of the external force for the x, y and z directions.

range of the acceleration in the x, y and z directions are ax, ay, az ∈ [−5, 5]m/s2, the range of
the external force fx, fy and fz can be found as Fig. 4.4.

For the quadrupteron, suppose the trajectory of the end effector is
x

y

z

φ

 =


a cos(ω1t)

a sin(ω1t)

b cos(ω2t)

c cos(ω3t)

 ,

ẋ

ẏ

ż

φ̇

 =


−aω1 sin(ω1t)

aω1 cos(ω1t)

−bω2 sin(ω2t)

−cω3 sin(ω3t)

 ,

ẍ

ÿ

z̈

φ̈

 =


−aω2

1 cos(ω1t)

−aω2
1 sin(ω1t)

−bω2
2 cos(ω2t)

−cω2
3 cos(ω3t)

 .
and the actuating forces boundaries are −Fρ1,min = Fρ1,max = 50, −Fρ2,min = Fρ2,max =

−Fρ4,min = Fρ4,max = 50, −Fρ3,min = −50 + (10 + 1)g, Fρ3,max = 50 + (10 + 1)g When
s = 0.1, m = 10mi = 1, I = 1

6ms
2 = 1

600 and a = b = 1, c = π
2 , ω1 = ω2 = ω3 = π

2 , the
external force range can be plotted as shown in Fig. 4.5.

4.6 Conclusion

Compact simplified and approximate dynamic models for the tripteron and quadrupteron ma-
nipulators are established in this chapter. The Newton-Euler method and Lagrange approach
are used to find the dynamic models. Due to the compact architecture of the tripteron, the
dynamic model can be used both in the inverse and forward problems. The dynamic force
capabilities of the manipulators are analyzed based on the dynamic models. Given the actu-
ating forces and the accelerations of the moving platform, the feasible external forces can be
found.
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Figure 4.5: Force boundaries for the quadrupteron.
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Chapter 5

Conclusions

The force characteristics of the symmetric and non-symmetric planar parallel mechanisms
with four torque limiters and the parallel mechanisms with two torque limiters and two force
limiters are analyzed. For the mechanisms with force limiters, the symmetric mechanisms,
the non-symmetric mechanism with linkage FDP as a straight link and the non-symmetric
mechanism with ABC and AEF as straight links, it can be seen that the best possible force
polygon of the end effector is a square. Indeed, it is shown that there are two pairs of parallel
lines form the force polygon.

For the non-symmetric mechanism with ABC and AEF as folding links, there are three pairs
of parallel lines to form the force polygon. If the torque limiters are set properly, it is expected
that this kind of mechanism can be designed to improve safety.

Compact simplified and approximate dynamic models for the tripteron and quadrupteron
manipulators are also established in this thesis. The Newton-Euler method and Lagrange
approach are used to find the dynamic models. Due to the compact architecture of the
tripteron, the dynamic model can be used both for inverse and forward problems. The dynamic
force capabilities of the manipulators are analyzed based on the dynamic models. Given the
actuating forces and the accelerations of the moving platform, the feasible external forces can
be found.

Future work concerns the mechanical design of the mechanisms in order to test the proposed
approach. It is expected that the mechanisms proposed in this thesis can be used to improve
the safety of robotic mechanisms in a context of human/robot cooperation.
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