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Short Abstract

The kinetostatic analysis and optimization of parallel and hybrid architectures for ma-

chine tools are conducted in this thesis.

First, a topological representation of all possible architectures which can provide

5 degrees of freedom between the tool and the workpiece is developed. The most

promising kinematic structures are automatically generated based on the Chebychev-

Grübler-Kutzbach criterion and some other design criteria.

Then, a generic stiffness model for fully-parallel mechanisms with various types of

actuator stiffnesses is established and verified by examples of planar parallel mecha-

nisms in a CAD system. In particular, several new types of spatial parallel kinematic

mechanisms with prismatic/revolute actuators whose degree of freedom is dependent

on a constraining passive leg connecting the base and the platform are introduced. A

general kinetostatic model is established with the consideration of the characteristics

of joints and links flexibilities. The model is used to demonstrate that flexible links

have significant effects on the stiffness and accuracy of parallel kinematic machines.

Examples for 3-dof, 4-dof, 5-dof, 6-dof and the Tricept machine tool families are given

in detail to illustrate the results. Stiffness mappings are shown and design guidelines

for parallel kinematic machines are concluded.

Finally, the optimization of system parameters in achieving a better system stiffness

is performed. This includes the development of a more explicit representation of an
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objective function in the optimization model. The genetic algorithm is employed to

solve this optimization problem. As a result, a significant improvement of the system

stiffness is achieved.

Dan Zhang Clément M. Gosselin
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Résumé court

Cette thèse porte sur l’analyse cinéto-statique et l’optimisation d’architectures par-

allèles et hybrides pouvant être utilisées comme machines-outils.

Premièrement, une représentation topologique de toutes les architectures pouvant

produire 5 degrés de liberté entre l’outil et la pièce à usiner est developpée. Les struc-

tures cinématiques les plus prometteuses sont automatiquement générées d’après le

critère de Tchebychev-Grübler-Kutzbach et d’autres critères de conception.

Ensuite, un modèle général pour la rigidité, pouvant être utilisé pour les mécanismes

pleinement parallèles avec des rigidités variables aux actionneurs, est présenté et vérifié

dans un logiciel de CAO sur des mécanismes parallèles plans. En particulier, plusieurs

nouveaux types de mécanismes parallèles spatiaux avec actionneurs prismatiques et

rotöıdes, et pour lesquels les degrés de liberté sont dépendants d’une patte passive

contraignante reliant la base et la plate-forme, sont proposés. Un modèle cinéto-statique

général est présenté en prenant en considération les caractéristiques des articulations et

la flexibilité des membrures. Le modèle est utilisé pour démontrer que la flexibilité des

membrures a un effet significatif sur la rigidité et la précision des mécanismes parallèles.

Des exemples sur des mécanismes à 3-ddl, 4-ddl, 5-ddl, 6-ddl et sur les machines-outils

de type Tricept sont présentés en détails pour illustrer les résultats obtenus. Les courbes

de rigidité sont montrées et des lignes directrices sont proposées pour la conception de

mécanismes parallèles.
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Finalement, une optimisation est effectuée afin d’obtenir une meilleur rigidité du

système. Ceci inclut une représentation plus explicite de la fonction objective dans le

modèle d’optimisation. Un algorithme génétique est employé pour résoudre le problème

d’optimisation. Les résultats démontrent des améliorations significatives de la rigidité

du système après l’optimisation.

Dan Zhang Clément M. Gosselin
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Abstract

Research and development of various parallel mechanism applications in engineering are

now being performed more and more actively in every industrial field. Parallel Kine-

matic Machines (hereafter called PKMs) development is considered a key technology

of robot applications in manufacturing industries in the future.

Nevertheless, most of the existing work regarding parallel kinematic machines was

built upon the concept of traditional “Gough-Stewart” mechanism type. This suggests

that most of the parallel mechanisms developed have six degrees of freedom. However,

in many applications such as low-cost flight simulation and axisymmetric machining,

five degrees of freedom are required at most. Hence, there is a need to study parallel

mechanisms with less than six degrees of freedom.

The study described in this thesis is concerned with developing mechanisms with

less than 6-dof. In the thesis, a family of new alternative mechanical architectures which

could be used for machine tools with parallel or hybrid architecture is investigated. The

kinematic analysis, stiffness analysis, the kinetostatic modeling, optimization, design of

these mechanism systems and their rigidity and precision analysis are also presented.

Firstly, a topological representation of different combinations of kinematic struc-

tures is developed using a graph based approach, and the possible architectures that

will provide 5 degrees of freedom between the tool and the workpiece are generated.

The detailed list of possible topologies is obtained and the most promising architectures
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are screened out based on the design criteria.

Stiffness analysis of parallel mechanisms is addressed and a generic stiffness model

for fully-parallel mechanism with various types of actuator stiffnesses is established.

Lumped models for the joints and links are introduced. Equations for the computation

of the equivalent virtual joint stiffnesses are derived. With the generic stiffness model,

examples are given for planar 2-dof mechanisms with revolute actuators and planar

3-dof mechanisms with prismatic actuators. The stiffness mappings are implemented

as a visualization tool. An alternative verification for the correctness of the generic

stiffness model is conducted using Pro/Engineer software package.

Next, a family of new types of spatial parallel mechanisms with prismatic actuators

and revolute actuators whose degree of freedom is dependent on a constraining passive

leg connecting the base and the platform is proposed. A general kinetostatic model

is established for the analysis of the structural rigidity and accuracy of this family

of mechanisms. The geometric models of this family of mechanisms are introduced.

A general lumped kinetostatic model is proposed in order to account for joint and

link compliances. These new methods and models are also applicable to any other

type of parallel mechanism for their rigidity and precision analysis. Moreover, they

can be used for parallel mechanism design and optimization. The inverse kinematics

and global velocity equations are given for both rigid-link mechanisms and flexible-

link mechanisms. With the kinetostatic model, design guidelines are summarized for

different kinds of mechanisms, and their stiffness mappings are obtained. One can then

determine which regions of the workspace will satisfy the stiffness criteria from the

stiffness maps.

Additionally, kinetostatic analysis for 6-dof fully-parallel mechanisms are presented

in the thesis. A new method based on the theorem of velocity compatibility is applied

to establish the kinetostatic model of this type of mechanism. Examples of 3-leg and

6-leg spatial fully-parallel mechanisms with revolute actuators and 6-leg spatial fully-

parallel mechanism with prismatic actuators are given, respectively, to study the effects

of the joint and link flexibility.

Finally, optimization criteria are proposed. A novel optimization technique called

genetic algorithms (GAs) is applied. The rationale for using this method together with
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the determination of the parameters and the objective function are addressed and jus-

tified. The detailed analysis of the kinetostatics of the parallel mechanisms conducted

in previous chapters is used to specify and optimize their geometry and properties.

The implementation and optimum results for all kinds of mechanisms discussed in the

thesis are given. The final results show that the optimization can yield a remarkable

improvement of the kinetostatic properties.

Dan Zhang Clément M. Gosselin
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Résumé

La recherche et le développement sur les mécanismes parallèles produit de plus en plus

d’activités en industrie. Le développement des machines cinématiques parallèles (ap-

pelées ici PKMs) est maintenant considéré comme une solution technologique d’avenir

pour les entreprises manufacturières utilisant des procédés robotisés.

Cependant, la plupart des travaux qui ont été effectués dans le domaine des machines

cinématiques parallèles l’ont été suivant le concept traditionnel de la plate-forme de

“Gough-Stewart”. Ceci explique donc pourquoi la plupart des mécanismes parallèles

développés ont six degrés de liberté (ddl). Cependant, dans plusieurs applications,

comme les simulateurs de vol bas de gamme et les machines-outils à outil axisymétrique,

un maximum de cinq degrés de liberté (ddl) est nécessaire. Ainsi, un besoin réel existe

pour l’utilisation de mécanismes parallèles performants avec moins de six degrés de

liberté (ddl).

L’étude décrite dans cette thèse porte donc sur le développement de mécanismes

avec moins de 6-ddl. Une famille d’architectures mécaniques alternatives pouvant

être utilisée comme machines-outils, et construite à partir d’architectures parallèles

ou hydrides, est étudiée. Les divers points abordés comprennent l’analyse cinématique,

l’analyse des rigidités, les modèles cinéto-statiques, l’optimisation, la conception de ces

systèmes mécaniques et leurs rigidités ainsi que l’analyse de la précision.
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Premièrement, une représentation topologique des différentes combinaisons de struc-

tures cinématiques est présentée utilisant une approche graphique. Les différentes ar-

chitectures pouvant produire 5 degrés de liberté entre l’outil et la pièce à usiner sont

alors générées. Une liste détaillée des différentes topologies possibles est obtenue et les

architectures les plus prometteuses sont retenues.

L’analyse de la rigidité des mécanismes parallèles est par la suite expliquée et un

modèle général pour la rigidité, pouvant être utilisé pour les mécanismes pleinement

parallèles avec des rigidités variables aux actionneurs, est présentée. Aussi, des modèles

à paramètres localisés pour les articulations et les membrures sont introduits. Les

équations permettant le calcul de la rigidité des articulations virtuelles équivalentes

sont ensuite dérivées. Avec le modèle général de rigidité, des exemples sont donnés

pour des mécanismes plans à 2-ddl avec actionneurs rotöıdes et pour des mécanismes

plans à 3-ddl avec actionneurs prismatiques. Les courbes de rigidité sont utilisées dans

ces cas comme outil de visualisation. Une vérification est également faite avec le logiciel

Pro/Engineer pour vérifier le modèle général de rigidité.

Par la suite, une nouvelle famille de mécanismes parallèles spatiaux avec action-

neurs prismatiques et rotöıdes, et pour lesquels les degrés de liberté sont dépendants

d’une patte passive contraignante reliant la base et la plate-forme, est proposée. Un

modèle cinéto-statique général est présenté pour l’analyse de la rigidité et l’analyse de

la précision structurelle de cette famille de mécanismes. Les modèles géométriques sont

alors introduits. Un modèle général cinéto-statique à paramètres localisés est présenté

afin de prendre en considération la flexibilité des articulations et des membrures. A

noter que ces nouvelles méthodes et nouveaux modèles peuvent également être utilisés

pour n’importe quel type de mécanismes parallèles pour ses analyses de rigidité et de

précision. De plus, ils peuvent aussi être utilisés pour la conception et l’optimisation de

mécanismes parallèles. Le modèle géométrique inverse et les équations de vitesse sont

données à la fois pour des mécanismes à membrures rigides et à membrures flexibles.

Avec le modèle cinéto-statique, des lignes directrices pour la conception sont résumées

pour différents types de mécanismes, et leurs courbes de rigidité sont obtenues. On

peut donc déterminer quelles régions de l’espace de travail vont rencontrer les critères

de rigidité d’après les courbes de rigidité.

De plus, l’analyse cinéto-statique des mécanismes parallèles à 6-ddl est présentée
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dans cette thèse. Une nouvelle méthode basée sur le théorème de compatibilité des

vitesses est appliquée pour établir le modèle cinéto-statique de ce type de mécanisme.

Des exemples de mécanismes parallèles avec 3 et 6 pattes avec actionneurs rotöıdes et

6 pattes avec actionneurs prismatiques sont donnés pour montrer l’effet de la flexibilité

des actionneurs et des membrures.

Finalement, des critères d’optimisation sont proposés. Une nouvelle technique

d’optimisation appelée algorithme génétique (GAs) est appliquée. Les raisons qui jus-

tifient l’utilisation de cette méthode, de même que la façon de déterminer la fonction

objective et les différents paramètres sont discutées. L’analyse cinéto-statique détaillée

des mécanismes parallèles réalisée dans les chapitres précédents est utilisée pour spécifier

et analyser leur geométrie et leurs propriétés. Les calculs et les résultats optimums pour

tous les types de mécanismes présentés dans la thèse sont donnés. Les résultats fin-

aux démontrent que l’optimisation peut conduire à des améliorations significatives des

propriétés cinéto-statiques.

Dan Zhang Clément M. Gosselin
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Chapter 1

Introduction

This thesis describes the establishment of a Kinetostatic Model and its application

to machine tool design. Several new types of parallel mechanisms whose degree

of freedom is dependent on a constraining passive leg are proposed. To formulate the

subject of the study, Section 1.1 answers the following questions:

• What is the Kinetostatic Model about?

• Why is it needed?

• What are the new architectures of parallel mechanisms proposed here? and

• Why are such types of mechanism proposed?

To highlight the significance of the study and derive the main philosophy behind this

thesis work, Section 1.2 presents a literature review regarding the current research and

1
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development of parallel kinematic machines, including stiffness analysis. Section 1.3

describes the key issues which will be discussed in this thesis. Section 1.4 presents

the main philosophy behind the thesis work. Finally, Section 1.5 provides a brief

introduction to the subsequent chapters and their relationships.

1.1 The Subject of the Study

The analysis of the positioning and orientation (pose) error of the platform in the

presence of manufacturing tolerances, joint clearances and leg flexibility, also known as

sensitivity analysis (Gregorio and Parenti-Castelli 1999), has not received much atten-

tion in the recent literature. However, these errors could not be neglected in practice,

since it has been shown that if the mechanism flexibility is considered, the performances

may become very poor and the main feature of the mechanism is lost. Additionally,

considering the above errors may lead to singular mechanism configurations which must

be avoided during motion, the subject of which cannot be studied by the mobility anal-

ysis of the rigid legged mechanism model (Gregorio and Parenti-Castelli 1999). As it

will be derived in Chapter 3, the Cartesian stiffness matrix KC for rigid spatial parallel

mechanisms can be expressed as

KC = JTKJJ (1.1)

where KJ is the joint stiffness matrix of a parallel mechanism, KJ = diag[k1, . . . , kn],

ki is a scalar representing the joint stiffness of each actuator, which is modeled as linear

spring, and J is the Jacobian matrix of the mechanism. If

det[JTKJJ] = 0 (1.2)

then singular configurations appear. Anyhow, this can be avoided by adjusting the

actuated joint variable or architecture design parameters. Since it will be shown in

Chapters 4, 5 and 6, link flexibilities have significant effects on the Jacobian matrix.

Eq. (1.2) has implied that even if there is no singular configuration in the rigid case, it

is still possible that the singular configuration can appear in a flexible case. Hence, it

is of paramount necessity to take link flexibilities into account. A kinetostatic model

is therefore established for the study of flexible parallel mechanisms. The model is a
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stiffness/compliance model in which both link and joint compliances are considered and

the relationship between mechanism global stiffness and link flexibilities is derived.

Among most of the existing applications of parallel mechanisms for machine tool

design, only five or less than five degrees of freedom are required because of the ax-

isymmetric machining (tool revolves around its own axis). Therefore, research and

development of parallel mechanisms with less than 6-dof is necessary. In this thesis,

we will propose several new types of parallel mechanisms with fewer than six degrees

of freedom. They are a series of n-dof parallel mechanisms which consist of n identical

actuated legs with six degrees of freedom and one passive leg with n degrees of free-

dom connecting the platform to the base. The degree of freedom of the manipulator is

dependent on the passive leg’s degree of freedom. One can improve the rigidity of this

type of mechanism through the optimization of the link rigidities to reach the maximal

global stiffness and precision. Moreover, this series of mechanisms have the character-

istics of reconfigurability and modularity since they have identical actuated legs, thus,

the entire mechanism essentially consists of repeated parts, offering price benefits for

manufacturing, assembling and purchasing.

The subject of the present study in particular is to develop theories, methods and

a series of prototypes used for parallel kinematic machine tool design. The implementa-

tion in the present study is focused on stiffness mappings, the design guidelines and the

optimization of the machine tools, i.e. the parallel kinematic mechanisms in particular.

It is also envisaged that the kinetostatic model can be used for the optimum design to

increase the stiffness and accuracy of machine tools. Eventually, the accessibility and

usability of the model in industrial design practices could tremendously improve the

characteristics of parallel machine tools.

1.2 Literature Review

Because of the recent trend towards high-speed machining (HSM), there is a demand

to develop machines with high dynamic performance, i.e. there is a demand for stiff

constructions with little moving mass. Parallel mechanisms have been targeted for the

design and development of applications for real-world industrial problems. In situations
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where the need for accuracy and high stiffness is crucial, parallel mechanisms present

themselves as feasible alternatives to their serial counterparts. They have the potential

to be more accurate and repeatable than serial mechanisms in part due to the fact that

their position errors do not accumulate, thus the total position error rarely exceeds the

error caused by a single leg of the mechanism.

Parallel mechanisms generally comprise two platforms which are connected by joints

or legs acting in-parallel. The most common configuration comprises six legs, and

the legs are linear actuators such as hydraulic cylinders, or in the case of a passive

mechanism that could be spring loaded. One of the platforms is defined as the “movable

platform”, which has six degrees of freedom relative to the other platform, which is the

“base”. With six degrees of freedom, the movable platform is capable of moving in three

linear directions and three angular directions independently or in any combination.

One such platform known as the “Gough-Stewart” platform was introduced by Gough

(1956) as a tire testing machine and then by Stewart (1965) for use in an aircraft

simulator. Over the past decades, parallel mechanisms have received more and more

attention from researchers and industries. They have been continually developed and

refined by many researchers, e.g., Hunt, Kohli, Bailey, etc. They can be found in

several practical applications, such as aircraft simulators (Stewart 1965; Pouliot et al.

1998; Advani 1998), adjustable articulated trusses (Reinholz and Gokhale 1987), mining

machines (Arai et al. 1991), pointing devices (Gosselin and Hamel 1994) and micro-

positioning devices (Physik-Instrumente 1997). More recently, they have been used

in the development of high precision machine tools (Boër et al. 1999; Lauffer et al.

1996; Bailey 1994; Hollingum 1997) by several companies such as Giddings & Lewis,

Ingersoll, Hexel, Geodetic, Toyoda, and others. The Hexapod machine tool (Bailey

1994; Hollingum 1997; Pritschow and Wurst 1997; Aronson 1997; Matar 1997) is one

of the successful applications.

Research and development in new alternative mechanical architectures for machine

tools can generally be divided into two categories. One studies the most suitable

components for machine tools. This includes the development of independent joints

with various specifications and links as well as rapid interfaces between joints and

links. The other is aimed at providing a theoretical analysis (including kinetostatic

analysis, dynamic analysis and optimization) system for the formulation of a suitable
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configuration through a combination of all those possibilities (both in architectures and

degree of freedom). In the second category, less work has been done. Our proposed

investigation is therefore in the second category, especially focusing on kinetostatic

analysis and optimization of parallel and hybrid architectures for machine tools. Of

particular significance to new generation machine tools is the fact that there has been

a growing demand for increasing stiffness, speed, precision and working volume; the

proposed investigation is conducive to the application of robots to modern machine

tool design.

1.2.1 Parallel Mechanism Based Machine Tools

Hexapod machine tool, as one kind of parallel kinematic machines, has been widely

studied and developed by researchers. Matar (1997) defines a “Hexapod” as a geometric

structure where a hexagon provides the points on a frame for six struts which are then

collected into pairs to form a triangle, whose position in free space can be uniquely

described by the struts length.

The parallel kinematic mechanism offers higher stiffness, lower moving mass, higher

acceleration, potential higher accuracy, reduced installation requirements, and mechan-

ical simplicity relative to existing conventional machine tools (Boër et al. 1999; War-

necke et al. 1998; Rehsteiner et al. 1999). By virtue of these attributes, the par-

allel kinematic mechanism offers the potential to change the current manufacturing

paradigm. It has the potential to be a highly modular, highly reconfigurable and high

precision machine. Other potential advantages include high dexterity, the requirement

for simpler and fewer fixtures, multi-mode manufacturing capability, and a small foot

print. A comparison between the Hexapod machine tools and the conventional machine

tools is given in Table 1.1 by Giddings & Lewis. It shows that the Hexapod machine

tool has improved machine tools substantially in terms of precision (about 7 times),

rigidity (about 5 times), and speed (about 4 times) (Xi and Mechefske 2000).

So far, there are several companies and institutes involved in research and develop-

ment of this kind of machine tool. Aronson (1997) summarized the four major compa-

nies, and they are Giddings & Lewis, Ingersoll Milling Machine Co., Hexel Corporation

and Geodetic Technology International Ltd. Giddings & Lewis did some of the early
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Table 1.1: Comparison of Hexapod machine tools and conventional machine tools (con-

ducted by Giddings & Lewis Inc.)

Machine Tool Hexapod Convention Improvement

Precision 4/1000” 30/1000” 7times

Rigidity 1M lb/in 0.2M lb/in 5times

Speed 2598 in/min 650 in/min 4times

pioneering effort on the Variax, the Giddings & Lewis hexapod machine. Moreover,

the industrial interest is continually growing (Owen 1999).

Figure 1.1 represents a parallel mechanism module from Ingersoll Milling Machine

Co. (Lauffer et al. 1996), it consists of a fixed upper dome platform and a moving

lower platform, connected by six struts, which are precision ballscrews. On the upper

platform the six struts are driven by motor driven ballnuts. These alter the position

and attitude of the lower platform by extending or retracting the struts. The ballscrews

join the lower platform at three points, with two struts sharing a ball-and-socket joint.

Various head attachments can be incorporated to suit a variety of applications. Each

individual axis (leg drive) is independent from the others and comes with a personality

file containing information such as error mapping (e.g. lead pitch variation), mounting

offsets, physical performance and thermal expansion characteristics.

There are some other institutes and industries doing research and development

work in this area. They are, NEOS Robotics (Tricept series), Toyoda Machine Works

(HexaM Machine), ITIA-CNR (ACROBAT), Seoul National University (ECLIPSE),

Sandia Hexapod Testbed, Swiss Federal Institute of Technology (Hexaglide), Materials

Engineering Division (MMED) from Lawrence Livermore National Laboratory (LLNL)

(Octahedral Hexapod), SMARTCUTS (Simultaneous MAchining through Real Time

Control of Universal Tooling System) (modular 3-DOF parallel link mechanism), LME

Hexapod machine (Hexapod software model), University of Stuttgart (modular parallel

mechanism design) and others.

Moreover, there are also many publications concerning the research and develop-

ment of parallel kinematic machines. Heisel (1999) presents the precision requirements

for parallel kinematic machine tools design. Wang et al. (1997) discuss the design
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Figure 1.1: Schematic of a six-axis Hexapod machining center.

and kinematics of parallel mechanisms for manufacturing. Pritschow and Wurst (1997)

describe a systematic design procedure that allows the evaluation of the technologi-

cal feasibility of hexapods, and the parallel kinematic machines (PKMs) types that

are currently being investigated by European researchers are presented in (Pritschow

1999). Wavering (1999) introduces the history of PKMs research at the NIST Manufac-

turing Engineering laboratory, the current research areas and the potential directions

for future work. Abbasi et al. (1997) address a parametric design methodology for a

special 6-6 parallel platform for contour milling. Warnecke et al. (1998) present the

analysis, designs and variants of parallel-structure based machine tools, different design

variants are compared with regard to the load of the structures and the singularities.

Gopalakrishnan and Kota (1998) study various parallel manipulator configurations and

the possibility of their integration under the evaluation of reconfigurable machining sys-

tems. The modular concepts for PKMs are proposed in the paper, similarly to (Wurst

1999). An approach to Parallel Kinematic Machines design integrating tools for ma-

chine configuration, synthesis and analysis is presented in (Molinari-Tosatti et al. 1997).

Fassi et al. (1999) present an approach to the development of a computer aided con-

figuration tool for parallel kinematic machines. The goal of this tool is to enable a

quick comparison between different machine structures. Bianchi et al. (2000) propose

a virtual prototyping environment for PKMs analysis to ease the industrial adoption
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of PKMs by availability of methodologies and integrated tools able to analyze PKMs

of any architecture in a short period of time, providing the key data needed to de-

sign the machine. Weck et al. (1999) discuss the substantial features of PKMs with

special focus on structurally caused problems in design, control and calibration and

takes Ingersoll Octahedral Hexapod and the Dyna-M concept as examples for possible

solutions. Some industrial applications are reported in the literature. For instance,

Honegger et al. (1997) present the adaptive control of the Hexaglide. Ryu et al. (1999)

present the “Eclipse” machine tool designed for rapid machining with their research of

kinematic analysis. Powell et al. (1999) focus on the Giddings & Lewis Variax Hexa-

pod machine tool by presenting different metal cutting tests and analyzing the machine

tools performances. Tönshoff et al. (1999) present the structure and characteristics of

the hybrid manipulator “Georg V” at Hannover University. Pierrot and Shibukawa

(1999) report the patented machine tools “HEXA” and “HexaM” at Toyoda Machine

Works Ltd. Rey and Clavel (1999) display the “Delta” parallel robot, and some others.

In summary, all the existing parallel kinematic machines can be classified as follows:

1. From the viewpoint of the frame, two approaches to (PKMs) frame design ex-

ist. Ingersoll Milling Machine Co. (in conjunction with National Institute of

Standards and Technology, NIST) (Figure 1.1), Hexel Corporation, and Geodetic

Technology International Ltd. all use a separate frame that suspends the hexa-

pod, while Giddings & Lewis connected the spindle platform directly to the table

platform (Figure 1.2), thus avoiding thermal distortion and improving stiffness.

2. From the viewpoint of the structure, a new design called the Triax — not techni-

cally a hexapod — has been investigated by Giddings & Lewis. It will operate in

only three axes. In contrast to the Hexapod machine from Ingersoll or Giddings &

Lewis, The Institute for Control Technology of Machine Tools and Construction

Units (ISW) of the University of Stuttgart has developed a Hexapod (Pritschow

and Wurst 1997) whose motion is generated by linear movement of the base

points of fixed length links and not by changing the leg length (Figure 1.3). The

Hexaglide (Honegger et al. 1997) (Figure 1.4) from Swiss Federal Institute of

Technology also falls into this type.

3. From the viewpoint of workspace volume, the Hexaglide (Honegger et al. 1997)
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Figure 1.2: The Variax Hexacenter (Figure from Giddings & Lewis).

(Figure 1.4) from the Swiss Federal Institute of Technology differs from the Hexa-

pod by the fact that the joints are placed on parallel guideways. Thus, instead

of changing the total length of the legs, they have the possibility to make the

guideways longer in order to extend the workspace of the machine in one direc-

tion. All other dimensions stay unaffected. This makes the Hexaglide an ideal

mechanism for the machining of long parts. The Hexaglide is also easier to build

and to measure than the Hexapod.

4. From the viewpoint of actuated joints, there are three types of parallel kinematic

machines:

• Prismatic actuated machines with variable leg lengths and fixed joints (e.g.

Ingersoll, Neos Robotics),

• Linear Motion (LM) actuated machines with fixed leg lengths and base joints

movable on linear guideways (e.g. HexaM, ECLIPSE, Hexaglide, Triaglide,

Linapod),

• Revolute actuated machines with fixed leg lengths (e.g. Delta, Hexa),

5. From the viewpoint of research methodology, there are OKP (One-of-a-Kind Pro-

duction) design methodology (e.g. Tricept, HexaM) which is suitable for those



10

Figure 1.3: Kinematic structure of the 6-dof machine tools.

industrial companies, and systematic design of Hexapods using modular robot

methodology (e.g. Linapod). Modular robot concepts and techniques have been

of interest in the robotics field since the 1980s (Cohen 1992; Chen 1994), since

selecting an industrial robot that will best suit the needs of a forecast set of tasks

can be a difficult and costly exercise. This problem can be alleviated by using a

modular robot (system) that consists of standard units such as joints and links,

which can be efficiently configured into the most suitable leg geometry for these

tasks. From this point of view, modular robots introduce a new dimension to

flexible automation in terms of hardware flexibility, compared to conventional

industrial robots.

Figure 1.5 shows some of the possible configurations of parallel kinematic mecha-

nisms that can be found primarily in (Merlet 1997). The patented machine tools in

Figure 1.5(a) “Hexa” (Uchiyama 1994) and (b) “Rotary Hexapod” (Chi 1999) are rev-

olute actuated ones while (c) 6-dof parallel mechanism (Alizade and Tagiyev 1994) and

(d) “Eclipse” (Ryu et al. 1999) are the combination of revolute and prismatic actuated
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Figure 1.4: Kinematic structure of the Hexaglide

mechanisms. Figure 1.5(e) 6-dof “minimanipulator” (Tahmasebi and Tsai 1994) uses

2 prismatic actuators with fixed leg lengths and Figure 1.5(f) (Behi 1988) displays the

combination of a linear driven base point and variable strut lengths.

Philosophically, most of the work above was built upon the concept of the traditional

“Gough-Stewart” mechanism type. This suggests that most parallel mechanisms have

six degrees of freedom. A question left open in previous work is: The vast majority of

the machining is done with less than 6-dof, so why should we pay for six? In this thesis,

we will focus our attention on 5-dof or less than 5-dof parallel mechanisms (Figure 1.6),

since machining consists in orienting an axisymmetric body (the tool), which requires

only five degrees of freedom.

In this thesis, we propose a series of n-dof parallel mechanisms which consist of n

identical actuated legs with six degrees of freedom and one passive leg with n degrees of

freedom connecting the platform and the base. The degree of freedom of the mechanism

is dependent on the passive leg’s degree of freedom. One can improve the rigidity of

this type of mechanism through optimization of the link rigidities to reach the maximal

global stiffness and precision.

1.2.2 Parallel Mechanisms Stiffness and Compliance Analysis

For the issues of stiffness and precision of parallel mechanisms, there also exists signifi-

cant work. Although parallel mechanisms are inherently very stiff, elastic deformations
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(a) The “Hexa” robot

(Uchiyama 1994).

(b) The “Rotary Hexapod” by

Hexel (Chi 1999).

P-actuator

S-joint

R-joint

R-actuator

(c) Circular movement of the

base point.

R-actuator

R-joint

S-joint

P-actuator

(d) “Eclipse” from SNU.

R-joint

Planar motor

S-joint

(e) 6-dof “minimanipulator”.

P-actuator

S-joint

P-actuator

R-joint

(f) Combination of

linear driven base

point and variable

strut length.

Figure 1.5: Selected parallel kinematic mechanisms.
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Figure 1.6: CAD model of the 5-dof parallel mechanism (Figure by Gabriel Coté).

may still occur under large payloads. In the real world, what the standard of a rigid

body is has been studied by many researchers. Two main limitations of a rigid body are

noted: i) the accuracy of the rigid body parameters with respect to the real values, and

ii) the validity of the rigid body assumption. Several authors have proposed methods

for the calibration of the rigid body parameters (Everett and Hsu 1989; Hayati et al.

1988; Hsu and Everett 1985; Stone 1987). On the other hand, other researchers have

incorporated the structural flexibilities in the geometric model of the mechanism (Chen

and Chao 1986; Judd and Knasinski 1990; Whitney et al. 1986). Still others have fo-

cused on dynamic semi-flexible models in a control oriented perspective (Chang and

Hamilton 1991a; Chang and Hamilton 1991b; Jonker 1990). Experimental results have

been reported to justify the efforts committed to the development of representative

semi-flexible models. The gain in absolute precision obtained from rigid body geomet-

ric calibrations has been said to be of the order of 75% to 80% (Caenen and Angue
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1990; Judd and Knasinski 1990). An additional 16% increase in absolute precision was

obtained by Caenen and Angue (1990) when the calibration of current industrial robots

incorporated flexibilities.

Incremental flexible models have also been proposed. In these models, gross motion

is described with the Denavit-Hartenberg convention (Denavit and Hartenberg 1955),

while, for example, additional homogeneous transformations express local corrections,

defined with the help of small displacement theory (Tang and Wang 1987). Moreover,

joint variables are sometimes expanded to compensate for joint flexibilities. Meghdari

(1991) worked on a model similar to Tang and Wang (1987) but which included only

vertical bending. A single beam is associated with the mechanism: individual joints

are thus regarded as non-rigid components of that beam. Caenen and Angue (1990)

enhanced a model first developed by Hsu and Everett (1985). In this model, three

springs are added to each of joint and the three orientation parameters per link are

amended in order to compensate for the effects of gravity. Cléroux et al. (1995)

presented a semi-flexible static model. The term semi-flexible is used to denote the fact

that a first order approximation is used in the description of the orientation changes

induced by the beam deformation, but she took the whole structure as the objective and

it brought difficulties in parameter calibrations. Some others (Fattah et al. 1994) have

addressed the flexibilities in parallel robotic mechanisms. But none of them use the

theory of lumped flexibilities to calibrate the stiffness of the mechanism. This theory

will be employed in this thesis.

Stiffness is a very important factor in many applications including machine tool

design, since it affects the precision of machining. Induced vibration is explicitly linked

to machine tool stiffness. For a metal cutting machine tool, high stiffness allows higher

machining speeds and feeds while providing the desired precision, surface finish and

tool life (Huber 1993), thus reduce vibration (such as chatter). Therefore, to build and

study a general stiffness model of parallel mechanisms is very important for machine

tool design.

From the viewpoint of mechanics, the stiffness is the measurement of the ability of a

body or structure to resist deformation due to the action of external forces. The stiffness

of a parallel mechanism at a given point of its workspace can be characterized by its

stiffness matrix. This matrix relates the forces and torques applied at the gripper link in
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Cartesian space to the corresponding linear and angular Cartesian displacements. The

stiffness matrix of a mechanism is generally defined as the transformation which relates

the generalized force (force and torque) applied to the end-effector and its resulting

displacement (translation and orientation) (Asada and Slotine 1986). This matrix can

be obtained using kinematic and static equations. Gosselin (1990) developed stiffness

maps for a Stewart Platform for specified directions of perturbation.

Two main methods have been used to establish mechanism stiffness models. The

first one is called matrix structural analysis (Martin 1966; Wang 1966), which models

structures as a combination of elements and nodes. The stiffness matrix depends on the

nature of the elements in the structure. Clinton et al. (1997) used this method to derive

the stiffness matrix for each of the elements in the structure model and assemble them

into a system-wide stiffness matrix. In their study, the mechanism stiffness model relies

on truss elements. They also used experimental stiffness measurements to estimate

the system parameters, the average error between the results calculated based on the

model and the experimental results was around 9.0%. The second method relies on the

calculation of the parallel mechanism’s Jacobian matrix (Gosselin 1990; El-Khasawneh

and Ferreira 1999; Kerr 1989; Tahmasebi 1993). Among others, El-Khasawneh and

Ferreira (1999) addressed the problem of finding the minimum and maximum stiffnesses

and the directions for a mechanism in a given posture. In addition, the computation

of stiffness in an arbitrary direction is also discussed in their paper. Furthermore, they

used Finite Element Analysis model to demonstrate the correctness of their model. The

fact that the minimum stiffness is experienced in the direction of the eigenvector that

corresponds to the minimum eigenvalue of a stiffness matrix of the mechanism is shown

in their paper. A corresponding result is obtained for the maximum stiffness of the

mechanism. On the other hand, they used the eigenvalues of the system stiffness matrix

to represent the principal stiffness in different directions. Since the units of the different

entries of the matrix are not uniform, the dimensions of the eigenvalues of the stiffness

include both force/length and force-length. Hence, the eigenvalue problem for stiffness

is dimensionally inconsistent and does not make sense physically. Tahmasebi (1993)

also used the eigenvalues to determine the stiffness of mechanisms. He improved the

matrix condition and defined a dimensionally-uniform generalized force applied to the

platform and used it in connection with the definitions of the previous Jacobian matrix

to obtain a dimensionally-uniform stiffness matrix. Because all the aforementioned
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work relies on the eigenvalues, compound stiffnesses are obtained which are difficult to

interpret physically. Gosselin (1990) uses the diagonal elements of the stiffness matrix

as the stiffness. These elements represent the pure stiffnesses in each direction, they

reflect the stiffness of machine tools more clearly and directly. Hence, this method is

adopted in this thesis.

1.3 The Objectives and Scope of the Study

Conventional machine tools are usually based on a serial structure. There are as many

degrees of the freedom as required, and the axes are arranged in series. This leads to a

single kinematic chain. The axes are usually arranged according to the Cartesian axes,

which means there is a X, Y, and Z axis and rotational axes if needed. These machines

are easy to operate because each axis directly controls one Cartesian degree of freedom

and there is no coupling between the axes.

A parallel kinematic machine promises to increase stiffness, higher speed and acceler-

ation due to reduced moving mass, reduced production and installation costs. Research

in this kind of architectures for machine tools has been growing since the 1980s (Bailey

1994; Kempfer 1994; Hollingum 1997; Aronson 1997). Although a number of new de-

vices were patented, none seems to take the structure flexibility into account. While the

joints and links have become commercially available, the study for the most promising

architecture for machine tools through kinetostatic analysis, dynamics and optimiza-

tion is still a challenge. The proposed investigation plans to meet this challenge. The

aim of this thesis work is to investigate new alternative mechanical architectures which

could be used in the design of a machine tool with parallel or hybrid architecture. To

reach this aim, the objectives are set as follows:

1. Development of a topological representation and generation of all possible archi-

tectures that will provide 5 degrees of freedom between the tool and the workpiece.

The topological representation serves to develop a database for conceptual de-

sign to obtain the most promising kinematic architectures for 5-dof or fewer than

5-dof machine tools. The key consideration in achieving this objective are (i)

both the tool and the workpiece can be actuated independently and 5 dofs are
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required for manufacturing tasks, (ii) the possible combinations of 5 dofs are:

(5,0), (4,1) and (3,2), and (iii) for each of these combinations, the kinematic

chains involved may lead to several possibilities (serial, parallel or hybrid) and

additionally, redundancy may be an option. At the end of this study, a detailed

list of possible topologies will be obtained and the most promising architectures

will be highlighted.

2. Development of geometric design model. The key task is for the topologies se-

lected in the previous study, to define geometric parameters and investigate the

geometric design. The geometric design must take into account the actuation

issues, the working volume, and mechanical interferences. The selected designs

will be modeled using Pro-Engineer which will facilitate this step. Again, all

possibilities of configurations will be investigated.

3. Development of a general model of the stiffness of the mechanisms screened out

from the list of some promising configurations. Using a formulation based on

lumped flexibilities, write a general model of the stiffness of the concerned mech-

anisms. Using this model, all concerned mechanisms will be analyzed for their

stiffness and accuracy at the tool, which is the most important property of the

mechanism. In the lumped model, links and actuators will be replaced by springs

whose stiffness will represent the stiffness of the link or the actuator. This will

allow to obtain a relatively simple kinetostatic model and with which all mecha-

nisms will be analyzed.

4. Kinetostatic modeling and optimization. Using the kinetostatic model developed

in the preceding step, optimize the most promising architectures for stiffness

(accuracy) based on constraints associated with size and geometry.

The product of the proposed investigation now becomes obvious: build the kine-

tostatic model, optimize the most promising architectures for stiffness (accuracy). Al-

though the proposed investigation is aimed at the most promising 5-dof or fewer than

5-dof machine tools architectures for accuracy, those issues addressed in the four objec-

tives are fundamental. Therefore the results of the work can provide a framework for

facilitating a further study of parallel mechanisms for machine tools such as parameter

calibration, simulation and control program generation.
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1.4 The Main Philosophy behind the Thesis Work

Taking the discussion of the preceding three sections as input we shall set up some

philosophies or strategies behind this thesis work and summarize them as follows:

1. Learn from Chebychev-Grübler-Kutzbach criterion

The degree of freedom (or Mobility) of a kinematic chain can be defined as the

minimum number of independent variables necessary to specify the location of

all links in the chain relative to a reference link. A preliminary evaluation of the

mobility of a kinematic chain can be found from the Chebychev-Grübler-Kutzbach

formula. It will be employed to enumerate all the possibilities of kinematic chains

and finally the most promising kinematic architectures in this thesis.

2. Place emphasis on kinetostatic analysis

We can describe the term “Kinetostatic Analysis” as such: Given the mechanism

motion, calculate the unknown internal joint forces and external input forces or

torques. Kinetostatic analysis includes two analyzes in this thesis work:

• kinematic solutions to provide the mechanism motion;

• stiffness solutions to relate the forces and torques to the motion;

3. Learn from Principle of Kinematic/Static Duality

Since a duality exists between the kinematics and statics of mechanisms, therefore,

the statics of mechanisms can be taken as a transition between their kinematics

and dynamics. Kinematic/static duality can be derived by considering the power

input to and output from a system which can neither store nor dissipate energy,

namely, a system in which kinetic energy, strain energy, friction and damping are

all absent and where gravitational forces are considered as external forces applied

to the system. In this case, the principle of conservation of energy allows us to

conclude that the power input to the system is equal to the power output from

the system. This principle will be used to establish the kinetostatic model.

4. Learn from the theory of lumped flexibilities
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In the analysis of every engineering problem, the system under scrutiny must be

represented by a physical model. It is often permissible to represent a continu-

ous or distributed-parameter system (in which the mass and spring elements are

continuously spreaded over a space) by a discrete or lumped-parameter model (in

which the mass and spring are concentrated at certain points in a space).

In this thesis work, we will represent the motions as the sum of large motions

and small motions, and build a lumped model where joints and actuators will be

replaced by springs whose stiffness will represent the stiffness of the link or the

actuator. We assume that springs are located in specified localized places, and

then the flexible links can be considered as equivalent to rigid ones. Therefore,

the large motions will be the equivalent to rigid link motions but not identical to

the actual rigid link motion. The small motions are both small rigid body motions

and body deformations, i.e., the deviations of the flexible link manipulator relative

to the equivalent rigid links, and the small motions can be replaced by lumped

springs in our case.

5. Learn from Genetic Algorithms

Genetic algorithms have been shown to solve linear and nonlinear problems by

exploring all regions of state space and exponentially exploiting promising areas

through mutation, crossover, and selection operations applied to individuals in

the population (Michalewicz 1994).

The architectures being studied, contain many geometric and behavior parameters

and complicated matrix computations. In order to optimize the structure to reach

the optimal stiffness, it is very difficult to write out the analytical expressions for

each stiffness element. Moreover, for traditional optimization methods, only a few

geometric parameters (Gosselin and Guillot 1991) could be handled due to the

lack of convergence of the optimization algorithm when used with more complex

problems. Therefore, genetic algorithms are the best candidate and will be used

for such optimization problems.
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1.5 The Organization of the Thesis

Chapter 2 presents the topological study of the kinematic structure. Some concepts

underlying kinematic structure development will be addressed, such as the Chebychev-

Grübler-Kutzbach criterion — a basic theory for kinematic chain degree-of-freedom

distribution and criteria for better and practical kinematic structures of machine tools.

All the possible kinematic structures which can be used for 5-dof or fewer than 5-dof

machine tool design will be enumerated based upon these concepts. Finally, the detailed

list of possible topologies has been obtained and the most promising architectures are

pointed out under the design criteria. These most promising architectures will be

analyzed and optimized in Chapters 4, 5, 6 and 7.

Chapter 3 introduces the lumped flexibility model for joints and links. A general

stiffness model for fully-parallel mechanisms is established. Implementation of the

models for planar 2-dof and planar 3-dof parallel mechanisms are given. Furthermore,

the correctness of the stiffness model is verified with Pro/Engineer.

Chapter 4 and Chapter 5 present several new types of n-DOF parallel mechanisms

with one passive constraining leg. The geometric configuration of these new types

of mechanisms is introduced first, followed by the kinematic analysis for this type of

mechanisms. This includes the solution of the inverse kinematic problem, Jacobian

matrices and global velocity equations, in which structures with rigid-link and flexible-

link are discussed, respectively. The general kinetostatic model is then established with

consideration of the characteristics of lumped joints and links model. The arguments

to develop this model are illustrated. Implementation of the model is discussed as well.

Examples for this type of mechanisms with 3-dof, 4-dof, and 5-dof are given. Stiffness

mappings are illustrated in these chapters.

There are four purposes for the implementations in Chapters 4 and 5:

• to demonstrate the idea that flexible links have significant effects on parallel

kinematic machines’ stiffness and accuracy. These effects cannot be neglected in

machine tool design.

• to provide the designers with a powerful tool to obtain the design guidelines easily.
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• to demonstrate that the kinetostatic model can be easily extended to any other

kind of parallel kinematic machines.

• to verify the correctness of the theories, methods, and the kinetostatic model.

Chapter 4 discusses the mechanisms with prismatic actuators, while Chapter 5

discusses the mechanisms with revolute actuators. In particular, Chapter 4 also presents

a commercial parallel kinematic machine called “Tricept” and its kinetostatic analysis.

Chapter 6 describes the kinetostatic analysis and general stiffness model for spatial

six-degree-of-freedom mechanisms. Cases of 3-leg and 6-leg fully-parallel mechanisms

with revolute actuators and 6-leg fully-parallel mechanism with prismatic actuators

are given, respectively. In this chapter, an alternative method is used to establish

the kinetostatic model. It is based on the theorem of velocity compatibility (Angeles

1997). The general purpose of the discussion in this chapter is to further provide some

verifications of the theories, viewpoints, and approaches developed in the preceding

chapters in an alternative method and predicate the perspective of kinetostatic models.

Chapter 7 addresses the implementation of optimization techniques. The optimum

design of parallel kinematic mechanisms is based on global stiffness improvement re-

lated to geometric and behavior parameters. The genetic algorithms theory is first

briefly introduced, then the determination of parameters and the objective function

establishment are addressed as well. The detailed analysis of the kinetostatics of the

parallel manipulators conducted in previous chapters are used to define and optimize

their geometric sizes and properties. Finally, the implementation and optimal results

for all kinds of mechanisms discussed in this thesis are given. Results show that the

global stiffnesses of the mechanisms are significantly increased after optimization. Ma-

chine tool designers can obtain the desired stiffness easily by adjusting the geometric

dimensions and properties.

Chapter 8 brings together the most important conclusions and observations of the

study and suggests the work to be done in the future.



Chapter 2

Mechanism Kinematic Structure

2.1 Introduction

One of the objectives of this thesis work is to find the most promising kinematic struc-

tures which can be used for machine tool design. Hence, some well-known principles

are applied to investigate all the possibilities of structure in detail. A mechanism is

defined as a kinematic chain with one of its components (link or joint) connected to the

frame. A kinematic chain consists of a set of links, coupled by joints (cylindrical, pla-

nar, screw, prismatic, revolute, spherical, and Hooke) between adjacent links. In this

chapter, a topological study of different combinations of kinematic chain structures will

be performed using a graph representation approach. The number of links and joints for

the desired system and their interconnections, neglecting geometric details (link length

and link shape), are described. The possible architectures that will provide 5 degrees

22



23

of freedom between the tool and the workpiece are generated. In Section 2.2, the basic

concept of the graph representation of a kinematic structure is addressed. Then, a

topological study of the kinematic structures is described in Section 2.3. First, the

Chebychev-Grübler-Kutzbach criterion is introduced. Second, requirements for possi-

ble kinematic structures are set up. Finally, the structural representation of kinematic

chains and architectures with consideration of serial, parallel and hybrid cases is illus-

trated. A remark on the role of redundancy is also given. Section 2.4 discusses the

reason for choosing parallel and hybrid mechanisms for PKMs. In Section 2.5, the

most promising architectures are established by specifying the design criteria of the

desired kinematic structures. A summary with discussion of related work is presented

in Section 2.6.

2.2 Graph Representation of Kinematic Structures

A kinematic chain can be described as a set of rigid bodies attached to each other by

kinematic pairs, resulting in a mechanical network containing joints and links (Gos-

selin 1988). A kinematic structure represents the kinematic chain without considering

the detailed geometric, kinematic, and functional properties. The range of kinematic

structures given particular constraints on the number and type of joints and links can

be examined exhaustively. This range represents a set of logical possibilities for design

of a particular type of mechanism. This set is a framework in which designs are to be

realized.

In this thesis, a systematic method of enumerating all the possible kinematic chains

— kinematic architectures — is needed to meet the required degrees of freedom, i.e.

3-dof, 4-dof, and 5-dof. There were several methods reported in the literature. Hunt

(1978) used the theory of screw systems to enumerate parallel mechanisms exhaustively.

Earl and Rooney (1983) proposed a network approach which enables consideration of

two or more structures into another one. In this thesis, we will use a graph representa-

tion.

Graph theory is a field of applied mathematics (Harary 1969), which provides a

useful abstraction for the analysis and classification of the topology of kinematic chains,
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and it offers a systematic way of representing the topology of complex kinematic chains.

The graph of a kinematic chain consists of a diagram where each link is represented by a

point and each joint by a line. Thus, the graph representation of a kinematic chain will

take the form of a collection of points connected by lines. The graph representation of

kinematic chains has been used by, among others, Baker (1992), Gosselin (1988), Tsai

and Lee (1989), Zhang (1994), Zhang and Li (1999).

2.3 Topological Study

Since both the tool and the workpiece can be actuated independently and that 5 dofs

are required for manufacturing tasks, the possible combinations of 5 dofs are: (5,0),

(4,1) and (3,2). For each of these combinations, the kinematic chains involved may lead

to several possibilities (serial, parallel or hybrid) and additionally, redundancy may be

of an option. The followings are the details for this enumeration process.

2.3.1 Chebychev-Grübler-Kutzbach Criterion

The degree of freedom (or mobility) of a kinematic chain (Hunt 1978) can be defined as

the minimum number of independent variables necessary to specify the location of all

links in the chain relative to a reference link. The choice of the reference link does not

affect the resulting mobility. A preliminary evaluation of the mobility of a kinematic

chain can be found from the Chebychev-Grübler-Kutzbach formula.

l = d(n− g − 1) +

g
∑

i=1

fi (2.1)

with

l: the degree of freedom of the kinematic chain;

d: the degree of freedom of each unconstrained individual body (6 for the spatial

case, 3 for the planar case) (Hunt 1983);

n: the number of rigid bodies or links in the chain;

g: the number of joints; and
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fi: the number of degrees of freedom allowed by the ith joint;

2.3.2 Possible Architectures with Five Degrees of Freedom be-

tween the Tool and the Workpiece

2.3.2.1 Serial Mechanisms

Serial mechanisms have been extensively studied in terms of their design, kinematic

and dynamic modeling, and control by many researchers. When properly designed, the

serial structure has the benefit of possessing a large workspace volume in comparison

to the physical size of the mechanism.

Since serial mechanisms only have one open kinematic chain, this means that the

serial mechanisms only have one possibility in architecture.

The serial mechanisms have many drawbacks. Due to the serial nature of actuation

and transmission, related masses must be mounted distal to the base of the mechanism

leading to a small ratio of payload over machine mass, poor dynamic performance in

terms of acceleration capability, and poor system stiffness presented at the end-effector.

Since a lower axis has to carry both the loads (in all directions) and the weights of all

its upper axes, dynamic behaviors of the lower axes will be poor, especially to machine

tools which carry high loads. In addition, the serial structure leads to joint errors

being additive, and combined with the inherent low system stiffness, this leads to

poor accuracy at the end-effector. Thus, the drawbacks in their structures limit the

performance.

2.3.2.2 Parallel Mechanisms

Among the three possibilities (serial, parallel and hybrid), the parallel mechanisms are

the basic and the most important ones in building all the possible architectures, because

of the disadvantages of the serial mechanisms. The hybrid mechanisms will be built

through the combination of parallel mechanisms.

The possibility of parallel mechanisms will be investigated for the combinations of

dofs in (5,0), (4,1) and (3,2). The workpiece can be fixed (0-dof), or move along one
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axis (1-dof) or move along the X and Y axes (2-dof) or rotate about one or two axes.

Hence, one will consider the possibilities of parallel mechanisms with 5-dof, 4-dof, 3-dof

and 2-dof; besides, the case with 6-dof is taken as an option with redundancy. The

detail is shown as follows.

1. DOF distributions for each leg

For a given parallel platform, we can always make the following assumptions:

number of known bodies = 2 (platform and base),

number of parallel legs = L, and

degree of freedom of the ith leg = fli ,

then one can rewrite eq. (2.1) as

l = 6[2 +

L
∑

i=1

(fli − 1)−
L

∑

i=1

fli − 1] +

g
∑

i=1

fi

= 6− 6L+

g
∑

i=1

fi (2.2)

From this equation, it is apparent that there exist thousands of possibilities for 5-

dof or less than 5-dof cases. Hence, some constraints introduced and are specified

as follows:

• from the viewpoint of fully-parallel mechanism, the maximum number of

parallel legs are kept equal to the degree of freedom of the mechanism, thus

to guarantee the possibility of installing one actuator in each leg, one has

L ≤ l (2.3)

• although two-leg spatial parallel mechanisms are of little direct use indepen-

dently, they are useful to constructing “Hybrid” mechanisms, the minimum

number of the leg is given by

L ≥ 2 (2.4)

Based on the constraints represented by eqs. (2.3) and (2.4), and one can enu-

merate the possible dofs distributions as in Table 2.1. It is noted that these are

the basic combinations for different architectures, and one can remove or add legs

which have 6-dof for symmetric purpose in any of the basic structures at ease.
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Table 2.1: The possible degree-of-freedom distribution for each leg.

Degree of freedom Number of legs fl1 fl2 fl3 fl4 fl5 fl6

l = 2 L = 2 2 6

3 5

4 4

l = 3 L = 2 3 6

4 5

L = 3 3 6 6

4 5 6

5 5 5

l = 4 L = 2 4 6

5 5

L = 3 4 6 6

5 5 6

L = 4 4 6 6 6

5 5 6 6

l = 5 L = 2 5 6

L = 3 5 6 6

L = 4 5 6 6 6

L = 5 5 6 6 6 6

l = 6 L = 2 6 6

L = 3 6 6 6

L = 4 6 6 6 6

L = 5 6 6 6 6 6

L = 6 6 6 6 6 6 6
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2. Possible Structures

The variables for combining different kinds of architectures are mainly decided

by (i) leg length; (ii) position of the base points; or (iii) both the leg length and

position of the base points.

(a) Possible legs

Based on the required DOF distributions for each leg, one can find different

kinds of legs to meet the requirement through the combination of different

joints such as spherical joint (with 3-dof), Hooke joint (with 2-dof), revolute

joint ( with 1-dof) and prismatic joint (with 1-dof). One can combine them

to meet the dof requirements for each leg shown in Table 2.2, where

S: spherical joint;

R: revolute joint;

H: Hooke joint; and

P: prismatic joint;

Table 2.3 shows all the possible legs with a different degree-of-freedom.

(b) Vertex structures

From the literature related to the Stewart platform, various architectures

have been developed or proposed for the platform mechanisms, such as 3-6,

4-4, 4-5, and 4-6 (the numbers of vertices in the mobile and base plates)

platforms (Chen and Song 1992; Fichter 1986; Griffis and Duffy 1989; Lin

et al. 1994; Zhang and Song 1992). Since two spherical joints can be com-

bined to one concentric spherical joint, one can obtain two types of vertices

for parallel mechanisms as shown in Figure 2.1.

(a) (b)

Figure 2.1: Two types of vertex structures.
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Table 2.2: Possible joint combinations for different degrees of freedom.

Number of possibilities DOFs = 2 DOFs = 3 DOFs = 4 DOFs = 5 DOFs = 6

1 2R 1R2P 1S1P 1S2R 2S

2 2P 2R1P 1S1R 1S2P 1S1H1P

3 1R1P 3R 1R3P 1S1R1P 1S1H1R

4 1H 3P 2R2P 1S1H 1S3R

5 1H1R 3R1P 1H3R 1S3P

6 1H1P 4R 1H2R1P 1S2R1P

7 1S 4P 1H1R2P 1S1R2P

8 1H2R 1H3P 1H4R

9 1H2P 5R 1H3R1P

10 1H1R1P 4R1P 1H2R2P

11 3R2P 1H1R3P

12 2R3P 1H4P

13 1R4P 6R

14 5P 5R1P

15 4R2P

16 3R3P

17 2R4P

18 1R5P

19 6P

Based on these two vertex structures, various types of parallel mechanism

structures can be obtained through different arrangements of the joints on

the base and mobile platforms.

(c) Platform structures

Once the type of vertex structure is decided, one can obtain the platform

structure according to the number of vertices.

3. Possible architectures for parallel mechanisms

Based on the above analysis, one can assemble all the possible architectures as
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Table 2.3: Possible leg types with different degrees of freedom.

Possible numbers DOFs = 2 DOFs = 3 DOFs = 4 DOFs = 5 DOFs = 6

1 2R 1S 2R1H 1H2R1P 1S2R1P

2 1R1P 2R1P 1H1R1P 2H1R 1S1H1P

3 1H 1R2P 1S1P 2H1P 1S1H1R

4 3R 1S1R 1S1R1P1 1S1R1P

5 3P 2R2P 1S2R1 1S1H1P

6 1H1R 1R3P 1S2P 2S

7 1H1P 3R1P 1H3P 1S3P

8 4R 1H1R2P 1S3R

9 4P 1H3R 1H2R2P

10 1H2P 4R1P 1H3R1P

11 5R 1H4R

12 5P 6R

13 1R4P 6P

14 3R2P 1H4P

15 2R3P 3R3P

16 1H1R3P

17 5R1P

18 1R5P

19 2R4P

20 4R2P

Total possibilities 3 7 10 15 20
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shown in Figure 2.2 to Figure 2.5.

3-3

LEG=3

Figure 2.2: Possible architectures for parallel mechanisms with 3 legs.

4. The most promising architectures

As listed in Table 2.1 and Table 2.2, although we have already given constraints

to DOF distributions for each leg, there are still lots of possible combinations

for parallel mechanisms which meet the machine tool’s DOF requirement, e.g.,

for DOFs = 3, from Table 2.1, there are 3 possible combinations of legs with

degree-of-freedom of 3, 4, 5, and 6. Meanwhile, from Table 2.2, there are 7, 10,

14, and 19 possible combinations for legs with dofs of 3, 4, 5, and 6, thus we still

have many architectures through the permutation and combination. In order to

find the most promising architectures, the criteria for selection of joints and legs

are given as follows

(a) Proper number and type of DOFs

In order to ensure the required motions (i.e., 5-dof between the tool and

the workpiece) in Table 2.4, the DOFs distribution numbers and the type of

motions for each leg should be properly arranged. Each leg can be facilitated

with spherical, prismatic, Hooke and revolute joints.

(b) Simplicity and practicability

The legs used in machine tools must be simple and practical. For the sake

of the simplicity and dexterity of mechanism, we prefer to use ‘spherical’
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3-4

LEG=4

4-44-3

3-3

Figure 2.3: Possible architectures for parallel mechanisms with 4 legs.

pairs as the joints between link and platform for those legs with more than 3

dofs. Since the serially connected revolute joints easily lead to ‘Singularity’

and the ‘manufacturability’ is difficult, so we abandon to use of more than

2 revolute joints connected in series.

(c) Elimination of passive prismatic joints

Because it is difficult to control passive prismatic joints, in order to avoid

the existence of passive prismatic joints, we specify

Number of actuators ≥ Number of prismatic joints (2.5)

meanwhile, as we desire to put the actuators at the base of each link, there-

fore at most one prismatic joint can be used for each leg.

(d) Elimination of the rotation around the Z axis

Since the rotation around the Z axis is not needed, we can introduce a n-dof

passive leg into the mechanism to reach the desired motion. “Spherical joint”

on the movable platform will be replaced by “Hooke joint” + “Prismatic

joint” or “Hooke joint” + “Revolute joint” so as to constrain the rotation

around the Z axis. The passive constraining leg will be put in the center
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5-5

LEG=5

3-3
4-3 5-3

3-4
4-4

5-4

3-5 4-5

Figure 2.4: Possible architectures for parallel mechanisms with 5 legs.

of the platform to minimize the torque and force. Since the external loads

on the platform will induce a bending and/or torsion in the passive leg, its

mechanical design is a very important issue which can be addressed using

the kinetostatic model later. In this case, the actuators are put in each of

the identical legs and leave the special one (different DOFs) as the passive

link since its structure in design size is larger than the other legs to sustain

the large wrench.

(e) Structure of the mechanisms

The study is based on fully-parallel mechanisms, but one can add legs (with

6-dof) to keep the structure symmetric. For the shape of the platforms, one

should avoid the use of regular polygon, since it may lead to singularity.
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3-6

LEG=6

6-3 5-3 4-3 3-3

6-4

6-5

6-6

5-4

5-5

5-6

4-4

4-5

4-6

3-4

3-5

Figure 2.5: Possible architectures for parallel mechanisms with 6 legs.

Based on the discussion above, we eliminate some of the impractical joint combi-

nations and obtain the prospective ones as shown in Table 2.5

Through the combinations of the possibilities, we obtain the number of the most

promising possible architectures shown in Table 2.6. When L = l, we obtain a

fully-parallel mechanism.

2.3.2.3 Hybrid Mechanisms

A hybrid (serial-parallel) mechanism is a combination of serial and parallel mechanisms.

It comprises two parallel actuated mechanisms connected in series, one of them is the

upper stage, the other is the lower stage, and the moving platform of the lower stage

is the base platform of the upper stage. This special structure results in a mechanism
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Table 2.4: The possible motion distributions for required 5-dof between the tool and

the workpiece.

DOFs (machine tools) Motion of workpiece Motion of machine tool

l = 3 X, Y: translation Z: translation, X, Y: rotation

X, Y: rotation X, Y, Z: translation

combination of R & T X, Y, Z: combination of R & T

l = 4 X (or Y) translation X, (or Y), Z: translation; X, Y: rotation

X, (or Y): rotation X, Y, Z: translation; X, (or Y): rotation

combination of R & T X, Y, Z: combination of R & T

l = 5 fixed X, Y, Z: translation; X, Y: rotation

Table 2.5: Possible leg types with different degrees of freedom.

Possible numbers DOFs = 2 DOFs = 3 DOFs = 4 DOFs = 5 DOFs = 6

1 2R 1S 2R1H 1H2R1P 1S2R1P

2 1R1P 2R1P 1H1R1P 2H1R 1S1H1P

3 1H 2H1P 1S1H1R

4 1S1R1P1

5 1S2R1

6 1S1H1

Total possibilities 3 2 2 6 3

with the attributes of both. It provides a balance between exclusively serial and par-

allel mechanisms and better dexterity. It can even improve the ratio of workspace to

architecture size and the accuracy.

In order to meet the required 5-dof motion, 2-dof and 3-dof parallel mechanisms

are chosen to construct the “Hybrid” mechanisms. Since the upper stage is connected

with the end-effector, and it requires high stiffness, so a 3-dof parallel mechanism is

considered as the upper stage while a 2-dof parallel stage is taken as the lower stage.

For a 2-dof parallel mechanism — the lower stage of hybrid mechanism — both

1they are only suitable for those with identical legs, e.g., 3-DOF mechanism
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Table 2.6: The possible architectures.

Degree of Number fl1 fl2 fl3 fl4 fl5 fl6 Possible Possible architectures L = l

freedom of legs architectures with identical

dof structure

l = 2 L = 2 2 6 9 9 9

3 5 12 12 12

4 4 3 2 2

l = 3 L = 2 3 6 6 6

4 5 12 12

L = 3 3 6 6 12 6 6

4 5 6 36 36 36

5 5 5 56 6 6

l = 4 L = 2 4 6 6 6

5 5 6 3

L = 3 4 6 6 12 6

5 5 6 18 9

L = 4 4 6 6 6 20 6 6

5 5 6 6 36 9 9

l = 5 L = 2 5 6 9 9

L = 3 5 6 6 18 9

L = 4 5 6 6 6 30 9

L = 5 5 6 6 6 6 45 9 9

l = 6 L = 2 6 6 9 3

L = 3 6 6 6 10 3

L = 4 6 6 6 6 15 3

L = 5 6 6 6 6 6 21 3

L = 6 6 6 6 6 6 6 28 3 3

Total 429 179 98
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planar and spatial parallel mechanisms can be considered. Referring to eq. (2.2), for

planar mechanisms (d = 3), then one has

l = 3[2 +
L

∑

i=1

(fli − 1)−
L

∑

i=1

fli − 1] +

g
∑

i=1

fi

= 3− 3L+

g
∑

i=1

fi (2.6)

Therefore, the possible DOFs distribution for planar mechanisms can be found in Ta-

ble 2.7.

Table 2.7: The possible degree-of-freedom distribution for planar mechanisms.

Degree of freedom number of legs fl1 fl2 fl3

l = 2 L = 2 2 3

l = 3 L = 3 3 3 3

2 3 4

The hybrid motions (5-dof) can be arranged as follows:

• upper stage: X, Y axes rotation, Z axis translation; lower stage: X, Y axes

translation

One can realize this motion through either the combination of 3SPR as upper

stage and ‘Linear motion components’ (LM) as the lower stage (special case) or

the combination of 3SPR as upper stage and 3RRR planar parallel mechanism as

the lower stage.

• upper stage: X, Y axes translation, Z axis translation; lower stage: X, Y axes

rotation

One can realize this motion through the combination of 3SRR as upper stage and

2-dof spherical parallel mechanism as the lower stage. Because of the complexity

in manufacturing spherical parallel mechanisms, low stiffness, low precision, and

small workspace, we discard spherical parallel mechanisms in our research.

The “Hybrid” mechanisms can also be implemented in an alternative way, i.e. using

positioning head (wrist) for machine tools design, this will be described in the next

section.
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2.3.3 Redundancy

The main purpose of adopting redundancy is to improve reliability and dexterity. In

order to make the parallel kinematic machines capable of arbitrarily positioning and

orienting the end-effector in a three-dimensional workspace, redundancy factor may be

considered. In this thesis, only 3-dof, 4-dof, 5-dof and 6-dof spatial parallel mechanisms

are discussed. Generally, all these types of mechanisms are used for base platform, one

can select a positioning head (wrist) with 1-dof, 2-dof, or 3-dof in conjunction with the

base platform. This constructs a hybrid mechanism and it will lead to some redundant

cases.

2.4 Rationale for Using Parallel and Hybrid Archi-

tectures for Machine Tools

Because the serial structure has many drawbacks — as described in Section 2.3.2.1

— it cannot meet the requirements of machine tools. Whereas parallel mechanisms

have remarkable advantages over serial mechanisms, such as high precision, high load

capacity, high rigidity and high speed. Parallel mechanisms have received a great

attention as alternative structures for robot mechanisms. They do not have the problem

of accumulation of actuator errors — while this is the case for serial mechanisms —

therefore they can be positioned very precisely. Moreover, the end-effector is supported

by more than one link, hence, parallel mechanisms possess high load capacity and high

rigidity. Since the actuator can be put on the base parts, so movable parts can be

lightened remarkably, thus giving rise to high speed characteristics.

Meanwhile, a hybrid (serial-parallel) mechanism has the advantages of both types.

Therefore, the parallel and hybrid architectures have a potential to achieve some better

performance and are selected as the objectives for machine tool design.
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2.5 The Most Promising Architectures

In the following discussions, more constraints that take into account heuristic rules to

lead to a set of more practical configurations are discussed.

• For the case with l = L = 2 and fl1 = fl2 = 4, the resultant motion is a complex

motion, as the lower stage of the “Hybrid one”, it is difficulty to control the

motion, hence this case is eliminated;

• According to the “Symmetry criteria” (Gosselin and Angeles 1988), although we

cannot obtain the complete symmetry, we can require structures as symmetric as

possible, thus the cases with l = L = 3 and fl1 = 4, fl2 = 5, fl3 = 6 are discarded;

• For the case with l = L = 6, the leg structures 1S2R1P and 1S1H1P have the

same function, so the case 1S2R1P is eliminated;

• In order to keep all the structures consistent, we have

– For the case with l = L = 3 and fl1 = 3, fl2 = fl3 = 6, we add one more

6-dof leg – fl4 = 6, and let the leg (fl1 = 3) be located in the center and act

as a passive constraining leg;

– For the case with l = L = 4 and fl1 = 4, fl2 = fl3 = fl4 = 6, we add one

more 6-dof leg – fl5 = 6, and let the leg (fl1 = 4) be located in the center

and act as a passive constraining leg;

– For the case with l = L = 5 and fl1 = 5, fl2 = fl3 = fl4 = fl5 = 6, we add

one more 6-dof leg – fl6 = 6, and let the leg (fl1 = 5) be located in the center

and act as a passive constraining leg;

• For the leg of type 1S, it is seldom used in our structures, so it is discarded;

• For the leg with 5-dof, the case 1H2R1P restricts the 2 rotations around Z and

X or Y , so this case is eliminated;

• For the leg with 5-dof, the case 1S1H restricts the translation along Z;

• For the leg with 3-dof, the case 2R1P cannot meet the required motions for 3-dof

mechanisms, i.e. one translation, 2 rotations, it should be replaced by 1H1P and
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is put in the center of the platform, leaving the other 3 legs with 6-dof located at

the vertices to meet the desired motions;

Besides the above criteria, some other factors are also important for machine tool

design, such as the cost, workspace, static properties and payload capacity, mechanical

error, etc. One should take these factors into account too.

After rearrangement of Tables 2.5 and 2.6, the most promising architectures and

possible leg types with different degrees of freedom are obtained in Tables 2.8 and 2.9.

In this thesis, the cases of 6-dof fully-parallel mechanisms and 3-dof, 4-dof and 5-dof

mechanisms with one passive constraining leg will be discussed. They are listed in

Table 2.10.

2.6 Conclusions

The kinematic structures used for 5-dof or less than 5-dof machine tools design with

their underlying design principles have been made more explicit through the discussion

and enumeration in this chapter. From the results obtained, it can be seen that both

the tool and the workpiece can be actuated independently and that 5-dof is required for

manufacturing tasks, the possible combinations of degree-of-freedom are: (5,0), (4,1)

and (3,2). Moreover, for each of these combinations, the kinematic chains involved

lead to several possibilities (serial, parallel or hybrid) and additionally, redundancy is

taken as an option. Finally, a detailed list of possible topologies has been obtained

and the most promising architectures are pointed out under the design criteria. These

most promising architectures will be analyzed and optimized in Chapters 4, 5, 6 and

7, respectively.
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Table 2.8: The most promising architectures.

Degree of Number fl1 fl2 fl3 fl4 fl5 fl6 Possible Possible architectures L = l

freedom of legs architectures with identical

dof structure

l = 2 L = 2 2 6 9 9 6

3 5 12 12 2

l = 3 L = 2 3 6 6 6

4 5 12 12

L = 3 3 6 6 12 6 2

5 5 5 56 6 4

l = 4 L = 2 4 6 6 6

5 5 6 3

L = 3 4 6 6 12 6

5 5 6 18 9

L = 4 4 6 6 6 20 6 4

5 5 6 6 36 9 4

l = 5 L = 2 5 6 9 9

L = 3 5 6 6 18 9

L = 4 5 6 6 6 30 9

L = 5 5 6 6 6 6 45 9 4

l = 6 L = 2 6 6 9 3

L = 3 6 6 6 10 3

L = 4 6 6 6 6 15 3

L = 5 6 6 6 6 6 21 3

L = 6 6 6 6 6 6 6 28 3 2

Total 390 141 28
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Table 2.9: The most promising leg types and parameter numbers with different degrees

of freedom.

No. DOFs = 2 DOFs = 3 DOFs = 4 DOFs = 5 DOFs = 6

S P S P S P S P S P

1 2R 2 1H1P 2 2R1H 3 1S1R1P1 3 1S1H1R 3

2 1R1P 2 1H1R1P 2 1S2R1 3 1S1H1P 3

3 1H 1 2H1R 3

4 2H1P 2

S = kinematic structure of the leg, P = number of the parameters.

Table 2.10: The most promising architectures with one passive constraining leg.

Degree of Number fl1 fl2 fl3 fl4 fl5 fl6 passive leg actuated leg Cases

freedom of legs architecture architectures

l = 3 L = 4 3 6 6 6 1H1P 1S1H1R 2

1S1H1P

l = 4 L = 5 4 6 6 6 6 2R1H 1S1H1R 4

1H1R1P 1S1H1P

l = 5 L = 6 5 6 6 6 6 6 2H1R 1S1H1R 4

2H1P 1S1H1P

l = 6 L = 6 6 6 6 6 6 6 1S1H1R 2

1S1H1P

Total 12



Chapter 3

Stiffness Analysis of Planar Parallel

Mechanisms

3.1 Introduction

PKMs with their unique characteristics of high stiffness (their actuators bear no mo-

ment loads but act in a simple tension or compression) and high speeds and feeds (high

stiffness allows higher machining speeds and feeds while providing the desired preci-

sion, surface finish, and tool life), combined with versatile contouring capabilities have

made parallel mechanisms the best candidates for the machine tool industry to advance

machining performance. It is noted that the stiffness is the most important factor in

machine tool design since it affects the precision of machining. Therefore, to build and

study a general stiffness model is a very important task for machine tool design. In this

43
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chapter, we will build a general stiffness model through the approach of kinematic and

static equations. The objective of this model is to provide an understanding of how the

stiffness of the mechanism changes as a function of its position and as a function of the

characteristics of its components. This can be accomplished using stiffness mapping.

In what follows, a general stiffness model for fully-parallel mechanisms with various

actuator stiffnesses is first established. The lumped models for the joints and links are

then introduced. According to these models, the compliance of the links can be replaced

by virtual compliant joints and rigid links. Then, equations allowing the computation

of the equivalent virtual joint stiffnesses are derived. They are applied to planar 2-

dof mechanisms with revolute actuators and planar 3-dof mechanisms with prismatic

actuators. The stiffness mappings are implemented as a visualization tool. Finally,

the correctness of the developed general stiffness model is validated by the software

Pro/Engineer.

3.2 General Stiffness Model for Fully-Parallel Mech-

anisms

As introduced in Section 1.2.2, there are two methods to build mechanism stiffness

models. Among them, the method which relies on the calculation of the parallel mech-

anism’s Jacobian matrix is adopted in this thesis.

It will be shown that the stiffness of a parallel mechanism is dependent on the

joint’s stiffness, the leg’s structure and material, the platform and base stiffness, the

geometry of the structure, the topology of the structure and the end-effector position

and orientation.

Since stiffness is the force corresponding to coordinate i required to produce a unit

displacement of coordinate j, the stiffness of a parallel mechanism at a given point

of its workspace can be characterized by its stiffness matrix. This matrix relates the

forces and torques applied at the gripper link in Cartesian space to the corresponding

linear and angular Cartesian displacements. It can be obtained using kinematic and

static equations. The parallel mechanisms considered here are such that the velocity
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relationship can be written as in eq. (3.1),

θ̇ = Jẋ (3.1)

where θ̇ is the vector of joint rates, and ẋ is the vector of Cartesian rates — a six-

dimensional twist vector containing the velocity of a point on the platform and its

angular velocity. Matrix J is usually termed Jacobian matrix, and it is the mapping

from the Cartesian velocity vector to the joint velocity vector. From eq. (3.1), one can

conclude that

δθ = Jδx (3.2)

where δθ and δx represent joint and Cartesian infinitesimal displacements, respectively.

Then, one can get the stiffness of this mechanism using the principle of kinematic/static

duality. The forces and moments applied at the gripper under static conditions are

related to the forces or moments required at the actuators to maintain the equilibrium

by the transpose of the Jacobian matrix J. This is also true for parallel mechanism

(Merlet 1987), and one can then write

F = JT f (3.3)

where f is the vector of actuator forces or torques, and F is the generalized vector

of Cartesian forces and torques at the gripper link, which is also called the wrench

acting at this link (Yoshikawa 1984; Asada and Granito 1985). The actuator forces and

displacements can be related by Hooke’s law, one has

f = KJδθ (3.4)

with KJ = diag[k1, . . . , kn], where each of the actuators in the parallel mechanism

is modeled as an elastic component, KJ is the joint stiffness matrix of the parallel

mechanism, ki is a scalar representing the joint stiffness of each actuator, which is

modeled as linear spring, and the ith component of vector f , noted fi is the force or

torque acting at the ith actuator. Substituting eq. (3.2) into eq. (3.4), one obtains

f = KJJδx (3.5)

Then, substituting eq. (3.5) into eq. (3.3), yields

F = JTKJJδx (3.6)
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Hence, KC , the stiffness matrix of the mechanism in the Cartesian space is then given

by the following expression

KC = JTKJJ (3.7)

Particularly, in the case for which all the actuators have the same stiffnesses, i.e.,

k1 = k2 = . . . = kn, then eq. (3.7) will be reduced to

K = kJTJ (3.8)

which is the equation given in (Gosselin 1990).

The stiffness matrix is a positive semidefinite symmetric matrix whose eigenvalues

represent the coefficients of stiffness in the principal directions, which are given by the

eigenvectors. These directions are in fact represented by twist vectors, i.e., generalized

velocity vectors. Moreover, the square root of the ratio of the smallest eigenvalue to

the largest one gives the reciprocal of the condition number κ of the Jacobian matrix

(Klein and Blaho 1987), which is a measure of the dexterity of the mechanism (Gosselin

1988). It can be written as

1

κ
=

√

λmin
λmax

(3.9)

where λmin and λmax are the smallest and largest eigenvalues of the stiffness matrix,

respectively.

From eq. (3.7), it is clear that if the Jacobian matrix of a mechanism J is singular,

then obviously, the stiffness matrix of the mechanism, JTKJJ is also singular, thus the

mechanism loses stiffness, there is no precision also for the mechanism. Hence, one can

study the precision of machine tools through their stiffness model, and then find the

most suitable designs.

3.3 Lumped Models for Joint and Link Compliances

The flexibilities included in the model can be classified in two types (Cléroux and

Gosselin 1996): i) the flexibilities at the joints and ii) the flexibilities of the links.

Hence, the complete lumped model should include the following three sub-models,

• the Denavit-Hartenberg model which defines the nominal geometry of each of the
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kinematic chains of the mechanism, the kinematics described by the Denavit-

Hartenberg matrix are straightforward and systematic for mechanisms with rigid

links. They are also effective for mechanisms with flexible links;

• a lumped joint model which is defined in Tables 3.1 and 4.1;

• an equivalent beam model at each link which accounts for the deformations of the

link caused by the external forces and torques;

3.3.1 Lumped Models for Joint Compliances

In order to simplify the model of the stiffness, link stiffnesses will be lumped into local

compliant elements (spring) located at the joints. This is justified by the fact that no

dynamics is included in the model (it is purely kinematic) and that limited numerical

accuracy is acceptable. Indeed, the objective of this study is to obtain engineering

values for the stiffness and to determine which areas of the workspace lead to better

stiffness properties.

Physically, the bending deformation in joints is presented in different ways. In the

planar case, the unactuated revolute joint does not induce any bending whereas in the

spatial case, a bending is presented in a direction perpendicular to the joint. Hence, it

is necessary to establish a lumped joint model for each possible case. In the lumped

joint model, deformations caused by link flexibility can be considered as virtual joints

fixed at this point; the details are given in (Gosselin and Zhang 1999) and Table 3.1.

3.3.2 Lumped Models for Link Compliances

3.3.2.1 Deformation Induced by Wrench

A linear beam is shown in Figure 3.1, where F the external force, E the elastic modulus,

L the length of the beam, and I the section moment of inertia of the beam. In a lumped

model, the flexible beam will be replaced by a rigid beam mounted on a pivot plus a

torsional spring located at the joint, as illustrated in Figure 3.1b. The objective is

to determine the equivalent torsional spring stiffness that will produce the same tip
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Table 3.1: Lumped joint models for planar system.

joint type if actuated, the equivalent model if unactuated, the equivalent model

revolute 2 torsional springs jτ

τ r

no bending

prismatic actuated spring uncertainty

deflection as that of the beam under the load F . As it can be seen on the figure, the

lumped model will lead to a different orientation of the tip of the beam. However,

assuming that the deformation is small, angle θ will also be small, thus the difference

in orientation between the original beam and the equivalent link can be neglected.

Moreover, since in the mechanisms considered here, the legs are attached to the platform

with spherical joints, there is not any moment presented at the spherical joint, hence,

the end link orientation of the beam is irrelevant. Let δ be the deflection of the beam.

Based on the Castiliano’s theorem (Timoshenko and Gere 1972), one can build an

L

EI

F

δ

(a) Flexible beam.

b

F

L

k

δθ

(b) Virtual rigid beam.

Figure 3.1: Link deformation induced by wrench.
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equivalent rigid beam model based solely on the deflection of the free end. With a force

F applied at the free end of the beam, the resulting deformation can be written as (see

Figure 3.1a)

δ =
FL3

3EI
(3.10)

and assuming small deformations, the corresponding rotational deformation of an equiv-

alent rigid beam with a torsional spring would be

θ ' δ

L
(3.11)

Let the deflection in both cases (Figure 3.1a and Figure 3.1b) be the same. Substituting

eq. (3.10) into eq. (3.11), yields

θ =
FL2

3EI
(3.12)

where

δ is the flexible beam’s deflection at the free end,

θ is the rigid beam’s rotation around the joint,

Since the flexible beam model can be lumped into a torsional spring with equivalent

stiffness kb at the shoulder joint (Figure 3.1b), based on the principle of work and

energy, one has
1

2
Fδ =

1

2
kb(θ)

2 (3.13)

where kb is the lumped stiffness of the flexible beam. Substituting eq. (3.11) to

eq. (3.13), one obtains

FLθ = kbθ
2 (3.14)

or

kb =
FL

θ
(3.15)

substituting eq. (3.12) into eq. (3.15), one obtains the equivalent stiffness for the flexible

beam as

kb =
3EI

L
(3.16)
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m

φ

l

(a) Circular cylinder.

h

m

l

b

(b) Rectangular parallelepiped.

Figure 3.2: Link deformation induced by twist.

3.3.2.2 Deformation Induced by Twist

Here the lumped stiffness expression for a single flexible beam undergoing twisting is

addressed. A linear beam is shown in Figure 3.2, where m (Nm) the external torque,

G (N/m2) the shear elastic modulus, l (m) the length of the beam, and I (m4) the

section moment of inertia of the beam. Similarly to the preceding section, the flexible

beam is replaced by a rigid beam mounted at the end plus a torsional spring located

at the end. The objective is to determine the equivalent torsional spring stiffness that

will produce the same tip deflection as that of the beam under the load m. Assuming

that the deformation is small, angle φ will also be small, then, with a twist m applied

at the free end of the beam, the resulting deformation can be written as

∆φ =
ml

GI
, for Circular cylinder (3.17)

∆φ =
ml

Gβh3b
, for Rectangular parallelepiped (3.18)

where

b is the height of the flexible beam,

h is the width of the flexible beam,

β is a coefficient related to b and h.

Since one has

m = kt∆φ (3.19)
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hence one can obtain the lumped stiffness kt of the beam as

kt =
GI

l
, for Circular cylinder (3.20)

kt =
Gβh3b

l
, for Rectangular parallelepiped (3.21)

3.4 Stiffness Analysis of a Planar 2-dof Parallel Mech-

anism with Revolute Actuators

As shown in Figure 3.3, we take the case of revolute type into account. A planar 2-dof

mechanism can be used to position a point on the plane and the Cartesian coordinates

associated with this mechanism are the position coordinates of one point of the platform,

noted (x, y). Vector θ represents the actuated joint coordinates of the planar parallel

mechanism and is defined as θ = [θ1, θ2, . . . , θn]
T , where n is the number of degrees

of freedom of the mechanism studied, and the only actuated joints are those directly

connected to the fixed link (Gosselin and Wang 1997; Gosselin and Angeles 1990;

Sefrioui and Gosselin 1993).

Y

X

O (x  , y  ) O (x  , y  )

l

l

O

O

O 4

1

4

2

l

1

3

1

l 2

θ θ1 2

5 (x , y)

3 3 31

Figure 3.3: A planar 2-dof parallel mechanism with revolute actuators.

3.4.1 The Jacobian Matrix

As illustrated in Figure 3.3, a two-degree-of-freedom planar parallel mechanism is con-

structed by four movable links and five revolute joints (noted as O1 to O5). The two
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links — whose length are l1 and l3 — are the input links. They are assumed to be

flexible beams, and points O1 and O3 are the only actuated joints in this planar 2-dof

parallel mechanism. The lengths of the other two links are denoted as l2 and l4, respec-

tively. Point O5(x, y) is the point to be positioned by the mechanism. The origin of

the fixed Cartesian coordinate system is located on joint O1. (x1, y1) and (x3, y3) are

the coordinates of points O1 and O3, respectively, and one has x1 = y1 = y3 = 0.

At points O2 and O4, one has

x2 = l1 cos θ1 + x1 (3.22)

y2 = l1 sin θ1 + y1 (3.23)

x4 = l3 cos θ2 + x3 (3.24)

y4 = l3 sin θ2 + y3 (3.25)

From this figure, one obtains

l22 = (x− x2)
2 + (y − y2)

2 (3.26)

l24 = (x− x4)
2 + (y − y4)

2 (3.27)

Substituting eqs. (3.22) – (3.25) into eqs. (3.26) – (3.27), one gets

l22 = (x− l1 cos θ1)
2 + (y − l1 sin θ1)

2 (3.28)

l24 = (x− (l3 cos θ2 + x3))
2 + (y − l3 sin θ2)

2 (3.29)

The kinematic relationship can be obtained as follows

F(θ,p) =

[

(x− l1 cos θ1)
2 + (y − l1 sin θ1)

2 − l22

(x− (l3 cos θ2 + x3))
2 + (y − l3 sin θ2)

2 − l24

]

= 0 (3.30)

Let

θ̇ =

[

θ̇1

θ̇2

]

, ṗ =

[

ẋ

ẏ

]

(3.31)

One can obtain the Jacobian matrices of the parallel mechanism as

A =
∂F

∂p
, B =

∂F

∂θ
(3.32)

In particular, the Jacobian matrices of this planar 2-dof parallel mechanism are as

follows:

A =

[

(x− l1 cos θ1) (y − l1 sin θ1)

(x− l3 cos θ2 − x3) (y − l3 sin θ2)

]

(3.33)
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B =

[

(x sin θ1 − y cos θ1)l1 0

0 [(x− x3) sin θ2 − y cos θ2]l3

]

(3.34)

The velocity equations can be written as Aṗ + Bθ̇ = 0, and

J = −B−1A =

[

a1/d1 b1/d1

a2/d2 b2/d2

]

(3.35)

with

a1 = x− l1 cos θ1 (3.36)

a2 = x− l3 cos θ2 − x3 (3.37)

b1 = y − l1 sin θ1 (3.38)

b2 = y − l3 sin θ2 (3.39)

d1 = −(x sin θ1 − y cos θ1)l1 (3.40)

d2 = −[(x− x3) sin θ2 − y cos θ2]l3 (3.41)

3.4.2 Inverse Kinematics

In order to compute the Jacobian matrix of eq. (3.35), one has to know the joint angles

of Figure 3.3 first. Therefore, it is necessary to calculate the inverse kinematics of this

planar 2-dof parallel mechanism to determine the joint angles for any given end-effector

position and orientation. Unlike many serial mechanisms, the calculation of the inverse

kinematics of a parallel mechanism is generally straightforward.

From eq. (3.28), one obtains

2l1x cos θ1 + 2l1y sin θ1 = x2 + y2 + L2
1 − L2

2 (3.42)

therefore, one can obtain θ1 as follow

sin θ1 =
BC +K1A

√
A2 +B2 − C2

A2 +B2
(3.43)

cos θ1 =
AC −K1B

√
A2 +B2 − C2

A2 +B2
(3.44)

where

A = 2l1x (3.45)
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B = 2l1y (3.46)

C = x2 + y2 + L2
1 − L2

2 (3.47)

K1 = ±1 (3.48)

and K1 is the branch index, which can be used to distinguish the four branches of the

inverse kinematic problem. In the same way, from eq. (3.29), one obtains

2l3(x− x3) cos θ2 + 2l3y sin θ2 = (x− x3)
2 + y2 + l23 − l24 (3.49)

hence one obtains the joint angle θ2 as

sin θ2 =
BC +K2A

√
A2 +B2 − C2

A2 +B2
(3.50)

cos θ2 =
AC −K2B

√
A2 +B2 − C2

A2 +B2
(3.51)

where

A = 2l3(x− x3) (3.52)

B = 2l3y (3.53)

C = (x− x3)
2 + y2 + l23 − l24 (3.54)

K2 = ±1 (3.55)

again, K2 is the branch index.

3.4.3 Kinetostatic Model

Assume the actuator stiffnesses of O1 and O3 are k1 and k′1, respectively, and the lumped

stiffness for beam O1O2 and O3O4 are kb and k′b. Then the compound stiffness at points

O1 and O3 are written as

k =
k1kb
k1 + kb

(3.56)

k′ =
k′1k

′

b

k′1 + k′b
(3.57)

where

k, k′ are the total stiffnesses at the active joint,
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k1, k
′

1 are the actuator stiffnesses,

kb, k
′

b are the lumped stiffnesses as indicated in eq. (3.16),

One can find the kinetostatic model for this planar 2-dof parallel mechanism by using

eq. (3.7), i.e.,

KC = JTKJJ (3.58)

where

KJ is the joint stiffness matrix of the parallel mechanism,

J is the Jacobian matrix of this planar 2-dof parallel mechanism.

3.4.4 Stiffness Mapping

The analysis described above is now used to obtain the stiffness maps for this planar

two-degree-of-freedom parallel mechanism. The maps are drawn on a section of the

workspace of the variation of the end-effector’s position.

A program has been written with the software Matlab. Given the values of l1 =

l4 = 0.5 m, l2 = 0.6 m, l3 = 0.8 m and O1O3 = 0.7 m. The contour graph can be

shown in Figure 3.4
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Figure 3.4: Stiffness contour graph for a planar 2-dof parallel mechanism with revolute

actuators.
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3.5 Stiffness Analysis of a Planar 3-dof Parallel Mech-

anism with Prismatic Actuators

A symmetric mechanism identical to the one studied in (Gosselin 1988) and (Gosselin

and Angeles 1988) is now analyzed with the procedure described above. The character-

istics of this mechanism are as follows: Points Ai, i = 1, 2, 3 and points Bi, i = 1, 2, 3

(Figure 3.5) are, respectively, located on the vertices of an equilateral triangle and that

the minimum and maximum lengths of each of the legs are the same. The mechanism

is therefore completely symmetric. The dimensions and the stiffness of each leg are

given in Table 3.2.

Table 3.2: Geometric properties of symmetric planar parallel mechanism (all length

units in mm and stiffness units in N/m).

i xai yai xbi ybi ki

1 -1/2 −
√

3/6 -1/12 −
√

3/36 1000

2 1/2 −
√

3/6 1/12 −
√

3/36 1500

3 0
√

3/3 0
√

3/18 700

O’(x, y)

A

A

B

B

B

1

A2

1

3

2

x’

y’

y

x

3 (x   ,y    )

O

(x   ,y   )

(x   ,y   )

φ

a3  a3

a2 a2

a1 a1

Figure 3.5: A planar 3-dof parallel mechanism with prismatic actuators.



57

3.5.1 Stiffness Model

Since one has

xi = x− L cosφi − xai, i = 1, 2, 3 (3.59)

yi = y − L sin φi − yai, i = 1, 2, 3 (3.60)

pi =
√

x2
i + y2

i , i = 1, 2, 3 (3.61)

where L is the length of the gripper, and pi is the length of the leg, The Jacobian

matrix is given by Gosselin (1988) as follows

J =









a1/p1 b1/p1 c1/p1

a2/p2 b2/p2 c2/p2

a3/p3 b3/p3 c3/p3









(3.62)

with

ai = x− xai − L cosφi (3.63)

bi = y − yai − L sin φi (3.64)

ci = (x− xai)L sinφi − (y − yai)L cosφi (3.65)

Hence, according to eq. (3.7), one can find the stiffness model for this planar 3-dof

parallel mechanism.

3.5.2 Stiffness Mapping

The above model is now used to obtain the stiffness maps for this planar three-degree-

of-freedom parallel mechanism. Given the values shown in Table 3.2, one can obtain

the stiffness contour and mesh graphs in x, y, and φ shown in Figures 3.6 – 3.9.

One can find from the stiffness map that the symmetric mechanism is in a singular

configuration when positioned at the center of the workspace. Also, from such stiffness

maps, one can determine which regions of the workspace will satisfy some stiffness

criteria. From the mesh graphs, one can view the stiffness distribution more intuitively.
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Figure 3.6: Stiffness mesh graphs for a planar 3-dof parallel mechanism with prismatic

actuators (φ = 0).
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Figure 3.7: Stiffness contour graphs for a planar 3-dof parallel mechanism with pris-

matic actuators (φ = 0).

3.6 Verification of the General Stiffness Model

A model (Figure 3.10) for this planar 3-dof parallel mechanism has been built using

the software Pro/Engineer to simulate the physical structure on Pro/Motion.

With the geometric properties given in Table 3.3 and the center of the triangle

located at (75, 65), after applying the forces and torque Fx = 100 N,Fy = 100 N, τ =

60 Nm at the center of the triangle, the three legs deform. One obtains the deformation

of the center using Pro/Motion as ∆x = 0.09697 mm, ∆y = 0.14959 mm, ∆φ =

−0.0020. Meanwhile, the results obtained from the equations developed in the previous

section are ∆x = 0.0962 mm, ∆y = 0.1548 mm, ∆φ = −0.0020. This shows that the

results from Pro/Motion and the kinetostatic model are very close to each other.



59

−0.3
−0.2

−0.1
0

0.1
0.2

0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

X (mm)Y (mm)

(a) Stiffness in X axis

−0.3
−0.2

−0.1
0

0.1
0.2

0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
0.5

1

1.5

2

2.5

X (mm)Y (mm)

(b) Stiffness in Y axis

−0.3
−0.2

−0.1
0

0.1
0.2

0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
0.018

0.02

0.022

0.024

0.026

0.028

0.03

X (mm)Y (mm)

(c) Stiffness in φ

Figure 3.8: Stiffness mesh graphs for a planar 3-dof parallel mechanism with prismatic

actuators (φ = π/2).
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Figure 3.9: Stiffness contour graphs for a planar 3-dof parallel mechanism with pris-

matic actuators (φ = π/2).

3.7 Conclusions

A general stiffness model for fully-parallel mechanisms with different actuator stiffnesses

has been presented in this chapter. It has been shown that this general stiffness model

can be used to evaluate the stiffness properties of parallel mechanisms. Examples have

been given to illustrate how this model is used. Meanwhile, the lumped models for

joints and links are proposed. They can be applied to establish kinetostatic models for

both 2-dof and 3-dof mechanisms which are also mentioned in this chapter. Finally, the

reliability of the stiffness model has been demonstrated using the computer program

Pro/Engineer.
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Figure 3.10: Validation model of the planar 3-dof parallel mechanism in Pro/Motion.

Table 3.3: Geometric properties of planar parallel mechanism (all units in mm).

i xai yai xbi ybi ki

1 0 0 84.547 48.464 400

2 150 49 84.547 81.536 400

3 0 130 55.91 65 400



Chapter 4

Kinetostatic Analysis of Spatial

n-DOF Parallel Mechanisms with a

Passive Constraining Leg and n

Identical Legs with Prismatic

Actuators

4.1 Introduction

This chapter introduces several new types of parallel mechanisms with prismatic actu-

ators whose degree of freedom is dependent on a constraining passive leg connecting

61
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the base and the platform. The mechanisms introduced in this chapter are a series of

n-dof parallel mechanisms which consist of n identical actuated legs with six degrees

of freedom and one passive leg with n degrees of freedom connecting the platform and

the base. This series of mechanisms has the characteristics of reproduction since they

have identical actuated legs, thus, the entire mechanism essentially consists of repeated

parts, offering price benefits for manufacturing, assembling, and maintenance.

A simple method for the stiffness analysis of spatial parallel mechanisms is pre-

sented using a lumped parameter model. Although it is essentially general, the method

is specifically applied to spatial parallel mechanisms. A general kinetostatic model is

established for the analysis of the structural rigidity and accuracy of this family of mech-

anisms. One can improve the rigidity of this type of mechanism through optimization

of the link rigidities and geometric dimensions to reach the maximized global stiffness

and precision. In what follows, the geometric model of this class of mechanisms is first

introduced. The virtual joint concepts are employed to account for the compliance of

the links. A general kinetostatic model of the family of parallel mechanisms is then

established and analyzed using the lumped-parameter model. Equations allowing the

computation of the equivalent joint stiffnesses are developed. Additionally, the inverse

kinematics and velocity equations are given for both rigid-link and flexible-link mech-

anisms. Finally, examples for 3-dof, 4-dof, 5-dof and the Tricept machine tool families

are given in detail to illustrate the results. Some discussions are given to account

for the effect of the variation of structure parameters including material properties on

the system behavior, and the behavior vs structural parameters. Stiffness/Compliance

mappings are obtained as a visualization tool to aid in the use of the kinetostatic model.

The design and control of this families of parallel mechanisms for a better stiffness can

be performed based on the stiffness/compliance maps.
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4.2 General Kinetostatic Model for Spatial n−DOF

Mechanisms with a Passive Constraining Leg

and Prismatic Actuators

4.2.1 Geometric Modeling

An example of parallel mechanisms belonging to the family of mechanisms studied in

this chapter is shown in Figures 4.1 and 4.2. It is a 5-dof parallel mechanism with

prismatic actuators. This mechanism consists of six kinematic chains, including five

variable length legs with identical topology and one passive leg which connects the fixed

base to the moving platform. In this 5-dof parallel mechanism, the kinematic chains

associated with the five identical legs consist, from base to platform, of a fixed Hooke

joint, a moving link, an actuated prismatic joint, a second moving link and a spherical

joint attached to the platform. The sixth chain (central leg) connecting the base center

to the platform is a passive constraining leg and has an architecture different from the

other chains. It consists of a revolute joint attached to the base, a moving link, a Hooke

joint, a second moving link and another Hooke joint attached to the platform. This

last leg is used to constrain the motion of the platform to only five degrees of freedom.

This mechanism could be built using only five legs, i.e., by removing one of the five

identical legs and actuating the first joint of the passive constraining leg. However, the

uniformity of the actuation would be lost.

Similarly, families of 3-dof and 4-dof parallel mechanisms can be built using three

or four identical legs with six degrees of freedom and one passive constraining leg with

three or four degrees of freedom, respectively, and they will also be discussed in this

chapter. The aim of using the passive leg is to limit the degrees of freedom to the desired

ones. Since the external loads on the platform will induce bending and/or torsion in

the passive leg, its mechanical design is a very important issue which can be addressed

using the kinetostatic model proposed here. It should be noted, however, that the final

geometry and mechanical design of the passive leg may be significantly different from

the generic representation given in Figure 4.1.
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Figure 4.1: CAD model of the spatial 5-dof parallel mechanism with prismatic actuators

(Figure by Gabriel Coté).

4.2.2 Lumped Models for Joint and Link Compliances

Similarly to the discussion in Section 3.3.1, the lumped joint compliance model for

spatial systems is discussed in this section. In this framework, link bending stiffnesses

are replaced by equivalent torsional springs located at virtual joints, as illustrated in

Table 4.1. Actuator stiffnesses are also included and modeled as torsional or linear

springs for revolute and prismatic actuators, respectively.

4.2.3 Inverse Kinematics

Since the platform of the mechanism has n degrees of freedom, only n of the six Carte-

sian coordinates of the platform are independent. For the 5-dof mechanism of Fig-

ure 4.1, the independent coordinates have been chosen for convenience as (x, y, z, θi, θj),

where x, y, z are the position coordinates of a reference point on the platform and (θi, θj)

are the joint angles of the Hooke joint attached to the platform. Other coordinates may

be chosen.
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Assume that the centers of the joints located on the base and on the platform are

located on circles with radii Rb and Rp, respectively. A fixed reference frame O − xyz

is attached to the base of the mechanism and a moving coordinate frame P − x′y′z′

is attached to the platform. In Figure 4.2, the points of attachment of the actuated

legs to the base are represented with Bi and the points of attachment of all legs to the

platform are represented by Pi, with i = 1, . . . , n. Point P is the reference point on the

platform and its position coordinates are P (x, y, z).

The Cartesian coordinates of the platform are given by the position of point P with

respect to the fixed frame, and the orientation of the platform (orientation of frame

P − x′y′z′ with respect to the fixed frame), represented by matrix Q.

If the coordinates of the point Pi in the moving reference frame are represented

with (x′i, y
′

i, z
′

i) and the coordinates of the point Bi in the fixed frame are represented

by vector bi, then for i = 1, . . . , n, one has

pi =









xi

yi

zi









, r
′

i =









x′i

y′i

z′i









, p =









x

y

z









, bi =









bix

biy

biz









(4.1)
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Table 4.1: Lumped joint compliance models for spatial system.

joint type if actuated, the equivalent model if unactuated, the equivalent model

spherical N/A no transformation

Hooke N/A no transformation

revolute 4 torsional springs 2 torsional springs

4 torsional springs 2 torsional springs

where pi is the position vector of point Pi expressed in the fixed coordinate frame whose

coordinates are defined as (xi, yi, zi), r
′

i is the position vector of point Pi expressed in

the moving coordinate frame, and p is the position vector of point P expressed in the

fixed frame as defined above, and the angles between the points of attachment and the

Cartesian X axis along the circle are given by θbi (base) and θpi (platform).

θbi =









θb1
...

θbn









, θpi =









θp1
...

θpn









(4.2)

One can then write

pi = p + Qr′i (4.3)

where the rotation matrix can be written as a function of the n joint angles of the

(n+ 1)th leg. This matrix is written as

Q = Q0Q1 . . .Qn, n = 3, 4, or 5 (4.4)

where Q0 is the rotation matrix from the fixed reference frame to the first frame (fixed)

of the passive constraining leg.
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In order to solve the inverse kinematic problem, one must first consider the passive

constraining leg as a serial n-dof mechanism whose n Cartesian coordinates are known,

which is a well known problem (Angeles 1997; Hong et al. 1997; Kohli and Osvatic

1993; Lee and Kim 1993; Lee and Reinholtz 1996; Manocha and Canny 1992). Once the

solution to the inverse kinematics of this n-dof serial mechanism is found, the complete

pose (position and orientation) of the platform can be determined using the direct

kinematic equations for this serial mechanism.

Subtracting vector bi from both sides of eq. (4.3), one obtains

pi − bi = p + Qr′i − bi, i = 1, . . . , n, n = 3, 4, or 5 (4.5)

Then, taking the Euclidean norm on both sides of eq. (4.5), one has

‖ pi − bi ‖=‖ p + Qr′i − bi ‖= ρi, i = 1, . . . , n, n = 3, 4, or 5 (4.6)

where ρi is the length of the ith leg, i.e., the value of the ith joint coordinate. The

solution of the inverse kinematic problem for the n-dof platform is therefore completed

and can be written as

ρ2
i = (pi − bi)

T (pi − bi), i = 1, . . . , n, n = 3, 4, or 5 (4.7)

4.2.4 Jacobian Matrices

4.2.4.1 Rigid Model

Each of the kinematic chains connecting the base to the platform can be taken as a

serial mechanism, and a Hooke joint can be replaced by two orthogonal revolute joints

in the present study.

A line Li is associated with the axis of the ith revolute joint, and a positive direction

along this line is defined arbitrarily through a unit vector ei. Thus, a rotation of the

ith link with respect to the (i− 1)th link is totally defined by the geometry of the link,

i.e., by the DH parameters ai, bi, and αi, plus ei and its associated joint variable θi

(Angeles 1997). Then, one has, according to the DH notation

[Qi]i =









cos θi − cosαi sin θi sinαi sin θi

sin θi cosαi cos θi − sinαi cos θi

0 sinαi cosαi









, [ai]i =









ai cos θi

ai sin θi

bi









(4.8)
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Qi and ai denote, respectively, the matrix rotating the frame attached to the ith link

(Fi) into an orientation coincident with that of the (i + 1)th body (Fi+1), and the

vector joining the origin of Fi with that of Fi+1 directed from the former to the latter.

According to the DH notation, one has

[ei]i =









0

0

1









, i = 1, . . . , n (4.9)

The parallel mechanisms studied here comprise two main components, namely, the

constraining leg — which can be thought of as a serial mechanism — and the actuated

legs acting in parallel.

Considering the constraining leg, one can write

Jn+1θ̇n+1 = t, n = 3, 4, or 5 (4.10)

where t =
[

ωT ṗT
]T

is the twist of the platform, with ω the angular velocity of the

platform and

θ̇n+1 =
[

θ̇n+1,1 . . . θ̇n+1,n

]T

, n = 3, 4, or 5 (4.11)

is the joint velocity vector associated with the constraining leg. Matrix Jn+1 is the

Jacobian matrix of the constraining leg considered as a serial n-dof mechanism, which

can be expressed as (Angeles 1997)

Jn+1 =

[

en+1,1 . . . en+1,n

en+1,1 × rn+1,1 . . . en+1,n × rn+1,n

]

, n = 3, 4, or 5 (4.12)

where ri is the vector connecting the origin of frame Fi to the origin of the platform

frame. It is important to note that if the ith pair is a revolute joint, then the ith

column of Jn+1, noted ji, can be written as

ji =

[

ei

ei × ri

]

(4.13)

On the other hand, if the ith pair is a prismatic joint, then the (i − 1)th and the ith

links have the same angular velocity, for a prismatic joint does not allow any relative

rotation, then the ith column of Jn+1 changes to

ji =

[

0

ei

]

(4.14)
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4.2.4.2 Compliant Model

If the compliance of the links and joints is included, (6 − n) virtual joints are then

added in order to account for the compliance of the links (Gosselin and Zhang 1999).

Hence, the Jacobian matrix of the constraining leg becomes

J′n+1θ̇
�

n+1 = t, n = 3, 4, or 5 (4.15)

where

θ̇
�

n+1 =
[

θ̇n+1,1 . . . θ̇n+1,6

]T

, n = 3, 4, or 5 (4.16)

and the Jacobian matrix of the passive constraining leg of the mechanism J′n+1 can be

expressed as

J′n+1 =

[

en+1,1 . . . en+1,6

en+1,1 × rn+1,1 . . . en+1,6 × rn+1,6

]

, n = 3, 4, or 5 (4.17)

4.2.5 Global Velocity Equation

Now considering the parallel component of the mechanism, the parallel Jacobian matrix

can be obtained by differentiating eq. (4.7) with respect to time, one obtains

ρiρ̇i = (pi − bi)
T ṗi, i = 1, . . . , n (4.18)

Since one has

Q̇ = ΩQ (4.19)

with

Ω = 1× ω =









0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









(4.20)

differentiating eq. (4.3), one obtains

ṗi = ṗ + Q̇r′i (4.21)

Then, for n = 3, 4, or 5, eq. (4.18) can be rewritten as

ρiρ̇i = (pi − bi)
T (ṗ + Q̇r′i)
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= (pi − bi)
T (ṗ + ΩQr′i)

= (pi − bi)
T ṗ + (pi − bi)

TΩQr′i

= (pi − bi)
T ṗ + (pi − bi)

T [ω × (Qr′i)]

= (pi − bi)
T ṗ + [(Qr′i)× (pi − bi)]

Tω, i = 1, . . . , n (4.22)

Hence, one can write the velocity equation as

At = Bρ̇ (4.23)

where vector ρ̇ is defined as

ρ̇ =
[

ρ̇1 ρ̇2 . . . ρ̇n

]T

(4.24)

and

A =















mT
1

mT
2

...

mT
n















, B = diag[ρ1, ρ2, . . . , ρn] (4.25)

where mi is a vector with 6 components, which can be expressed as

mi =

[

(Qr′i)× (pi − bi)

(pi − bi)

]

(4.26)

Hence, eq. (4.10) or (4.15) relates the twist of the platform to the joint velocities

of the passive constraining leg through the serial Jacobian matrix Jn+1 or J′n+1 while

eq. (4.23) relates the twist of the platform to the actuator velocities through parallel

Jacobian matrices A and B. It should be pointed out that the dimensions of matrix

Jn+1 will be (6× n), matrix J′n+1 will be (6× 6), matrix A will be (n× 6) and matrix

B will be (n× n). The derivation of the relationship between Cartesian velocities and

joint rates is thereby completed.

4.2.6 Kinetostatic Model for the Mechanism with Rigid Links

In this section, the velocity equations derived in the previous section will be used to

obtain the kinetostatic model for the mechanism with rigid links.
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According to the principle of virtual work, one has

τ T ρ̇ = wT t (4.27)

where τ is the vector of actuator forces applied at each actuated joint and w is the

wrench (torque and force) applied to the platform and where it is assumed that no

gravitational forces act on any of the intermediate links. In practice, gravitational

forces may often be neglected in machine tool applications.

One has w =
[

nT fT
]T

where n and f are respectively the external torque and

force applied to the platform.

Rearranging eq. (4.23) and substituting it into eq. (4.27), one obtains

τ TB−1At = wT t (4.28)

Now, substituting eq. (4.10) into eq. (4.28), one has

τ TB−1AJn+1θ̇n+1 = wTJn+1θ̇n+1 (4.29)

The latter equation must be satisfied for arbitrary values of θ̇n+1 and hence one can

write

(AJn+1)
TB−Tτ = Jn+1

Tw (4.30)

The latter equation relates the actuator forces to the Cartesian wrench, w, applied

at the end-effector in static mode. Since all links are assumed rigid, the compliance of

the mechanism will be induced solely by the compliance of the actuators. An actuator

compliance matrix C is therefore defined as

Cτ = ∆ρ (4.31)

where τ is the vector of actuated joint forces and ∆ρ is the induced joint displacement.

Matrix C is a (n × n) diagonal matrix whose ith diagonal entry is the compliance of

the ith actuator.

Now, eq. (4.30) can be rewritten as

τ = BT (AJn+1)
−TJn+1

Tw (4.32)

The substitution of eq. (4.32) into eq. (4.31) then leads to

∆ρ = CBT (AJn+1)
−TJn+1

Tw (4.33)
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Moreover, for a small displacement vector ∆ρ, eq. (4.23) can be written as

∆ρ ' B−1A∆c (4.34)

where ∆c is a vector of small Cartesian displacement and rotation defined as

∆c =
[

∆pT ∆αT

]T

(4.35)

in which ∆α, the change of orientation, is defined from eqs. (4.19) and (4.20) as

∆α = vect(∆QQT ) (4.36)

where ∆Q is the variation of the rotation matrix and vect(·) is the vector linear invariant

of its matrix argument.

Similarly, eq. (4.10) can also be written , for small displacements, as

Jn+1∆θn+1 ' ∆c (4.37)

where ∆θn+1 is a vector of small variations of the joint coordinates of the constraining

leg.

Substituting eq. (4.34) into eq. (4.33), one obtains

B−1A∆c = CBT (AJn+1)
−TJTn+1w (4.38)

Premultiplying both sides of eq. (4.38) by B, and substituting eq. (4.37) into eq. (4.38),

one obtains,

AJn+1∆θn+1 = BCBT (AJn+1)
−TJTn+1w (4.39)

Then, premultiplying both sides of eq. (4.39) by (AJn+1)
−1, one obtains,

∆θn+1 = (AJn+1)
−1BCBT (AJn+1)

−TJTn+1w (4.40)

and finally, premultiplying both sides of eq. (4.40) by Jn+1, one obtains,

∆c = Jn+1(AJn+1)
−1BCBT (AJn+1)

−TJTn+1w (4.41)

Hence, one obtains the Cartesian compliance matrix as

Cc = Jn+1(AJn+1)
−1BCBT (AJn+1)

−TJTn+1 (4.42)
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with

∆c = Ccw (4.43)

where Cc is a symmetric positive semi-definite (6× 6) matrix, as expected.

It is noted that, in nonsingular configurations, the rank of B, C and Jn+1 is n,

and hence the rank of Cc will be n, where n = 3, 4, or 5, depending on the degree

of freedom of the mechanism. Hence, the nullspace of matrix Cc will not be empty

and there will exist a set of vectors w that will induce no Cartesian displacement ∆c.

This corresponds to the wrenches that are supported by the constraining leg, which is

considered infinitely rigid. These wrenches are orthogonal complements of the allowable

twists at the platform. Hence, matrix Cc cannot be inverted and this is why it was

more convenient to use compliance matrices rather than stiffness matrices in the above

derivation.

In the next section, the kinetostatic model will be developed for the case in which

the flexibility of the links is considered. In this case, stiffness matrices will be used.

4.2.7 Kinetostatic Model for the Mechanism with Flexible

Links

According to the principle of virtual work, one can write

wT t = τ T
n+1θ̇

�

n+1 + τ T ρ̇ (4.44)

where τ is the vector of actuator forces and ρ̇ is the vector of actuator velocities

(actuated legs), and τ n+1 is the vector of joint torques in the constraining leg. This

vector is defined as follows, where Kn+1 is the stiffness matrix of the constraining leg,

τ n+1 = Kn+1∆θ′

n+1 (4.45)

Matrix Kn+1 is a diagonal (6× 6) matrix in which the ith diagonal entry is zero if it is

associated with a real joint while it is equal to ki if it is associated with a virtual joint,

where ki is the stiffness of the virtual spring located at the ith joint. The stiffness of

the virtual springs is determined using the structural properties of the flexible links as

shown in Chapter 3.
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From eqs. (4.15) and (4.23), eq. (4.44) can be rewritten as

wTt = τ T
n+1(J

′

n+1)
−1t + τ TB−1At (4.46)

Since this equation is valid for any value of t, one can write

w = (J′n+1)
−Tτ n+1 + ATB−Tτ (4.47)

which can be rewritten as

w = (J′n+1)
−TKn+1∆θ′

n+1 + ATB−TKJ∆ρ (4.48)

where KJ is a (n× n) diagonal joint stiffness matrix for the actuated joints.

Using the kinematic equations, one can then write:

w = (J′n+1)
−TKn+1(J

′

n+1)
−1∆c + ATB−TKJB

−1A∆c (4.49)

which is in the form

w = K∆c (4.50)

where K is the Cartesian stiffness matrix, which is equal to

K = [(J′n+1)
−TKn+1(J

′

n+1)
−1 + ATB−TKJB

−1A] (4.51)

Matrix K is a symmetric (6×6) positive semi-definite matrix, as expected. However,

in this case, matrix K will be of full rank in non-singular configurations. Indeed, the

sum of the two terms in eq. (4.51) will span the complete space of constraint wrenches.

In the next sections, the kinetostatic models derived above will be applied to differ-

ent families of parallel mechanisms.

4.3 Spatial Three-Degree-of-Freedom Mechanisms

with Prismatic Actuators

4.3.1 Geometric Modeling

As represented in Figures 4.3, 4.4 and 4.5, the spatial three-degree-of-freedom mecha-

nism consists of four kinematic chains, including three variable length legs with identical
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topology and one passive constraining leg, connecting the fixed base to a moving plat-

form. In this 3-dof parallel mechanism, the kinematic chains associated with the three

identical legs consist — from base to platform — of a fixed Hooke joint, a moving link,

an actuated prismatic joint, a moving link and a spherical joint attached to the plat-

form. The fourth chain connecting the base center to the platform center is a passive

constraining leg and has a different architecture from the other three identical chains.

It consists of a prismatic joint attached to the base, a moving link and a Hooke joint

attached to the platform. This last leg is used to constrain the motion of the platform

to only three degrees of freedom.

The lumped compliance model described in Section 4.2.2 will be used to establish

a simple kinetostatic model for this mechanism.

Figure 4.3: CAD model of the spatial 3-dof parallel mechanism with prismatic actuators

(Figure by Gabriel Coté).

4.3.2 Inverse Kinematics

In this 3-dof mechanism, only three of the six Cartesian coordinates of the platform

are independent. In the present study, the independent coordinates have been chosen

for convenience as (z, θ42, θ43), where θ42, θ43 are the joint angles of the Hooke joint

attached to the platform and z is the height of the platform.
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Figure 4.4: Schematic representation of the spatial 3-dof parallel mechanism with pris-

matic actuators.

According to eqs. (4.1), (4.2) and Figure 4.5, for i = 1, 2, 3, one has

r
′

i =









0

−Rp sin θpi

Rp cos θpi









, bi =









Rb cos θbi

Rb sin θbi

0









(4.52)

θbi =









θb1

θb2

θb3









=









π/3

π

−π/3









, θpi =









θp1

θp2

θp3









=









0

2π/3

−2π/3









(4.53)

based on eqs. (4.3) – (4.7), the inverse kinematic problem for the 3-dof platform can

finally be written as

ρ2
i = (pi − bi)

T (pi − bi), i = 1, 2, 3 (4.54)

4.3.3 Jacobian Matrices

4.3.3.1 Rigid Model

From Figure 4.6, one can obtain the Denavit-Hartenberg parameters given in Table 4.2.
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Figure 4.6: The passive constraining leg with rigid links.

A transformation for each local coordinate is required, we take the Cartesian coor-

dinate frame as frame 0, and define α0 = 0, θ0 = 0, then one has

Q40 = 1 (4.55)

where Q40 is the rotation matrix from the fixed reference frame to the first frame of

the passive constraining leg. Premutiplying eq. (4.55) in each equation by e4j and r4j ,

then one obtains

e41 = Q40e40 (4.56)

e42 = Q40Q41e40 (4.57)
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Table 4.2: The DH parameters for the passive constraining leg with rigid links.

i ai bi αi θi

0 0 0 0 0

1 0 Z 90◦ 0

2 0 0 90◦ θ42

3 0 0 0 θ43

e43 = Q40Q41Q42e40 (4.58)

and the position vectors can be expressed as follows

r41 = Q40a41 + Q40Q41a42 + Q40Q41Q42a43 (4.59)

r42 = Q40Q41a42 + Q40Q41Q42a43 (4.60)

r43 = Q40Q41Q42a43 (4.61)

For the fourth kinematic chain, one has the velocity equation

J4θ̇4 = t (4.62)

where

θ̇4 =
[

ρ̇ θ̇42 θ̇43

]T

(4.63)

and the Jacobian matrix of the passive constraining leg of the mechanism J4 can be

expressed as

J4 =

[

0 e42 e43

e41 e42 × r42 e43 × r43

]

(4.64)

4.3.3.2 Compliant Model

In this section, the equations for all the three identical legs are the same as in the rigid

model, we only need to study the passive constraining leg with virtual joint.

From Figure 4.7, one can obtain the Denavit-Hartenberg parameters as in Table 4.3.

For the passive constraining leg, we have the velocity equation using the same method

as for the rigid links.

J′4θ̇
�

4 = t (4.65)
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Figure 4.7: The passive constraining leg with flexible links.

Table 4.3: The DH parameters for the passive constraining leg with flexible links.

i ai bi αi θi

0 0 0 90◦ 0

1 0 0 90◦ θ41

2 0 0 90◦ θ42

3 0 0 0 θ43

4 0 Z 90◦ θ44

5 0 0 90◦ θ45

6 0 0 0 θ46

where

θ̇
�

4 =
[

θ̇41 θ̇42 θ̇43 ρ̇44 θ̇45 θ̇46

]T

(4.66)

J′4 =

[

e41 e42 e43 0 e45 e46

e41 × r41 e42 × r42 e43 × r43 e44 e45 × r45 e46 × r46

]

(4.67)

After considering the parallel component of the mechanism, the relationship between

Cartesian velocities and joint rates can be obtained by eqs. (4.18) to (4.23).
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4.3.4 Kinetostatic Models

In this section, the velocity equation derived in the previous section is used to obtain

the kinetostatic model for the mechanism with rigid links. The compliance matrix for

the rigid model can be written as

Cc = J4(AJ4)
−1BCBT (AJ4)

−TJT4 (4.68)

where C = diag[c1, c2, c3], with c1, c2 and c3 the compliance of the actuators and J4 is

the Jacobian matrix of the constraining leg in this 3-dof case. Matrices A and B are

the Jacobian matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be written

as

K = [(J′4)
−TK4(J

′

4)
−1 + ATB−TKJB

−1A] (4.69)

with

K4 = diag[k41, k42, k43, 0, 0, 0] (4.70)

where k41, k42 and k43 are the stiffnesses of the virtual joints introduced to account for

the flexibility of the links in the constraining leg. The architecture of the constraining

leg including the virtual joints is represented in Figure 4.7, and J′4 is the Jacobian

matrix of the constraining leg in this 3-dof case, while A and B are the Jacobian

matrices of the structure without the constraining leg.

4.3.5 Implementation

4.3.5.1 Stiffness Evolution and Compliance Comparison

We implemented the above model for both the flexible case and the rigid case. A

program has been written with the software Mathematica, the stiffness trends are ob-

tained in each direction with the variation of links stiffness (i.e, the link’s flexibility).

Figure 4.8 shows that with the improvement of link stiffness, the mechanism’s stiffness

with flexible link is becoming a constant, this means that we can assume the flexible

mechanism to be rigid only if the link stiffness reaches a certain high value. It also

verifies the correctness of the kinetostatic model. The comparison between the mech-
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Figure 4.8: Evolution of the stiffness as a function of the passive link’s lumped stiffness

in θz, x, y directions (all the other directions are constants).

anism with rigid links (without virtual joints) and the mechanism with flexible links

(with virtual joints) is given in Table 4.4 (compliances have slightly variations in the

θx, θy and Z directions although the stiffnesses in these directions are constant, this is

because of the inverse operation of stiffness matrix to compliance matrix.). The Carte-

sian compliance in each of the directions is given for a reference configuration of the

mechanism, for progressively increasing values of the link stiffnesses. From Table 4.4,

one can find that with the improvement of the link stiffness, the mechanism’s compli-

ance is very close to that of mechanism with rigid link, this gives an alternative proof

of the above conclusion.

4.3.5.2 Compliance Mappings

The analysis described above is now used to obtain the compliance mappings. They

are drawn on a section of the workspace of the platform.
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Table 4.4: Comparison of the mechanism compliance between the mechanism with rigid

links and the mechanism with flexible links.

Ka Kpassive κθx
= κθy

κθz
κx = κy κz

1000 1000 0.192784 10−3 4.624× 10−4 3.4569× 10−4

1000 10Ka 0.192509 10−4 4.624× 10−5 3.4567× 10−4

1000 102Ka 0.192081 10−5 4.624× 10−6 3.4566× 10−4

1000 103Ka 0.192038 10−6 4.624× 10−7 3.4566× 10−4

1000 104Ka 0.192034 10−7 4.624× 10−8 3.4566× 10−4

1000 105Ka 0.192034 10−8 4.624× 10−9 3.4566× 10−4

1000 106Ka 0.192034. 10−9 4.624× 10−10 3.4566× 10−4

1000 107Ka 0.192034 10−10 4.624× 10−11 3.4566× 10−4

1000 rigid 0.192034 0.0 0.0 3.4566× 10−4

Visualization tools to aid in the use of such expressions have been developed. A

computer program has been written with software Mathematica. After giving the initial

values above, then the contour maps can be obtained as shown in Figure 4.9. From such

plots one can determine which regions of the workspace will satisfy some compliance

criteria.

In Figures 4.9(a) and 4.9(b), the torsional compliances in θx and θy are shown, the

compliances are symmetric. In Figure 4.9(f) the stiffness in z is higher near the center

of the workspace, which is the best position for supporting vertical loads. This is due

to the architecture chosen, which aims at supporting heavy objects in an environment

where the gravity is acting along the negative direction of z axis. All these are in

accordance with what would be intuitively expected.

4.3.6 Design Guidelines

Based on the above model, an example is now given to illustrate the effect of flexible

links (virtual joints) on the parallel mechanism. Referring to Figure 4.4, the parameters

used in this example are given as

θb1 = π/3, θb2 = π, θb3 = −π/3,
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Figure 4.9: Compliance mappings of the spatial 3-dof parallel mechanism with prismatic

actuators (all length units in m).

θp1 = 0, θp2 = 2π/3, θp3 = −2π/3,

Rp = 6 cm,Rb = 15 cm,

ki1 = 1000 N/m, i = 1, . . . , 3

where ki1 is the actuator stiffness.

x ∈ [−3, 3] cm, y ∈ [−3, 3] cm, z = 68 cm,

θ42 = π/2, θ43 = 0,

For the configuration specified as

x = 0, y = 0, z = 68 cm,
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θ42 = π/2, θ43 = 0,

one can find the global stiffnesses in all directions as a function of the actuator stiffness

and link stiffness (actuated and passive constraining leg), they are

Kθx
= 0.00520742Ka (4.71)

Kθy
= 0.00520742Ka (4.72)

Kθz
= 0.000380083Ka +K43 (4.73)

Kx = 0.0534932Ka + 2.16263K41 (4.74)

Ky = 0.0534932Ka + 2.16263K42 (4.75)

Kz = 2.89301Ka (4.76)

where Ka represents the actuator stiffness, K41, K42 and K43 represent the lumped

stiffnesses of the passive leg in X, Y and Z directions caused by the link bending and

torsion (flexibility).

Based on the results of the preceding section and the expression of eqs. (4.71) –

(4.76), the following design guidelines can be established as the reference for the design

of such mechanisms. The common design guidelines for this series of mechanisms will

be given in Section 4.7.

1. The stiffnesses Kθx
, Kθy

and Kz are in direct proportion to the actuator stiffness

and have no relationship with the rigidity of passive constraining leg.

2. K41 and K42, i.e., the passive leg’s bending stiffness along the X and Y axes, play

the same function of limiting the movement of the platform along the X and Y .

K43, i.e., the passive constraining leg’s torsional stiffness around the Z axis, plays

the function of limiting the rotation of the platform around the Z axis.

3. From the equations above, one can find that the stiffness along the Z axis is

the largest one among all the directions, and Kθy
is equal to Kθx

because of the

structure’s symmetrical configuration.

4. From Figure 4.8 and Table 4.4, we can also see that Kθz
, Kx and Ky are becoming

infinite while the flexible links are becoming more rigid, it corresponds to the

motions prevented by the passive constraining leg.
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We also find the following facts about the mechanism after performing some tests

and varying the parameters of the mechanism.

1. For a certain platform size, the larger the link length, the larger the global stiffness

values in all directions.

2. For a given link length, the smaller the platform size, the smaller the torsional

stiffness values around the X and Y axes, and the larger the stiffness values along

the Z axis.

4.4 Spatial Four-Degree-of-Freedom Mechanisms with

Prismatic Actuators

4.4.1 Geometric Modeling

Figures 4.10 and 4.11 represent a 4-dof parallel mechanism’s CAD model and its

schematic representation, the joint distribution both on the base and on the platform

is shown in Figure 4.12. This mechanism consists of five kinematic chains, including

four 6-dof variable length links with identical topology — as in the previous mechanism

— and one passive constraining link, connecting the fixed base to a moving platform.

The fifth chain connecting the base center to the platform center consists of a revolute

joint attached to the base, a moving link, a revolute joint, a second moving link and a

Hooke joint attached to the platform. This last leg is used to constrain the motion of

the platform to only four degrees of freedom.

4.4.2 Inverse Kinematics

There are four independent Cartesian coordinates of the platform. In the current study,

the independent coordinates have been chosen for convenience as (x, z, θ53, θ54), where

θ53, θ54 are the joint angles of the Hooke joint attached to the platform. For i = 1, . . . , 4,
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Figure 4.10: CAD model of the spatial 4-dof parallel mechanism with prismatic actu-

ators (Figure by Gabriel Coté).

one has

r
′

i =









0

−Rp sin θpi

Rp cos θpi









, bi =









Rb cos θbi

Rb sin θbi

0









(4.77)

θbi =
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θb3

θb4















=















α

π − β

π + β

−α















, θpi =















θp1

θp2

θp3

θp4















=















β

π − α

π + α

−β















(4.78)

according to eqs. (4.3) – (4.7), the inverse kinematic problem for the 4-dof platform

can finally be written as

ρ2
i = (pi − bi)

T (pi − bi), i = 1, . . . , 4 (4.79)
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Figure 4.11: Schematic representation of the spatial 4-dof parallel mechanism with

prismatic actuators.

4.4.3 Jacobian Matrices

4.4.3.1 Rigid Model

Table 4.5: The DH parameters for the passive constraining leg with rigid links.

i ai bi αi θi

0 0 0 90◦ 0

1 l51 0 0 θ51

2 l52 0 0 θ52

3 0 0 90◦ θ53

4 0 0 0 θ54

From Figure 4.13, one can obtain the Denavit-Hartenberg parameters given in Ta-

ble 4.5. A procedure similar to the previous mechanism is then completed to compute

vectors e5i and r5i, for i = 1, . . . , 4. For the fifth kinematic chain (passive constraining

leg), one finally has the velocity equation

J5θ̇5 = t (4.80)
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where

θ̇5 =
[

θ̇51 θ̇52 θ̇53 θ̇54

]T

(4.81)

and the Jacobian matrix of the passive constraining leg J5 can be expressed as

J5 =

[

e51 e52 e53 e54

e51 × r51 e52 × r52 e53 × r53 e54 × r54

]

(4.82)

4.4.3.2 Compliant Model

Here, the equations for all the four identical legs are the same as in the rigid model.

Figure 4.14 illustrates the configuration of the passive constraining leg with flexible

links. θ51 and θ53 can be obtained with the method described in Appendix B.1.

From Figure 4.14, the Denavit-Hartenberg parameters can be obtained as in Ta-

ble 4.6, then, the velocity equation can be written as

J′5θ̇
�

5 = t (4.83)

where

θ̇
�

5 =
[

θ̇51 θ̇52 θ̇53 θ̇54 θ̇55 θ̇56

]T

(4.84)

J′5 =

[

e51 e52 e53 e54 e55 e56

e51 × r51 e52 × r52 e53 × r53 e54 × r54 e55 × r55 e56 × r56

]

(4.85)
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Figure 4.13: The passive constraining leg with rigid links.

Considering the parallel component of the mechanism, the relationship between

Cartesian velocities and joint rates can be obtained by eqs. (4.18) to (4.23).

4.4.4 Kinetostatic Models

For the mechanism illustrated in Figure 4.10, the compliance matrix for the mechanism

with rigid links can be written as

Cc = J5(AJ5)
−1BCBT (AJ5)

−TJT5 (4.86)

where

C = diag[c1, c2, c3, c4] (4.87)

with ci is the compliance of the ith actuator, and J5 is the Jacobian matrix of the rigid

constraining leg in this 4-dof case. Matrices A and B are the Jacobian matrices of the

structure without the constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be written

as

K = [(J′5)
−TK5(J

′

5)
−1 + ATB−TKJB

−1A] (4.88)

where

K5 = diag[0, k52, 0, k54, 0, 0] (4.89)
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with k52 and k54 are the stiffnesses of the virtual joints. Matrix J′5 is the Jacobian

matrix of the compliant constraining leg in this 4-dof case, while A and B are the

Jacobian matrices of the structure without the constraining leg.

4.4.5 Implementation

4.4.5.1 Stiffness Evolution and Compliance Comparison

The model developed above has been implemented — for both the flexible case and the

rigid case — using the software Mathematica. A reference configuration is given below

to illustrate the effect of flexible links on the parallel mechanism.

α = 30◦, β = 60◦, Rp = 12 cm,Rb = 22 cm,

ki1 = 1000 N/m, i = 1, . . . , 4

where ki1 is the actuator stiffness, and the Cartesian coordinates are given by

x ∈ [−4, 4] cm, y ∈ [−4, 4] cm, z = 68 cm,

θ53 = −π/3, θ54 = 2π/3,
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Table 4.6: The DH parameters for the passive constraining leg with flexible links.

i ai bi αi θi

0 0 0 90◦ 0

1 0 0 90◦ θ51

2 l51 0 −90◦ θ52

3 0 0 90◦ θ53

4 l52 0 −90◦ θ54

5 0 0 90◦ θ55

6 0 0 0 θ56
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Figure 4.15: Evolution of the stiffness as a function of the passive link’s lumped stiffness

in θz and y directions (all the other directions are constants).

The compliance comparison between the mechanism with rigid links (without virtual

joints) and the mechanism with flexible links (with virtual joints) is given in Table 4.7.

Figure 4.15 shows the stiffness trends obtained in each direction with the variation of

links stiffness (i.e, the link’s flexibility). The passive constraining leg’s lumped stiffness

effects on the mechanism’s stiffness. Again, the effect of the link flexibility is clearly

demonstrated.

4.4.5.2 Compliance Mappings

The analysis described above is now used to obtain the compliance mappings for this

mechanism. Figure 4.16 shows the compliance maps which are drawn on a section of
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Table 4.7: Comparison of the mechanism compliance between the mechanism with rigid

links and the mechanism with flexible links.

Kactuator Kpassive κθx
κθy

κθz
κx κy κz

1000 1000 0.52371 1.41939 1.5 × 10−3 0.915208 5.78× 10−4 0.0111974

1000 101Ka 0.523128 1.41007 1.5 × 10−4 0.912371 5.78× 10−5 0.0111751

1000 102Ka 0.51707 1.40514 1.5 × 10−5 0.909087 5.78× 10−6 0.0111429

1000 103Ka 0.516464 1.40464 1.5 × 10−6 0.908758 5.78× 10−7 0.0111396

1000 104Ka 0.516404 1.4046 1.5 × 10−7 0.908726 5.78× 10−8 0.0111393

1000 105Ka 0.516398 1.40459 1.5 × 10−8 0.908722 5.78× 10−9 0.0111393

1000 106Ka 0.516397 1.40459 1.5 × 10−9 0.908722 5.78 × 10−10 0.0111393

1000 107Ka 0.516397 1.40459 1.5× 10−10 0.908722 5.78 × 10−11 0.0111393

1000 rigid 0.516397 1.40459 0.0 0.908722 0.0 0.0111393

the workspace of the platform. From such plots one can determine which regions of the

workspace will satisfy some compliance criteria.

From Figure 4.15 and Table 4.7, one can see that Kθz
and Ky are becoming infinite

while the flexible links are becoming more rigid. It corresponds to the motions prevented

by the passive constraining leg. Kθx
is also large enough because of the structure of the

passive constraining leg. The stiffness in Z is higher near the center of the workspace,

which is the best position for supporting vertical loads along the Z axis. All these

observations are in accordance with what would be intuitively expected.

4.4.6 Design Guidelines

For instance, for the configuration specified as

x = 0, y = 0, z = 68 cm,

θ53 = −π/3, θ54 = 2π/3,

the global stiffnesses expression becomes

Kθx
= 0.00850551Ka (4.90)
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Figure 4.16: Compliance mappings of the spatial 4-dof parallel mechanism with pris-

matic actuators (all length units in m).
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Kθy
= 0.0262118Ka (4.91)

Kθz
= 0.00324089Ka + 0.592593K52 + 0.148148K54 (4.92)

Kx = 0.0704587Ka (4.93)

Ky = 0.301223Ka + 0.961169K52 + 0.961169K54 (4.94)

Kz = 3.62832Ka (4.95)

where Ka represents the actuator stiffness, K52 and K54 represent the first and second

(from bottom to platform) link’s lumped stiffnesses of the passive constraining leg.

Based on the results above, apart from the common design guidelines given in

Section 4.7, the following design guidelines can be established and as reference for

designing such mechanisms:

1. The stiffnesses Kθx
, Kθy

, Kx and Kz are in direct proportion to actuator stiffness

and have no relationship with the rigidity of passive constraining leg’s.

2. If K52 6= K54, i.e., the passive constraining leg’s first link (from bottom to plat-

form) is not as rigid as the second link, then the first link’s rigidity is more

important than the second link’s for limiting the platform’s degrees of freedom,

this can be observed from the coefficients of K52 and K54 in eqs. (4.92) and (4.94).

3. From the equations, one can find that the stiffness along the Z axis is the largest

one among all the directions, and Kθy
is larger than Kθx

.

We also found the following facts about the mechanism after performing some tests

and varying the parameters of the mechanism.

1. For a certain platform size, the larger the link length, the smaller the global

stiffnesses.

2. For a given link length, the larger the platform size (within a certain range), the

larger the torsional stiffnesses around the X and Y axes, and the smaller the

stiffnesses along the X and Z axes.
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4.5 Spatial Five-Degree-of-Freedom Mechanisms with

Prismatic Actuators

4.5.1 Geometric Modeling

A 5-dof parallel mechanism’s CAD model, schematic representation and joint distri-

bution both on the base and on the platform are shown in Figures 4.1, 4.2 and 4.17,

respectively. A lumped compliance model should be established in order to obtain a

simple kinetostatic model, as it has been discussed in Section 4.2.2.
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Figure 4.17: Position of the attachment points: (a)on the base, (b)on the platform.

4.5.2 Inverse Kinematics

As described in Section 4.2.3, for i = 1, . . . , 5, one has

r
′

i =









0

−Rp cos θpi

−Rp sin θpi









, bi =









Rb cos θbi

Rb sin θbi

0









(4.96)
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=



















π/3− θp

π/3 + θp

π

5π/3− θp

5π/3 + θp



















(4.97)

the inverse kinematic problem for the 5-dof platform can finally be written as

ρ2
i = (pi − bi)

T (pi − bi), i = 1, . . . , 5 (4.98)

4.5.3 Jacobian Matrices

4.5.3.1 Rigid Model
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Figure 4.18: The passive constraining leg with rigid links.

From Figure 4.18, one can obtain the Denavit-Hartenberg parameters of the passive

leg as in Table 4.8. We take the Cartesian coordinate frame as frame 0, and define

α0 = 90◦, θ0 = 0◦, then one obtains

Q60 =









1 0 0

0 0 −1

0 1 0









(4.99)
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Table 4.8: The DH parameters for the passive constraining leg with rigid links.

i ai bi αi θi

0 0 0 90◦ 0

1 l61 0 0 θ61

2 0 0 90◦ θ62

3 l62 0 0 θ63

4 0 0 90◦ θ64

5 0 0 0 θ65

The expressions for vectors e6i and r6i are then obtained following the procedure given

above.

For the passive constraining leg, one then has the velocity equation as

J6θ̇6 = t (4.100)

where

θ̇6 =
[

θ̇61 θ̇62 θ̇63 θ̇64 θ̇65

]T

(4.101)

and the Jacobian matrix of the passive constraining leg J6 can be expressed as

J6 =

[

e61 e62 e63 e64 e65

e61 × r61 e62 × r62 e63 × r63 e64 × r64 e65 × r65

]

(4.102)

4.5.3.2 Compliant Model

In this section, the equations for the five identical legs are the same as in the rigid

model, only the passive constraining leg with virtual joint is needed to study in this

analysis.

Figure 4.19 illustrates the configuration of the passive constraining leg with virtual

joint Z2. Angle θ61 is the same as in the rigid case, θ62 = 0, and θ63 and θ64 have the

same angles as θ62 and θ63, respectively in the rigid case, therefore, we can find them

easily as described in the section with the rigid link model.
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Figure 4.19: The passive constraining leg with flexible links.

From Figure 4.19, one can obtain the Denavit-Hartenberg parameters of the passive

leg as in Table 4.9, then the velocity equation of the sixth kinematic chain (central leg)

can be obtained as follows

J′6θ̇
�

6 = t (4.103)

where

θ̇
�

6 =
[

θ̇61 θ̇62 θ̇63 θ̇64 θ̇65 θ̇66

]T

(4.104)

J′6 =

[

e61 e62 e63 e64 e65 e66

e61 × r61 e62 × r62 e63 × r63 e64 × r64 e65 × r65 e66 × r66

]

(4.105)

The global velocity equation can then be obtained by exploiting eqs. (4.18) to (4.23).

4.5.4 Kinetostatic Models

This mechanism is illustrated in Figure 4.1, the compliance matrix for the mechanism

with rigid links can be written as

Cc = J6(AJ6)
−1BCBT (AJ6)

−TJT6 (4.106)

with

C = diag[c1, c2, c3, c4, c5] (4.107)



99

Table 4.9: The DH parameters for the passive constraining leg with flexible links.

i ai bi αi θi

0 0 0 90◦ 0

1 0 0 90◦ θ61

2 l61 0 −90◦ θ62

3 0 0 90◦ θ63

4 l62 0 0 θ64

5 0 0 90◦ θ65

6 0 0 0 θ66

where ci is the compliance of the ith actuator, and J6 is the Jacobian matrix of the

rigid constraining leg in this 5-dof case. Matrices A and B are the Jacobian matrices

of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be written

as

K = [(J′6)
−TK6(J

′

6)
−1 + ATB−TKJB

−1A] (4.108)

with

K6 = diag[0, k62, 0, 0, 0, 0] (4.109)

where k62 is the stiffness of the virtual joint and J′6 is the Jacobian matrix of the

compliant passive constraining leg in this 5-dof case, while A and B are the Jacobian

matrices of the structure without the passive constraining leg.

4.5.5 Implementation

4.5.5.1 Stiffness Evolution and Compliance Comparison

The model developed above has been implemented for both the flexible case and the

rigid case. A program has been written using the software Mathematica.

The comparison between the mechanism with rigid links (without virtual joints) and

the mechanism with flexible links (with virtual joints) is given in Table 4.10. Figure 4.20
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Figure 4.20: Evolution of the stiffness as a function of the passive link’s lumped stiffness

in θx and θz directions (all the other directions are constants).

shows the variation of the stiffness for this type of mechanism. The results are similar

to those obtained in previous cases.

Table 4.10: Comparison of the mechanism compliance between the mechanism with

rigid links and the mechanism with flexible links.

Ka Kpassive κθx
κθy

κθz
κx κy κz

1000 1000 0.0862844 0.0980888 0.261173 0.0735117 0.0303542 0.000255386

1000 101Ka 0.0862729 0.098054 0.259051 0.0734333 0.0303281 0.000255386

1000 102Ka 0.0862717 0.0980506 0.258838 0.0734254 0.0303255 0.000255386

1000 103Ka 0.0862716 0.0980502 0.258817 0.0734246 0.0303252 0.000255386

1000 104Ka 0.0862716 0.0980502 0.258815 0.0734245 0.0303252 0.000255386

1000 105Ka 0.0862716 0.0980502 0.258815 0.0734245 0.0303252 0.000255386

1000 rigid 0.0862716 0.0980502 0.258815 0.0734245 0.0303252 0.000255386

4.5.5.2 Compliance Mappings

The kinetostatic model is now used to obtain the compliance mappings for the spatial

five-degree-of-freedom parallel mechanisms. The maps are drawn on square areas of

the variation of the end-effector’s position as shown in Figure 4.21. From the plots one

can determine which regions of the workspace will satisfy some compliance criteria.

From Figure 4.21 and Table 4.10, one can see that Kθz
is becoming infinite while
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Figure 4.21: Compliance mappings of the spatial 5-dof parallel mechanism with pris-

matic actuators (all length units in m).
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the flexible links are becoming stiffer. It corresponds to the motions prevented by the

passive constraining leg. Kθx
is also large enough because of the structure of the passive

constraining leg. The stiffness in Z is higher near the center of the workspace, which

is the best position for supporting vertical loads along the Z axis. All these can be

obviously observed.

4.5.6 Design Guidelines

An example is now given to illustrate the effect of flexible links (virtual joints) on the

parallel mechanism. The parameters of the reference configuration (Figure 4.2) used in

this example are given as

θp = 22.34◦, θb = 42.883◦, Rp = 12 cm,Rb = 22 cm, k62 = 1000 Nm,

ki1 = 1000 N/m, i = 1, . . . , 5

li1 = 46 cm, li2 = 36 cm, i = 1, . . . , 5

where ki1 is the actuator stiffness, li1, li2 are the link length for the 1st and 2nd link of

each leg, and the Cartesian coordinates are given by

x ∈ [−4, 4] cm, y ∈ [−4, 4] cm, z = 68 cm,

θ64 = −π, θ65 = 2π/3,

The configuration for this case is specified as

x = 0, y = 0, z = 68 cm,

θ64 = −π, θ65 = 2π/3,

hence we have the expressions

Kθx
= 0.0378863Ka +K62 (4.110)

Kθy
= 0.0321798Ka (4.111)

Kθz
= 0.000702041Ka + 0.333333K62 (4.112)

Kx = 0.0708594Ka (4.113)

Ky = 0.0634428Ka (4.114)
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Kz = 4.8657Ka (4.115)

where Ka represents the actuator stiffness, K62 represents the link’s lumped stiffness

located in the passive constraining leg.

With the results of the previous section and the expressions of eqs. (4.110) – (4.115),

the following design guidelines can be obtained. The common design guidelines will be

given in Section 4.7.

1. The global stiffness is increasing with the improvement of actuators, actuated

links and the passive constraining leg’s rigidity, and there is a critical stiffness

value for actuated flexible links to keep the structure rigid. In this case, the passive

constraining leg affects the stiffness around the X axis since the platform is not

in the horizontal position, the projections of the direction which is orthogonal to

the Hooke joint located at the platform are in XY and XZ planes, so while the

Hooke joint at platform limits the rotation around the Z axis, it also limits the

rotation around the X axis.

2. From the equations, one can find that the stiffness along the Z axis is the largest

one among all the directions, and Kθx
is larger than Kθy

(in the case of the current

configuration).

We also found the following facts about the mechanism after performing several

tests and varying the parameters of the mechanism.

1. For a certain platform size, the larger the link length, the smaller the torsional

stiffnesses around the X and Y , and the linear stiffnesses in X and Y , but the

stiffness in the Z axis is becoming smaller.

2. For a given link length, the larger the platform size (within a certain range), the

larger the torsional stiffnesses around the X and Y axes, and the smaller the

stiffnesses along the X and Y axes.
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4.6 The Tricept Machine Tool Family

4.6.1 Introduction of the Tricept Machine Tool Family

Figure 4.22: The Tricept machine tool prototype (Figure from Neos Robotics).

As shown in Figure 4.22, the Tricept machine tool family (including Tricept600,

Tricept605, and Tricept805) are developed by Neos Robotics AB, a Swedish company

which was one of the first machine tool builders to introduce a serious parallel machine.

The Tricept machine tool is designed as a vertical machining center. With such high

rigidity for the machine, the range of applications include HSC-milling of aluminum,

steel, structural parts, composites and riveting for the aerospace as well as large model

making, plastic and foam machining for automation. The tricept concept is also very

interesting for all types of laser cutting, water jet and welding applications.

The basic unit of the Tricept machine tool is a tripod with three servo actuators,

which are free from backlash by pre-load. In its upper end, every single actuator is

supported by a Hooke joint, in its lower end by a pre-loaded ball joint with three

degrees of freedom. The upper Hooke joints of the actuators are placed on a hexagonal

casting frame. The solution leads to a closed power flow between the components.

The center-tube of the machine eliminates the need of additional 3 actuators, which
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is the conventional way of designing a hexapod. For optimal rigidity and accuracy, the

center-tube does not have any telescopic feature, but is rigid and layered on a Hooke

joint in the center of the machine. Such kind of design leads to great rigidity and high

dynamic. Unlike a simple machine tool, the Tricept machine tool also can be integrated

into an existing production line.

4.6.2 Inverse Kinematics

The schematic representation of the Tricept machine tool and the geometry of the

joint distribution both on the base and on the platform are shown in Figures 4.23 and

4.24. This mechanism has the same kinematic chains as the 3-dof prismatic actuated

parallel mechanism studied above except for the passive constraining leg. The passive

constraining leg consists of a fixed Hooke joint, a moving link, a prismatic joint, and a

second moving link fixed to the platform. This last leg is used to constrain the motion

of the platform to only three degrees of freedom.

2

B
B

B

B

PP

P

P
12

3

1

4

3

Figure 4.23: Schematic representation of the Tricept machine tool.

For the Tricept mechanism of Figure 4.23, the independent coordinates have been
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Figure 4.24: Position of the attachment points on the base and platform.

chosen for convenience as (z, θ41, θ42), where (θ41, θ42) are the joint angles of the Hooke

joint attached to the base center at B4, and z is the vertical coordinate of point P with

respect to the fixed frame, for i = 1, 2, 3, one has

r
′

i =









Rp cos θpi

Rp sin θpi

0









, bi =









Rb cos θbi

Rb sin θbi

0









(4.116)

θbi =









θb1

θb2

θb3









=









π/2

7π/6

−π/6









, θpi =









θp1

θp2

θp3









=









π/2

7π/6

−π/6









(4.117)

The solution of the inverse kinematic problem for this Tricept mechanism can finally

be written as

ρ2
i = (pi − bi)

T (pi − bi), i = 1, 2, 3 (4.118)

4.6.3 Jacobian Matrices

4.6.3.1 Rigid Model

The parallel mechanism studied here comprises two main components, namely, the

constraining leg, which can be thought of as a serial mechanism and the actuated legs

acting in parallel.
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Figure 4.25: The passive constraining leg with rigid links.

Table 4.11: The DH parameters for the passive constraining leg with rigid links.

i ai bi αi θi

0 0 0 90◦ 0

1 0 0 90◦ θ41

2 0 0 90◦ θ42

3 0 z 0 90◦

Figure 4.25 illustrates the configuration of the passive constraining leg (compared

to Figure 4.23, the mechanism is shown upside down). From the figure, one can obtain

the Denavit-Hartenberg parameters given in Table 4.11. We take the fixed Cartesian

coordinate frame as frame 0, and define α0 = 0, θ0 = 0, then one obtains

Q40 =









1 0 0

0 0 −1

0 1 0









(4.119)

with the same method as in the other 3-dof case, one has the velocity equation of the

4th kinematic chain (passive constraining leg) as

J4θ̇4 = t (4.120)
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where

θ̇4 =
[

θ̇41 θ̇42 ż
]T

(4.121)

and t is the twist of the platform, t =
[

ωT ṗT

]T

, ω is the angular velocity of the

platform. Then the Jacobian matrix of the passive constraining leg of the mechanism

J4 can be expressed as

J4 =

[

e41 e42 0

e41 × r41 e42 × r42 e41

]

(4.122)

where e4i is a unit vector defined in the direction of axis i while r4i is a vector connecting

the origin of frame i to point P .

4.6.3.2 Compliant Model

Z
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Y

ZX

Z

X
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13

1

X 4

X 2

Z 3

X 6

X 5

Z 6

Z 5
Z 4

P

Z 7

Figure 4.26: The passive constraining leg with flexible links.

Figure 4.26 illustrates the configuration of the passive constraining leg with flexible

links, since there are forces and moments acting on the platform, the induced deforma-

tions are modeled using a virtual revolute joint on the base and two orthogonal virtual
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Table 4.12: The DH parameters for the passive constraining leg with flexible links.

i ai bi αi θi

0 0 0 90◦ 0

1 0 0 90◦ θ41

2 0 0 90◦ θ42

3 0 0 0 θ43

4 0 z/2 90◦ θ44

5 0 0 90◦ θ45

6 z/2 0 0 θ46

revolute joints in the middle of the passive constraining leg. These joints are repre-

sented using dashed lines in Figure 4.26. Then, one can obtain the Denavit-Hartenberg

parameters given in Table 4.12 and obtains

J′4θ̇
�

4 = t (4.123)

where

θ̇
�

4 =
[

θ̇41 θ̇42 θ̇43 ż/2 θ̇45 θ̇46

]T

(4.124)

and the Jacobian matrix of the passive constraining leg of the mechanism, noted J′

4,

can be obtained as

J′4 =

[

e41 e42 e43 0 e45 e46

e41 × r41 e42 × r42 e43 × r43 e44 e45 × r45 e46 × r46

]

(4.125)

4.6.4 Kinetostatic Models

The compliance matrix for the rigid model can be written as

Cc = J4(AJ4)
−1BCBT (AJ4)

−TJT4 (4.126)

where C = diag[c1, c2, c3], with c1, c2 and c3 are the compliances of the actuators and

J4 is the Jacobian matrix of the constraining leg. Matrices A and B are the Jacobian

matrices of the structure without the passive constraining leg.
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Similarly, the stiffness matrix for the mechanism with flexible links can be written

as

K = [(J′4)
−TK4(J

′

4)
−1 + ATB−TKJB

−1A] (4.127)

with

K4 = diag[0, 0, k43, 0, k45, k46] (4.128)

where k43, k45 and k46 are the stiffnesses of the virtual joints introduced to account for

the flexibility of the links in the constraining leg. The architecture of the constraining

leg including the virtual joints is represented in Figure 4.26, and J′4 is the Jacobian

matrix of the constraining leg in this Tricept case, while A and B are the Jacobian

matrices of the structure without the constraining leg.

4.6.5 Implementation

4.6.5.1 Stiffness Evolution and Compliance Comparison

The above model has been implemented for the Tricept machine tool for both cases —

with flexible links and with rigid links. A program has been written using the software

Mathematica and the stiffness trends are obtained in each direction with the variation

of link stiffnesses (i.e, the link’s flexibility). Figure 4.27 shows the Cartesian stiffness

components of this mechanism as a function of the stiffness of the virtual springs

(representing the stiffness of the links), for the reference (vertical) configuration.

The parameters used in this example are given by Neos Robotics AB as follows

θb1 = π/2, θb2 = 7π/6, θb3 = −π/6,

θp1 = π/2, θp2 = 7π/6, θp3 = −π/6,

Rp = 225 mm,Rb = 500 mm,

ki1 = 1000 N/m, i = 1, . . . , 3

where ki1 is the actuator stiffness and the Cartesian coordinates are given as

x ∈ [−3, 3] cm, y ∈ [−3, 3] cm, z = 1300 mm,

θ41 = π/2, θ42 = π/2,
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Figure 4.27: Evolution of the stiffness as a function of the passive link’s lumped stiffness

in different directions.
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From Figure 4.27, it is clear that the Cartesian stiffness is a linear function of the link

stiffnesses. This result is consistent with eq. (4.69), where the stiffness terms appear

linearly. The comparison between the parallel manipulator with rigid links (without

virtual joints) and the parallel manipulator with flexible links (with virtual joints) is

given in Table 4.13.

Table 4.13: Comparison of the mechanism compliance between the mechanism with

rigid links and the mechanism with flexible links.

Ka Kpassive κθx
κθy

κθz
κx κy κz

1000 1000 0.0028616 0.0028616 0.001 0.00479389 0.00479389 3.483 × 10−4

1000 10Ka 0.00279356 0.00279356 0.0001 0.00471689 0.00471689 3.483 × 10−4

1000 102Ka 0.00278675 0.00278675 10−5 0.00470919 0.00470919 3.483 × 10−4

1000 103Ka 0.00278607 0.00278607 10−6 0.00470842 0.00470842 3.483 × 10−4

1000 104Ka 0.002786 0.002786 10−7 0.00470834 0.00470834 3.483 × 10−4

1000 105Ka 0.002786 0.002786 10−8 0.00470833 0.00470833 3.483 × 10−4

1000 106Ka 0.002786 0.002786 10−9 0.00470833 0.00470833 3.483 × 10−4

1000 1010Ka 0.002786 0.002786 10−10 0.00470833 0.00470833 3.483 × 10−4

1000 rigid 0.002786 0.002786 0 0.00470833 0.00470833 3.483 × 10−4

From Table 4.13, one can find that with the improvement of link stiffness, the

mechanism’s compliance with flexible link is very close to that of a mechanism with

rigid links. This suggests that one can assume the flexible mechanism to be rigid only if

the link stiffness reaches a high value. All results are obviously similar to the previous

cases.

4.6.5.2 Compliance Mappings

The kinetostatic model is now used to obtain the compliance mappings for the Tricept

machine tool. Figure 4.28 shows the compliance mappings on a section of the workspace

of the platform. From the plots one can determine which regions of the workspace will

satisfy some compliance criteria.

From Figure 4.27 and Table 4.13, it can be seen that Kθx
, Kθy

, Kθz
, Kx and Ky are
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Figure 4.28: Compliance mappings of the Tricept machine tool (all length units in m).
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becoming infinite while the flexible links are becoming rigid, and Kz is kept constant,

it corresponds to the motions prevented by the passive constraining leg and at this

configuration, the motions along the X and the Y are also limited (for passive leg is

welded with platform).

4.6.6 Design Guidelines

For the configuration specified as

x = 0, y = 0, z = 1300 mm,

θ41 = π/2, θ42 = π/2,

one can find expressions for the Cartesian stiffnesses in all directions as a function of

actuator stiffness and link stiffness (passive constraining leg) as

Kθx
= 0.072685Ka + 4K46 (4.129)

Kθy
= 0.072685Ka + 4K45 (4.130)

Kθz
= K43 (4.131)

Kx = 0.0642478Ka + 2.36686K45 (4.132)

Ky = 0.0642478Ka + 2.36686K46 (4.133)

Kz = 2.8715Ka (4.134)

where Ka represents the stiffness of the actuators, while K43, K45 and K46 represent the

passive constraining leg’s stiffness in X, Y and Z directions caused by the link bending

(flexibility) and torsion. Since stiffnesses in eqs. (4.129) – (4.134) are pure stiffnesses

in each direction, therefore, Kx, and Ky have relationship with passive leg stiffnesses.

Based on the results of the previous section and the expressions of eqs. (4.129) –

(4.134), the following design guidelines can be established and used as reference for

the design of this kind of mechanism (the common design guidelines will be given in

Section 4.7).

1. The stiffness Kz is in direct proportion to the actuator stiffness and has no rela-

tionship with the rigidity of the passive constraining leg.
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2. If K45 = K46, i.e., the passive constraining leg’s bending stiffness along the X

and Y axes, play the equal role of limiting the movement of the platform along

the X and Y . K43 — the passive constraining leg’s stiffness around the Z axis

— plays the function of limiting the rotation of the platform around the Z axis.

3. From the equations, one can find that the stiffness along the Z axis is the largest

one among all the directions, and Kθy
is equal to Kθx

because of the structure’s

symmetrical configuration. This is clearly illustrated in Figure 4.27.

4. In Figure 4.28(a) and (b), the torsional compliances in θx and θy are shown, the

compliances are symmetric to each other. In Figure 4.28(f) the stiffness in z is

higher near the center of the workspace, which is the best position for supporting

vertical loads. This is due to the architecture chosen, which aims at supporting

heavy objects in an environment where the gravity is acting along the negative

direction of the Z axis. All these are in accordance with what would be intuitively

expected.

Some other facts about the mechanism are found after performing tests with the

kinetostatic model.

1. For a certain platform size, the larger the link length, the larger the global stiffness

values.

2. For a given link length, the smaller the platform size, the smaller the torsional

stiffness values around the X and Y axes, and the larger the stiffness values along

the Z axis.

4.7 Conclusions

A new family of n-DOF parallel mechanisms with one passive constraining leg has been

introduced in this chapter. This type of architecture can be used in several applications

including machine tools. The kinematic analysis of this family of spatial parallel n-

degree-of-freedom mechanisms has been presented. The geometric configurations of

the mechanisms are shown. In this chapter, only mechanisms with prismatic actuators
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have been discussed. Solutions for the inverse kinematic problem have been given. The

Jacobian matrices obtained have been used to establish the kinetostatic model of the

mechanisms. The lumped link and joint compliances have been used for the study of the

Cartesian compliance. Finally, examples have been investigated and numerical results

have been obtained. The results clearly demonstrate the relevance of the kinetostatic

analysis in the context of design of such mechanisms.

Additionally, there are some common design guidelines for this series of mechanisms,

they are

1. With the improvement of link stiffness, the mechanism’s compliance is very close

to that of mechanism with rigid link, this suggests that we can assume the flexible

mechanism to be rigid only if the link stiffness reaches a high value (107Ka).

2. The passive constraining leg’s lumped stiffness does not affect all directional stiff-

nesses, it only plays the role of limiting the platform’s motion to the desired

ones.

3. the limitation of the platform’s degree of freedom is dependent on the actuator

stiffness and link stiffness.

4. If the passive constraining leg’s lumped stiffness is fixed as the same value as

actuator’s (Ka), then it cannot adequately limit the motion to the desired degree-

of-freedom, only if the passive constraining leg’s lumped stiffness is large enough

(102Ka), then it begins to efficiently play the role of limiting the platform motion

to the desired ones.



Chapter 5

Kinetostatic Analysis of Spatial

n-DOF Parallel Mechanisms with a

Passive Constraining Leg and n

Identical Legs with Revolute

Actuators

5.1 Introduction

In chapter 4, we established and discussed a general kinetostatic model for parallel

mechanisms with prismatic actuators whose degree of freedom (dof) is dependent on

117
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a passive constraining leg connecting the base and the platform. In this chapter, the

parallel mechanisms with revolute actuators are addressed. Together with the inverse

kinematics and velocity equations for both rigid-link and flexible-link mechanisms, a

general kinetostatic model is established for the analysis of the structural rigidity and

accuracy of this family of mechanisms, some examples for 3-dof, 4-dof and 5-dof mech-

anisms are given in detail to illustrate the results.

5.2 General Kinetostatic Model for Spatial n−DOF

Mechanisms with a Passive Constraining Leg

and Revolute Actuators

5.2.1 Geometric Modeling

A 5-dof parallel mechanism with revolute actuators belonging to the family of mecha-

nisms studied in this chapter is shown in Figures 5.1 and 5.2. It consists of six kinematic

chains, including five actuated legs with identical topology and one passive constraining

leg, connecting the fixed base to the moving platform. In this 5-dof parallel mecha-

nism, the kinematic chains associated with the five identical legs consist — from base

to platform — of an actuated revolute joint, a moving link, a Hooke joint, a second

moving link and a spherical joint attached to the platform. The sixth chain (central

leg) connecting the base to the platform is a passive leg and has the same architecture

and function as 5-dof mechanism with prismatic actuators discussed in Chapter 4.

Similarly, families of 3-dof and 4-dof parallel mechanisms can be built using three

or four identical legs with 6 degrees of freedom and one passive constraining leg with 3

degrees of freedom or 4 degrees of freedom, respectively.

5.2.2 Inverse Kinematics

With the same independent coordinates (x, y, z, θi, θj), vectors pi, r
′

i, p and rotation

matrix Q0 are the same as for the mechanisms discussed in Chapter 4. The inverse

kinematics for both rigid-link and flexible-link mechanisms can be obtained as follows.
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Figure 5.1: CAD model of the spatial 5-dof parallel mechanism with revolute actuators

(Figure by Gabriel Coté).

5.2.2.1 Solution for the Mechanisms with Rigid Links

In order to solve the inverse kinematic problem, the passive constraining leg should be

taken as a serial n-dof mechanism whose n Cartesian coordinates are known, which is

a well known problem. Once the solution to the inverse kinematics of this n-dof serial

mechanism is found, the complete pose (position and orientation) of the platform can

be determined using the direct kinematic equations for this serial mechanism.

Figure 5.3 illustrates the configuration of the ith actuated joint of the mechanism

with revolute actuators. Point B ′

i is defined as the center of the Hooke joint connecting

the two moving links of the ith actuated leg. Moreover, the Cartesian coordinates of

point B′

i expressed in the fixed coordinate frame are represented as (b′ix, b
′

iy, b
′

iz), and

the position vector of point B ′

i in the fixed frame is given by vector b′

i. Since the axis

of the fixed revolute joint of the ith actuated leg is assumed to be parallel to the xy

plane of the fixed coordinate frame, one can write

b′ix = bix − li1 sin(θbi + βi) cos θi1, i = 1, . . . , n, n = 3, 4, or 5 (5.1)

b′iy = biy + li1 cos(θbi + βi) cos θi1, i = 1, . . . , n, n = 3, 4, or 5 (5.2)

b′iz = biz + li1 sin θi1, i = 1, . . . , n, n = 3, 4, or 5 (5.3)

where θbi is the angle between the positive direction of the x axis of the base coordinate
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Figure 5.2: Schematic representation of the spatial 5-dof parallel mechanism with rev-

olute actuators.

frame and the line connecting points O and Bi and θi1 is the joint variable — rotation

angle around the fixed revolute joint — associated with the ith actuated leg, βi is the

angle between the positive direction of the line connecting points O and Bi and the axis

of the ith actuated joint. Moreover, li1 is the length of the first link of the ith actuated

leg. From the configuration of Figure 5.3, the relationships between the parameters

can be written as

(b′ix − xi)
2 + (b′iy − yi)

2 + (b′iz − zi)
2 = l2i2, i = 1, . . . , n, n = 3, 4, or 5 (5.4)

where xi, yi, zi are the coordinates of point Pi and li2 is the length of the second link of

the ith actuated leg.

Substituting eqs. (5.1) – (5.3) into eq. (5.4), one has

Ei cos θi1 + Fi sin θi1 = Gi, i = 1, . . . , n, n = 3, 4, or 5 (5.5)

where

Ei = (yi − biy) cos(θbi + βi)− (xi − bix) sin(θbi + βi) (5.6)

Fi = zi − biz (5.7)

Gi =
(xi − bix)

2 + (yi − biy)
2 + (zi − biz)

2 + l2i1 − l2i2
2li1

(5.8)
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Figure 5.3: The ith actuated revolute joint.

and angle θi1 can be obtained by

sin θi1 =
FiGi +KiEi

√
Hi

E2
i + F 2

i

, i = 1, . . . , n, n = 3, 4, or 5 (5.9)

cos θi1 =
EiGi −KiFi

√
Hi

E2
i + F 2

i

, i = 1, . . . , n, n = 3, 4, or 5 (5.10)

where Ki = ±1 is the branch index of the mechanism associated with the configuration

of the ith leg, and

Hi = E2
i + F 2

i −G2
i , i = 1, . . . , n, n = 3, 4, or 5 (5.11)

Finally, the solution of the inverse kinematic problem is completed by performing

θi1 = atan2[sin θi1, cos θi1], i = 1, . . . , n, n = 3, 4, or 5 (5.12)

Meanwhile, referring to Figure 5.3, the vector of leg length can be written as

b′

i = bi + li1Qti1di, i = 1, . . . , n, n = 3, 4, or 5 (5.13)
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with

Qti1 =









cos(θbi + βi) − sin(θbi + βi) 0

sin(θbi + βi) cos(θbi + βi) 0

0 0 1









, i = 1, . . . , n, n = 3, 4, or 5 (5.14)

and

di1 =









0

cos θi1

sin θi1









, i = 1, . . . , n, n = 3, 4, or 5 (5.15)

assuming that the distance between points Pi and B′

i is noted li2, then one has

l2i2 = (pi − bi)
T (pi − bi), i = 1, . . . , n, n = 3, 4, or 5 (5.16)

5.2.2.2 Solutions for the Mechanisms with Flexible Links
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Figure 5.4: One of the identical kinematic chains with flexible links.

Based on the lumped compliance model both for link and joint described in Sec-

tion 4.2.2, we lumped one of the identical kinematic chains for the n-dof parallel mech-

anism discussed above in Figure 5.4. Joint 2 is a virtual joint used to model the
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compliance of the driven link. From Figure 5.4, one can obtain θi2 = 0, when there is

no deflection. Angles θi3 and θi4 can be obtained by writing the coordinates of point P

in Frame 3 as

xi3 = li2 cos θi4 cos θi3, i = 1, . . . , n, n = 3, 4, or 5 (5.17)

yi3 = li2 cos θi4 sin θi3, i = 1, . . . , n, n = 3, 4, or 5 (5.18)

zi3 = li2 sin θi4, i = 1, . . . , n, n = 3, 4, or 5 (5.19)

and

[p]3 = QT
i2Q

T
i1Q

T
i0[pi − b′

i], i = 1, . . . , n, n = 3, 4, or 5 (5.20)

then, combining eqs. (5.17) – (5.19) and (5.20), one can find θi3 and θi4 easily.

From Figure 5.4, one can express the position of point B ′

i as

b′

i = bi + Qi0ai1 + Qi0Qi1ai2, i = 1, . . . , n, n = 3, 4, or 5 (5.21)

where Qi0, ai1, ai2 and Qi1 can be expressed as

ai1 =









0

0

0









, ai2 =









li1 cos θi2

li1 sin θi2

0









, Qi1 =









cos θi1 0 sin θi1

sin θi1 0 − cos θi1

0 1 0









(5.22)

Qi0 =









− sin(θbi + βi) 0 cos(θbi + βi)

cos(θbi + βi) 0 sin(θbi + βi)

0 1 0









(5.23)

5.2.3 Jacobian Matrices

5.2.3.1 Rigid Model

The parallel mechanisms studied here comprise two main components, namely, the

passive constraining leg — which can be thought of as a serial mechanism — and the

actuated legs acting in parallel.

Considering the passive constraining leg, one can write

Jn+1θ̇n+1 = t, n = 3, 4, or 5 (5.24)
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where Jn+1 consists of ei and ri as represented in Appendix C, and t =
[

ωT ṗT
]T

is the twist of the platform, ω is the angular velocity of the platform and θ̇n+1 =
[

θ̇n+1,1 . . . θ̇n+1,n

]T

, (n = 3, 4, or 5) is the joint velocity vector associated with the

passive constraining leg. Matrix Jn+1 is the Jacobian matrix of the passive constraining

leg which is taken as a serial n-dof mechanism.

5.2.3.2 Compliant Model

If the compliances of the links and joints are included, (6−n) virtual joints will then be

added to the passive constraining leg in order to account for the compliance of the links

(Gosselin and Zhang 1999). Hence, the Jacobian matrix of the passive constraining leg

becomes

J′n+1θ̇
�

n+1 = t, n = 3, 4, or 5 (5.25)

where J′n+1 consists of ei and ri as represented in Appendix C, and

θ̇
�

n+1 =
[

θ̇n+1,1 . . . θ̇n+1,6

]T

, n = 3, 4, or 5 (5.26)

5.2.4 Global Velocity Equations

1. Rigid Model

Now, considering the parallel component of the mechanism, the parallel Jacobian

matrix can be obtained by differentiating eqs. (5.13), (5.15), and (5.16) with

respect to time. One has

ḃ′

i = li1Qti1ḋi, i = 1, . . . , n, n = 3, 4, or 5 (5.27)

ḋi1 =









0

− sin θi1

cos θi1









˙θi1, i = 1, . . . , n, n = 3, 4, or 5 (5.28)

(pi − b′

i)
T ḃ′

i − (pi − b′

i)
T ṗi = 0, i = 1, . . . , n, n = 3, 4, or 5 (5.29)

differentiating eq. (4.3), one obtains

ṗi = ṗ + Q̇r′i, i = 1, . . . , n, n = 3, 4, or 5 (5.30)
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assuming

ei = li1Qti1









0

− sin θi1

cos θi1









, i = 1, . . . , n, n = 3, 4, or 5 (5.31)

then

ḃ′

i = eiθ̇i1, i = 1, . . . , n, n = 3, 4, or 5 (5.32)

therefore eq. (5.29) can be rewritten as (for i = 1, . . . , n, n = 3, 4, or 5)

(pi − b′

i)
Tei ˙θi1 = (pi − b′

i)
T ṗi

= (pi − b′

i)
T (ṗ + Q̇r′i)

= (pi − b′

i)
T (ṗ + ΩQr′i)

= (pi − b′

i)
T ṗ + (pi − b′

i)
TΩQr′i

= (pi − b′

i)
T ṗ + (pi − b′

i)
T [ω × (Qr′i)]

= (pi − b′

i)
T ṗ + [(Qr′i)× (pi − b′

i)]
Tω (5.33)

Hence one has the velocity equation

At = Bθ̇ (5.34)

where vector θ̇ and t are defined as

θ̇ =
[

θ̇1 . . . θ̇n

]T

, n = 3, 4, or 5 (5.35)

t =
[

ωT ṗT
]T

(5.36)

and

A =















mT
1

mT
2

...

mT
n















, B = diag[(p1 − b′

1)
Te1, . . . , (pn − b′

n)
Ten] (5.37)

with mi is a six-dimensional vector, which can be expressed as

mi =

[

(Qr′i)× (pi − b′

i)

(pi − b′

i)

]

, i = 1, . . . , n, n = 3, 4, or 5 (5.38)
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2. Compliant Model

Differentiating eqs. (5.21) and (5.22) with respect to time, one has

ḃ′

i = Qi0Q̇i1ai2 + Qi0Qi1ȧi2, i = 1, . . . , n, n = 3, 4, or 5 (5.39)

ȧi2 =









−li1 sin θi2

li1 cos θi2

0









θ̇i2, i = 1, . . . , n (5.40)

Q̇i1 =









− sin θi1 0 cos θi1

cos θi1 0 sin θi1

0 0 0









˙θi1, i = 1, . . . , n, n = 3, 4, or 5 (5.41)

For i = 1, . . . , n, n = 3, 4, or 5, assuming

di1 = Qi0









− sin θi1 0 cos θi1

cos θi1 0 sin θi1

0 0 0









ai2, di2 = Qi0Qi1









−li1 sin θi2

li1 cos θi2

0









(5.42)

then one has

ḃ′

i = di1θ̇i1 + di2θ̇i2, i = 1, . . . , n, n = 3, 4, or 5 (5.43)

Differentiating eq. (5.16) with respect to time, one obtains eq. (5.29), and hence,

differentiating eq. (4.3), and following a derivation similar to the one presented

above for the mechanism with rigid links, for i = 1, . . . , n, n = 3, 4, or 5, one

has

(pi − b′

i)
T (di1θ̇i1 + di2θ̇i2) = (pi − b′

i)
T ṗ + [(Qr′i)× (pi − b′

i)]
Tω (5.44)

Hence one has the velocity equation as

At = B1θ̇1 + B2θ̇2 (5.45)

where vectors θ̇1 and θ̇2 are defined as

θ̇1 =
[

θ̇11 . . . θ̇n1

]T

, n = 3, 4, or 5 (5.46)

θ̇2 =
[

θ̇12 . . . θ̇n2

]T

, n = 3, 4, or 5 (5.47)
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matrices A, B1 and B2 are given as

A =
[

m1 m2 m3 m4 m5 m6

]T

(5.48)

B1 = diag[b11, . . . , bn,2n−1], n = 3, 4, or 5 (5.49)

B2 = diag[b12, . . . , bn,2n], n = 3, 4, or 5 (5.50)

where mi is a six-dimensional vector, bi,2i−1, bi,2i are the diagonal items of B1

and B2, respectively. They can be expressed as

mi =

[

(Qr′i)× (pi − b′

i)

(pi − b′

i)

]

, i = 1, . . . , n, n = 3, 4, or 5 (5.51)

bi,2i−1 = (pi − b′

i)
Tdi,1, i = 1, . . . , n, n = 3, 4, or 5 (5.52)

bi,2i = (pi − b′

i)
Tdi,2, i = 1, . . . , n, n = 3, 4, or 5 (5.53)

5.2.5 Kinetostatic Model of the Mechanism with Rigid Links

According to the principle of virtual work, one can finally obtain the Cartesian com-

pliance matrix with the same approach as in Chapter 4.

Cc = Jn+1(AJn+1)
−1BCBT (AJn+1)

−TJTn+1 (5.54)

with

∆c = Ccw (5.55)

where Cc is a symmetric positive semi-definite (6× 6) matrix, as expected.

5.2.6 Kinetostatic Model of the Mechanism with Flexible Links

Again, based on the principle of virtual work, one can write

wTt = τ Tn+1θ̇
�

n+1 + τ T
1 θ̇1 + τ T

2 θ̇2 (5.56)

where τ 1 and τ 2 correspond to a partition of vector τ , in components associated with

θ̇1 and θ̇2, respectively, i.e., the first and second joint of each leg. τ is the vector of

actuator forces and θ̇ is the vector of actuator velocities (actuated joints and joints

with virtual springs), and τ n+1 is the vector of joint torques in the passive constraining
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leg. This vector is defined as follows, where Kn+1 is the stiffness matrix of the passive

constraining leg,

τ n+1 = Kn+1∆θ′

n+1 (5.57)

τ 1 = Kj1∆θ1 (5.58)

τ 2 = Kj2∆θ2 (5.59)

Kj1 = diag[k11, . . . , kn1] (5.60)

Kj2 = diag[k12, . . . , kn2] (5.61)

Matrix Kn+1 is a diagonal 6× 6 matrix in which the ith diagonal entry is zero if it is

associated with a real joint or it is equal to ki if it is associated with a virtual joint,

where ki is the stiffness of the virtual spring located at the ith joint. k11, . . . , kn1 are

the compound stiffnesses of actuators and first links stiffnesses while k12, . . . , kn2 are

the first links stiffnesses. One can rewrite eq. (5.45) as

θ̇1 = B−1
1 At−B−1

1 B2θ̇2 (5.62)

Substituting eqs. (5.62) and (5.25) into eq. (5.56), one can obtain

wTJ′n+1θ̇
�

n+1 = τ Tn+1θ̇
�

n+1 + τ T2 θ̇2 + τ T1 B−1
1 AJ′n+1θ̇

�

n+1 − τ T
1 B−1

1 B2θ̇2 (5.63)

Since there are 11 degrees of freedom in the compliant mechanism, this equation must

be satisfied for any value of θ̇
�

n+1 and θ̇2. Therefore, one can equate the coefficients of

the terms in θ̇
�

n+1 and the terms in θ̇2, hence one can obtain

(J′n+1)
Tw = τ n+1 + (J′n+1)

TATB−T
1 τ 1 (5.64)

τ 2 = BT
2 B−T

1 τ 1 (5.65)

Substituting eqs. (5.57), (5.58) and (5.59) into eqs. (5.64) and (5.65), one obtains

(J′n+1)
Tw = Kn+1∆θ′

n+1 + (J′n+1)
TATB−T

1 Kj1∆θ1 (5.66)

∆θ2 = K−1
j2 BT

2 B−T
1 Kj1∆θ1 (5.67)

Substituting eq. (5.67) into eq. (5.45), one obtains

At = Wθ̇1 (5.68)

where

W = B1 + B2K
−1
j2 BT

2 B−T
1 Kj1 (5.69)
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Substituting eq. (5.68) into eq. (5.66), one obtains

(J′n+1)
Tw = Kn+1(J

′

n+1)
−1∆c + (J′n+1)

TATB−T
1 Kj1W

−1A∆c (5.70)

i.e.,

w = ((J′n+1)
−TKn+1(J

′

n+1)
−1 + ATB−T

1 Kj1W
−1A)∆c (5.71)

which is in the form

w = K∆c (5.72)

where K is the stiffness matrix, which is equal to

K = [(J′n+1)
−TKn+1(J

′

n+1)
−1 + ATB−T

1 Kj1W
−1A] (5.73)

Matrix K is a symmetric (6× 6) positive semi-definite matrix, as expected. Matrix

K will be of full rank in non-singular configurations. Indeed, the sum of the two terms

in eq. (5.73) will span the complete space of constraint wrenches.

5.3 Spatial Three-Degree-of-Freedom Mechanisms

with Revolute Actuators

5.3.1 Geometric Modeling and Inverse Kinematics

A 3-dof parallel mechanism’s CAD model, schematic representation and its joint dis-

tribution both on the base and on the platform are shown in Figures 5.5, 5.6 and 4.5.

This mechanism consists of four kinematic chains, including three identical actuated

legs and one passive constraining leg, connecting the fixed base to a moving platform.

In this 3-dof parallel mechanism, the kinematic chains associated with the three iden-

tical legs consist — from base to platform — of an actuated revolute joint, a moving

link, a Hooke joint, a second moving link and a spherical joint attached to the platform.

The fourth chain (central leg) connecting the base center to the platform center is a

passive constraining leg and has the same architecture as in the 3-dof mechanism with

prismatic actuator discussed in Chapter 4.

Since the structure discussed here has a structure similar to the 3-dof mechanism

with prismatic actuators, the independent Cartesian coordinates are specified as the
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Figure 5.5: CAD model of the spatial 3-dof parallel mechanism with revolute actuators

(Figure by Gabriel Coté).

same as in Chapter 4. The procedure for solving the inverse kinematics both for rigid-

link and flexible-link has been presented for the general case of this family of mechanism

in Section 5.2.2. With eqs. (5.1) – (5.16), one can solve the inverse kinematic problem

easily. Therefore, it is not repeated here.

5.3.2 Jacobian Matrices

Considering the passive constraining leg, since it has an architecture identical to that

of the 3-dof mechanism with prismatic actuators studied in Chapter 4, the Jacobian

matrices of the passive constraining leg both for rigid-link and flexible-link are the

same as the 3-dof mechanism with prismatic actuators of Chapter 4. Therefore, one

can obtain the same Jacobian matrices as indicated in eqs. (4.64) and (4.67).

5.3.3 Global Velocity Equations

1. Rigid Model

Considering the parallel component of the mechanism, the parallel Jacobian ma-

trix can be obtained by eqs. (5.27) – (5.33), then one can obtain the velocity

equation as

At = Bθ̇ (5.74)
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Figure 5.6: Schematic representation of the spatial 3-dof parallel mechanism with rev-

olute actuators.

where vectors θ̇ and t are defined as

θ̇ =
[

θ̇1 θ̇2 θ̇3

]T

(5.75)

t =
[

ωT ṗT
]T

(5.76)

and

A =
[

m1 m2 m3

]T

(5.77)

B = diag[(p1 − b′

1)
Te1, (p2 − b′

2)
Te2, (p3 − b′

3)
Te3] (5.78)

with mi is a six-dimensional vector, it can be expressed as

mi =

[

(Qr′i)× (pi − b′

i)

(pi − b′

i)

]

, i = 1, 2, 3 (5.79)

2. Compliant Model

Referring to eqs. (5.39) – (5.44), one has the velocity equation as

At = B1θ̇1 + B2θ̇2 (5.80)

where vectors θ̇1 and θ̇2 are defined as

θ̇1 =
[

θ̇11 θ̇21 θ̇31

]T

(5.81)
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θ̇2 =
[

θ̇12 θ̇22 θ̇32

]T

(5.82)

with ṗ and ω are the linear and angular velocities of the platform, and

A =
[

m1 m2 m3

]T

(5.83)

B1 = diag[b11, b23, b35] (5.84)

B2 = diag[b12, b24, b36] (5.85)

where mi is a six-dimensional vector, bi,2i−1, bi,2i are diagonal terms of B1 and

B2, respectively, they can be expressed as

mi =

[

(Qr′i)× (pi − b′

i)

(pi − b′

i)

]

, i = 1, 2, 3 (5.86)

bi,2i−1 = (pi − b′

i)
Tdi,1, i = 1, 2, 3 (5.87)

bi,2i = (pi − b′

i)
Tdi,2, i = 1, 2, 3 (5.88)

5.3.4 Kinetostatic Models

The procedure for finding the compliance matrix for the rigid model is identical to what

has been done in the computation of the compliance matrix of the 3-dof mechanism

with prismatic actuators, and the compliance matrix can be written as

Cc = J4(AJ4)
−1BCBT (AJ4)

−TJT4 (5.89)

where Cc = diag[c1, c2, c3], with c1, c2 and c3 are the compliances of the actuators, and

J4 is the Jacobian matrix of the passive constraining leg in this 3-dof case. A and B

are the Jacobian matrices of the structure without the passive constraining leg.

The same method described in Section 5.2.6 is applied for finding the stiffness matrix

of the mechanism with flexible links, and this matrix can be written as

K = [(J′4)
−TK4(J

′

4)
−1 + ATB−T

1 Kj1W
−1A] (5.90)

where W is defined in eq. (5.69) and

K4 = diag[k41, k42, k43, 0, 0, 0] (5.91)

Kj1 = diag[k11, k21, k31] (5.92)
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Kj2 = diag[k12, k22, k32] (5.93)

and J′4 is the Jacobian matrix of the passive constraining leg with virtual joints, k41, k42

and k43 are the passive constraining leg’s lumped stiffnesses, k11, k21 and k31 are the

compound stiffnesses of actuators and first links stiffnesses, k12, k22 and k32 are the first

links stiffnesses.

5.3.5 Implementation

The above model has been implemented for the 3-dof mechanism with revolute actu-

ators for both cases, with rigid links and with flexible links. The results are given to

illustrate the effect of the flexible links on the parallel mechanism. For the reference

configuration of Figure 5.6, the parameters used in this example are given as

θb1 = π/3, θb2 = π, θb3 = −π/3,

θp1 = 0, θp2 = 2π/3, θp3 = −2π/3,

Rp = 9 cm,Rb = 22.73 cm,

Ki = −1, i = 1, 2, 3

li1 = 51.52 cm, li2 = 69.7 cm, i = 1, 2, 3

k′i1 = 1000 Nm, i = 1, 2, 3

where k′i1 is the actuator stiffness, Ki is the branch index, and li1, li2 are the link length

for the 1st and 2nd link of each leg. The Cartesian coordinates are given by

x ∈ [−3, 3] cm, y ∈ [−3, 3] cm, z = 103 cm,

θ42 = π/2, θ43 = 0,

From Tables 5.1, 5.2 and Figure 5.7, one can find that with the improvement of the

link stiffness, the mechanism’s compliance is very close to that of mechanism with rigid

links. This means that one can assume the flexible mechanism to be rigid only if the

link stiffness reaches a high value.
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Figure 5.7: Evolution of the stiffness as a function of the link’s lumped stiffness in

different directions.
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Figure 5.8: Compliance mappings of the spatial 3-dof parallel mechanism with revolute

actuators (all length units in m).

5.3.6 Design Guidelines

Given a certain configuration of the mechanism (x = 0, y = 0, z = 103 cm, θ42 =

π/2, θ43 = 0), one can find expressions for the Cartesian stiffness in all directions as

functions of the actuator stiffnesses and link stiffnesses. For the reference configuration,

one obtains

Kθx
=

141λKb2(0.895796 + 0.00859172λ2 + 0.175459λ)

(2681 + 2.51837λ3 + 77.1446λ2 + 787.717λ)
(5.94)

Kθy
=

141λKb2(0.895796 + 0.00859172λ2 + 0.175459λ)

(2681 + 2.51837λ3 + 77.1446λ2 + 787.717λ)
(5.95)
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Table 5.1: Comparison of the mechanism compliance between the mechanism with rigid

links and the mechanism with flexible links.

Kactuator Klink κθx
κθy

κθz
κx κy κz

1000 1000 0.09937 0.09937 10−3 1.06152× 10−3 1.06152× 10−3 0.000186579

1000 101Ka 0.02904 0.02904 10−4 1.06152× 10−4 1.06152× 10−4 0.0000975989

1000 102Ka 0.02201 0.02201 10−5 1.06152× 10−5 1.06152× 10−5 0.0000887009

1000 103Ka 0.02131 0.02131 10−6 1.06152× 10−6 1.06152× 10−6 0.0000878111

1000 104Ka 0.02123 0.02123 10−7 1.06152× 10−7 1.06152× 10−7 0.0000877221

1000 105Ka 0.02123 0.02123 10−8 1.06152× 10−8 1.06152× 10−8 0.0000877132

1000 106Ka 0.02123 0.02123 10−9 1.06152× 10−9 1.06152× 10−9 0.0000877123

1000 107Ka 0.02123 0.02123 10−10 1.06152× 10−10 1.06152× 10−10 0.0000877122

1000 rigid 0.02123 0.02123 0.0 0.0 0.0 0.0000877122

Kθz
=

87497.6λKb2(0.0895796 + 0.000859172λ2 + 0.0175459λ)

(268111 + 251.837λ3 + 7714.46λ2 + 78771.7λ)
+K43 (5.96)

Kx =
728387λKb2(0.895759 + 0.00859172λ2 + 0.175459λ)

(268111 + 251.837λ3 + 7714.46λ2 + 78771.7λ)
+K41 (5.97)

Ky =
728387λKb2(0.0895759 + 0.000859172λ2 + 0.0175459λ)

(268111 + 251.837λ3 + 7714.46λ2 + 78771.7λ)
+K42 (5.98)

Kz =
341228λKb2(8.95796 + 0.0859172λ2 + 1.75459λ)

(268111 + 251.837λ3 + 7714.46λ2 + 78771.7λ)
(5.99)

λ =
KaKb1

(Ka +Kb1)Kb2
(5.100)

where Ka represents the actuator stiffness, and Kb1, Kb2 represent actuated kinematic

chain’s 1st and 2nd link’s stiffness, respectively, while K41, K42 and K43 represent the

passive constraining leg’s lumped stiffnesses in X, Y and Z directions caused by the

link bending and torsion.

Based on the results above, the following design guidelines can be established and

used for designing this type of mechanism. The common design guidelines for this

family of mechanisms will be given in Section 5.6.

1. The stiffnesses Kθx
, Kθy

and Kz are dependent on the stiffnesses of the actuators

and on the stiffnesses of the actuated links. They have no relationship with the

rigidity of the passive constraining leg.
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Table 5.2: The stiffness effect of the passive constraining leg.

Kactuator Klink Kpassive Kθx
Kθy

Kθz
Kx Ky Kz

1000 102Ka 1000 46.5996 46.5996 1028.92 3349.26 3349.26 3349.26

1000 102Ka 101Ka 46.5996 46.5996 10028.9 11827.6 11827.6 3349.26

1000 102Ka 102Ka 46.5996 46.5996 100029 96611.4 96611.4 3349.26

1000 102Ka 103Ka 46.5996 46.5996 106 944449 944449 3349.26

1000 102Ka 104Ka 46.5996 46.5996 107 9.42282× 106 9.42282× 106 3349.26

1000 102Ka 105Ka 46.5996 46.5996 108 9.42066× 107 9.42066× 107 3349.26

1000 102Ka 106Ka 46.5996 46.5996 109 9.42044× 108 9.42044× 108 3349.26

1000 102Ka 107Ka 46.5996 46.5996 1010 9.42042× 109 9.42042× 109 3349.26

2. K41 and K42, i.e., the passive constraining leg’s bending stiffnesses along the X

and Y axes, play the same role of limiting the movement of the platform along

the X and Y . K43, i.e., the passive constraining leg’s torsional stiffness around

the Z axis, and plays the role of limiting the rotation of the platform around the

Z axis.

3. From the above equations, one can find that the stiffness along the Z axis is the

largest one among all the others, and Kθy
is equal to Kθx

because of the structural

symmetrical configuration. This is clearly illustrated in Figure 5.7.

4. In Figures 5.8(a) and (b), these torsional compliances in θx and θy are shown, the

compliances are symmetric to each other. In Figure 5.8(f), the stiffness in the

z direction is increasing when the platform moves further from the center of the

workspace. All these are in accordance with what would be intuitively expected.

One also finds the following facts regarding this 3-dof mechanism with revolute

actuators after performing the tests with the kinetostatic model.

1. For a certain platform size, the larger the link length, the smaller the global

stiffness.

2. For a given link length, the larger the platform size, the larger the torsional

stiffness values around the X and Y axes, and the smaller the stiffness value

along the Z axis.
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5.4 Spatial Four-Degree-of-Freedom Mechanisms with

Revolute Actuators

5.4.1 Geometric Modeling

Figures 5.9 and 5.10 represent a 4-dof parallel mechanism’s CAD model and its schematic

representation, the joints distribution both on the base and on the platform are the

same as in Figure 4.12. This mechanism consists of five kinematic chains, including four

actuated legs with identical topology and one passive constraining leg, connecting the

fixed base to a moving platform. In this 4-dof parallel mechanism, the kinematic chains

associated with the four identical legs, from base to platform, consist of an actuated

revolute joint, a moving link, a Hooke joint, a second moving link and a spherical joint

attached to the platform. The fifth chain (central leg) connecting the base center to

the platform center is a passive constraining leg and has the same architecture as in

the 4-dof mechanism with prismatic actuators.

Figure 5.9: CAD model of the spatial 4-dof parallel mechanism with revolute actuators

(Figure by Gabriel Coté).
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5.4.2 Inverse Kinematics

With the same independent coordinates (x, z, θ53, θ54), vectors pi, r
′

i, p and rotation

matrix Q0 as in the 4-dof mechanisms with prismatic actuators discussed in Chapter 4,

and eqs. (5.1) – (5.22), one can obtain the inverse kinematics easily. It is not repeated

here.

5.4.3 Jacobian Matrices

The passive constraining leg has an architecture identical to that (Figures 4.13 and

4.14) of the 4-dof mechanism with prismatic actuators. Hence, the Jacobian matrices

of the passive constraining leg both for rigid-link and flexible-link are the same as for

the 4-dof mechanism with prismatic actuators developed in Chapter 4. One can obtain

equations identical to eqs. (4.82) and (4.85).

5.4.4 Global Velocity Equations

1. Rigid Model
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Now, the parallel component of the mechanism is considered, and the parallel

Jacobian matrix, i.e., the velocity equation for the actuated part can be obtained

through eqs. (5.27) – (5.33). Hence one has the velocity equation for rigid-link as

follow

At = Bθ̇ (5.101)

where vectors θ̇ and t are defined as

θ̇ =
[

θ̇1 θ̇2 θ̇3 θ̇4

]T

(5.102)

t =
[

ωT ṗT
]T

(5.103)

and

A =
[

m1 m2 m3 m4

]T

(5.104)

B = diag[(p1 − b′

1)
Te1, (p2 − b′

2)
Te2, (p3 − b′

3)
Te3,

(p4 − b′

4)
Te4] (5.105)

where mi is a six-dimensional vector, it can be expressed as

mi =

[

(Qr′i)× (pi − b′

i)

(pi − b′

i)

]

, i = 1, . . . , 4 (5.106)

2. Compliant Model

Similarly to the 3-dof mechanism studied in the preceding section, for the flexible-

link case, one has the velocity equation as follows

At = B1θ̇1 + B2θ̇2 (5.107)

where vectors θ̇1 and θ̇2 are defined as

θ̇1 =
[

θ̇11 θ̇21 θ̇31 θ̇41

]T

(5.108)

θ̇2 =
[

θ̇12 θ̇22 θ̇32 θ̇42

]T

(5.109)

where A and its terms are the same as in eqs. (5.104) and (5.106) and

B1 = diag[b11, b23, b35, b47] (5.110)

B2 = diag[b12, b24, b36, b48] (5.111)

with bi,2i−1, bi,2i are diagonal terms of B1 and B2, they can be expressed as

bi,2i−1 = (pi − b′

i)
Tdi,1, i = 1, . . . , 4 (5.112)

bi,2i = (pi − b′

i)
Tdi,2, i = 1, . . . , 4 (5.113)
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5.4.5 Kinetostatic Models

As illustrated in Figure 5.9, the compliance matrix for the 4-dof mechanism with rigid

links will be

Cc = J5(AJ5)
−1BCBT (AJ5)

−TJT5 (5.114)

where

C = diag[c1, c2, c3, c4] (5.115)

with c1, c2, c3 and c4 are the compliances of the actuators, and J5 is the Jacobian matrix

of the constraining leg in this 4-dof case. Matrices A and B are the Jacobian matrices

of the structure without the passive constraining leg.

Referring to Section 5.2.6, one can obtain the stiffness matrix for this 4-dof mecha-

nism with flexible links as

K = (J′5)
−TK5(J

′

5)
−1 + ATB−T

1 Kj1W
−1A (5.116)

where W is defined in eq. (5.69) and

K5 = diag[0, k52, 0, k54, 0, 0] (5.117)

Kj1 = diag[k11, k21, k31, k41] (5.118)

Kj2 = diag[k12, k22, k32, k42] (5.119)

where k52 and k54 are the passive constraining leg lumped stiffnesses, k11, k21, k31, k41

are the compound stiffnesses of the actuator’s stiffness and the first link’s stiffness,

k12, k22, k32, k42 are the first link’s stiffnesses. J′5 is the Jacobian matrix of the passive

constraining leg with consideration of link flexibility, while A and B1, B2 are the

Jacobian matrices of the structure without the passive constraining leg in this case.

5.4.6 Implementation

In order to illustrate the effect of the flexible links on the parallel mechanism, an

example of 4-dof mechanism is presented. The parameters for Figure 5.10 are given as

α = 30◦, β = 60◦,
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Rp = 9 cm,Rb = 22.73 cm,

Ki = −1, i = 1, . . . , 4

li1 = 51.52 cm, li2 = 69.7 cm, i = 1, . . . , 4, l51 = l52 = 103 cm

ki1 = 1000 Nm, i = 1, . . . , 4

where ki1 is the actuator stiffness, Ki is the branch index, l51, l52 are the link lengths

of the passive leg and li1, li2 are the link lengths for the 1st and 2nd link of each leg

and the Cartesian coordinates are given by

x ∈ [−3, 3] cm, y ∈ [−3, 3] cm, z = 103 cm,

θ53 = −π/3, θ54 = 2π/3,

The comparison between the parallel mechanism with rigid links (without virtual

joints) and the parallel mechanism with flexible links (with virtual joints) is given

in Figure 5.11, Tables 5.3 and 5.4. Again, the effect of the link flexibility is clearly

demonstrated from the Tables 5.3, 5.4 and Figure 5.11.

Table 5.3: Comparison of the mechanism compliance between the mechanism with rigid

links and the mechanism with flexible links.

Kactuator Klink κθx
κθy

κθz
κx κy κz

1000 1000 3.46122 0.138363 1.5× 10−3 0.0146575 1.32691× 10−3 0.000271569

1000 101Ka 1.49876 0.0703633 1.5× 10−4 0.00717397 1.32691× 10−4 0.000106446

1000 102Ka 1.30251 0.0635633 1.5× 10−5 0.00642561 1.32691× 10−5 0.0000899335

1000 103Ka 1.28289 0.0628833 1.5× 10−6 0.00635078 1.32691× 10−6 0.0000882822

1000 104Ka 1.28093 0.0628153 1.5× 10−7 0.0063433 1.32691× 10−7 0.0000881171

1000 105Ka 1.28073 0.0628085 1.5× 10−8 0.00634255 1.32691× 10−8 0.0000881006

1000 106Ka 1.28071 0.0628079 1.5× 10−9 0.00634247 1.32691× 10−9 0.000088099

1000 107Ka 1.28071 0.0628078 1.5× 10−10 0.00634246 1.32691× 10−10 0.0000880988

1000 rigid 1.28071 0.0628078 0.0 0.00634246 0.0 0.0000880988
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Figure 5.11: Evolution of the stiffness as a function of the link’s lumped stiffness in

different directions.
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Figure 5.12: Compliance mappings of the spatial 4-dof parallel mechanism with revolute

actuators (all length units in m).
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Table 5.4: The stiffness effect of the passive constraining leg.

Kactuator Klink Kpassive Kθx
Kθy

Kθz
Kx Ky Kz

1000 102Ka 1000 10.7582 99.7507 7420.66 2617.08 11818.2 19222

1000 102Ka 101Ka 10.7582 99.7507 74087.3 2617.08 87181.5 19222

1000 102Ka 102Ka 10.7582 99.7507 740754 2617.08 840815 19222

1000 102Ka 103Ka 10.7582 99.7507 7.40742× 106 2617.08 8.37715× 106 19222

1000 102Ka 104Ka 10.7582 99.7507 7.40741× 107 2617.08 8.37405× 107 19222

1000 102Ka 105Ka 10.7582 99.7507 7.40741× 108 2617.08 8.37374× 108 19222

1000 102Ka 106Ka 10.7582 99.7507 7.40741× 109 2617.08 8.37371× 109 19222

1000 102Ka 107Ka 10.7582 99.7507 7.40741× 1010 2617.08 8.3737× 1010 19222

5.4.7 Design Guidelines

For a given configuration (x = 0, y = 0, z = 103 cm, θ53 = −π/3, θ54 = 2π/3), one can

obtain the expressions for the Cartesian stiffness in each direction as follows

Kθx
=

33146λKb2(0.892211 + 0.00273055λ3 + 0.0577587λ2 + 0.398016λ)

(620383 + 275.726λ4 + 7864.05λ3 + 82287.2λ2 + 373568λ)
(5.120)

Kθy
=

273173λKb2(0.892211 + 0.00273055λ3 + 0.0577587λ2 + 0.398016λ)

(620383 + 275.726λ4 + 7864.05λ3 + 82287.2λ2 + 373568λ)
(5.121)

Kθz
=

36776λKb2(0.892211 + 0.00273055λ3 + 0.0577587λ2 + 0.398016λ)

(620383 + 275.726λ4 + 7864.05λ3 + 82287.2λ2 + 373568λ)

+ 0.592593K52 + 0.148148K54 (5.122)

Kx =
77904λKb2(89.2211 + 0.273055λ3 + 5.77587λ2 + 39.8016λ)

(620383 + 275.726λ4 + 7864.05λ3 + 82287.2λ2 + 373568λ)
(5.123)

Ky =
94298λKb2(89.2211 + 0.273055λ3 + 5.77587λ2 + 39.8016λ)

(620383 + 275.726λ4 + 7864.05λ3 + 82287.2λ2 + 373568λ)

+ 0.418685K52 + 0.418685K54 (5.124)

Kz =
5264086λKb2(8.92211 + 0.0273055λ3 + 0.577587λ2 + 3.98016λ)

(620383 + 275.726λ4 + 7864.05λ3 + 82287.2λ2 + 373568λ)
(5.125)

λ =
KaKb1

(Ka +Kb1)Kb2
(5.126)

where Ka represents the actuator stiffness, Kb1, Kb2 are 1st and 2nd link’s stiffnesses of

the actuated leg, K52 and K54 represent the first and second (from bottom to platform)

link’s lumped stiffnesses of the passive constraining leg.

Besides the common design guidelines given in Section 5.6, the following design
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guidelines can be established from the above results for designing this kind of mecha-

nism.

1. The stiffnesses Kθx
, Kθy

, Kx and Kz are dependent on the stiffnesses of actuators

and actuated links and have no relationship with the rigidity of passive constrain-

ing leg’s.

2. If K52 6= K54, i.e., the passive constraining leg’s first link (from bottom to plat-

form) is not as rigid as the second link, then the first link’s rigidity is more

important than the second link’s for limiting the platform’s degrees of freedom,

this can be found from the coefficients of K52 and K54 in eqs. (5.122) and (5.124).

3. From the equations, one can find that the stiffness along the Z axis is the largest

one among all the others, and Kθy
is larger than Kθx

. It is clearly illustrated in

Figure 5.11.

4. For a certain platform size, the larger the link length, the larger the torsional stiff-

ness values around the X and Y axes, and the smaller the translational stiffness

along the Z axis.

5. For a given link length, the smaller the platform size, the larger the stiffness

values along the X and Z axes.

6. From Figure 5.11 and Table 5.3, one can see that Kθz
and Ky are becoming

infinite while the flexible links are approaching rigid, it corresponds to the motions

prevented by the passive constraining leg. Kθx
is also large enough because of

the structure of the passive constraining leg. The stiffness in Z is higher near the

center of the workspace, which is the best position for supporting vertical loads

along the Z axis. All these are in accordance with what would be intuitively

expected.
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5.5 Spatial Five-Degree-of-Freedom Mechanisms with

Revolute Actuators

A 5-dof parallel mechanism and their joint distribution both on the base and on the

platform are shown in Figures 5.1, 5.2 and 4.17. One can find the inverse kinematics

for both the rigid-link and the flexible-link cases easily from eqs. (5.1) – (5.22)

5.5.1 Jacobian Matrices

Since the passive constraining leg has an architecture identical to that of the 5-dof

mechanism with prismatic actuators, the Jacobian matrices for the constraining leg are

the same as in eqs. (4.102) and (4.105). The Jacobian matrix for the parallel part will

be computed in the next section.

5.5.2 Global Velocity Equations

1. Rigid Model

Similarly, for the part of this mechanism without the passive constraining leg,

one can obtain the velocity equation for rigid links as

At = Bθ̇ (5.127)

where vectors θ̇ =
[

θ̇1 θ̇2 θ̇3 θ̇4 θ̇5

]T

, and

A =
[

m1 m2 m3 m4 m5

]T

(5.128)

B = diag[(p1 − b′

1)
Te1, (p2 − b′

2)
Te2, (p3 − b′

3)
Te3,

(p4 − b′

4)
Te4, (p5 − b′

5)
Te5] (5.129)

where mi is a six-dimensional vector that can be expressed as

mi =

[

(Qr′i)× (pi − b′

i)

(pi − b′

i)

]

, i = 1, . . . , 5 (5.130)

2. Compliant Model
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One also has the velocity equation for the 5-dof parallel mechanism with flexible

links as

Aṫ = B1θ̇1 + B2θ̇2 (5.131)

where vectors θ̇1 and θ̇2 are defined as

θ̇1 =
[

θ̇11 θ̇21 θ̇31 θ̇41 θ̇51

]T

(5.132)

θ̇2 =
[

θ̇12 θ̇22 θ̇32 θ̇42 θ̇52

]T

(5.133)

and A and its terms are identical to eqs. (5.128) and (5.130), Jacobian matrices

B1 and B2 can be written as

B1 = diag[b11, b23, b35, b47, b59] (5.134)

B2 = diag[b12, b24, b36, b48, b510] (5.135)

where bi,2i−1, bi,2i are diagonal terms of B1 and B2, they can be expressed as

bi,2i−1 = (pi − b′

i)
Tdi,1, i = 1, . . . , 5 (5.136)

bi,2i = (pi − b′

i)
Tdi,2, i = 1, . . . , 5 (5.137)

5.5.3 Kinetostatic Models

This mechanism is illustrated in Figure 5.1, the compliance matrix for the mechanism

with rigid links can be written as

Cc = J6(AJ6)
−1BCBT (AJ6)

−TJT6 (5.138)

where

C = diag[c1, c2, c3, c4, c5] (5.139)

with c1, c2, c3, c4 and c5 the compliances of the actuators, and J6 is the Jacobian matrix

of the passive constraining leg in this 5-dof case. Matrices A and B are the Jacobian

matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be written

as

K = (J′6)
−TK6(J

′

6)
−1 + ATB−T

1 Kj1W
−1A (5.140)
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with

K6 = diag[0, k62, 0, 0, 0, 0] (5.141)

Kj1 = diag[k11, k21, k31, k41, k51] (5.142)

Kj2 = diag[k12, k22, k32, k42, k52] (5.143)

where W is defined in eq. (5.69) and k62 is the lumped stiffness of the passive constrain-

ing leg, Kj1 includes the compound stiffness items of the actuated links and actuator’s

stiffnesses while Kj2 only includes actuated link’s stiffnesses, and J′6 is the Jacobian

matrix of the passive constraining leg in this 5-dof case. Matrices A and B1, B2 are

the Jacobian matrices of the structure without the passive constraining leg in this case

with flexible links.

5.5.4 Implementation

An example is now given to illustrate the effect of the link flexibility on the parallel

mechanism. The parameters used in this example are given as

θp = 22.34◦, θb = 42.883◦,

Rp = 18.18 cm,Rb = 33.3 cm,

Ki = −1, i = 1, . . . , 5

li1 = 69.7 cm, li2 = 51.52 cm, i = 1, . . . , 5

ki1 = 1000 Nm, i = 1, . . . , 5

k62 = 1000 Nm, l61 = l62 = 103 cm

where ki1 is the actuator stiffness, Ki is the branch index, l61, l62 are the passive leg’s

link length, li1, li2 are the link lengths for the 1st and 2nd link of each leg and the

Cartesian coordinates are given by

x ∈ [−3, 3] cm, y ∈ [−3, 3] cm, z = 103 cm,

θ64 = −π, θ65 = 2π/3,

The comparison between the parallel mechanism with rigid links (without virtual

joints) and the parallel mechanism with flexible links (with virtual joints) is given in

Figure 5.13, Tables 5.5 and 5.6. The results are similar to those obtained in the previous

cases.
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Figure 5.14: Compliance mappings of the spatial 5-dof parallel mechanism with revolute

actuators (all length units in m).
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Table 5.5: Comparison of the mechanism compliance between the mechanism with rigid

links and the mechanism with flexible links.

Kactuator Klink κθx
κθy

κθz
κx κy κz

1000 1000 0.255808 0.478997 0.766154 0.00479741 0.0116413 0.00169207

1000 101Ka 0.137552 0.257339 0.412528 0.00257412 0.00625667 0.000910745

1000 102Ka 0.125726 0.235173 0.377165 0.0023518 0.0057182 0.000832613

1000 103Ka 0.124543 0.232956 0.373629 0.00232956 0.00566435 0.000824799

1000 104Ka 0.124425 0.232734 0.373275 0.00232734 0.00565897 0.000824018

1000 105Ka 0.124413 0.232712 0.37324 0.00232712 0.00565843 0.00082394

1000 106Ka 0.124412 0.23271 0.373236 0.00232709 0.00565838 0.000823932

1000 107Ka 0.124412 0.23271 0.373236 0.00232709 0.00565837 0.000823931

1000 rigid 0.124412 0.23271 0.373236 0.00232709 0.00565837 0.000823931

5.5.5 Design Guidelines

Given a certain configuration of the mechanism (x = 0, y = 0, z = 68, θ64 = −π, θ65 =

2π/3), one can find its Cartesian stiffnesses in all directions as the function of actuator

stiffness and link stiffness, they are

Kθx
=

26.51898λKb2(1858 + 1.57723 × 10−2λ4 + 1.17094λ3 + 33λ2 + 402λ)

(286914 + 0.142572λ5 + 13.0695λ4 + 477.977λ3 + 8700λ2 + 79200λ)

+ K62 (5.144)

Kθy
=

2.258838λKb2(27820 + 0.24232λ4 + 17.9065λ3 + 495λ2 + 6069λ)

(286914 + 0.142572λ5 + 13.0695λ4 + 477.977λ3
(5.145)

Kθz
=

1.224386λKb2(27820 + 0.24232λ4 + 17.9065λ3 + 495λ2 + 6069λ)

(286914 + 0.142572λ5 + 13.0695λ4 + 477.977λ3

+ 0.333333K62 (5.146)

Kx =
111.65681λKb2(27820 + 0.242321λ4 + 17.9065λ3 + 495λ2 + 6069λ)

(286914 + 0.142572λ5 + 13.0695λ4 + 477.977λ3
(5.147)

Ky =
77.312363λKb2(27820 + 0.242321λ4 + 17.9065λ3 + 495λ2 + 6069λ)

(286914 + 0.142572λ5 + 13.0695λ4 + 477.977λ3
(5.148)

Kz =
594.198λKb2(27820 + 0.242321λ4 + 17.9065λ3 + 495λ2 + 6069λ)

(286914 + 0.142572λ5 + 13.0695λ4 + 477.977λ3
(5.149)

λ =
KaKb1

(Ka +Kb1)Kb2
(5.150)

where Ka represents the stiffness of actuators and Kb1, Kb2 represent 1st and 2nd link’s

stiffness of the actuated leg, K62 represents the first (from bottom to platform) link’s
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Table 5.6: The stiffness effect of the passive constraining leg.

Kactuator Klink Kpassive Kθx
Kθy

Kθz
Kx Ky Kz

1000 102Ka 1000 1701.29 605.472 645.359 3213.34 2553.71 17568.7

1000 102Ka 101Ka 10701.3 605.472 3645.36 3213.34 2553.71 17568.7

1000 102Ka 102Ka 100701 605.472 33645.4 3213.34 2553.71 17568.7

1000 102Ka 103Ka 106 605.472 333645 3213.34 2553.71 17568.7

1000 102Ka 104Ka 107 605.472 3.33365 × 106 3213.34 2553.71 17568.7

1000 102Ka 105Ka 108 605.472 3.33336 × 107 3213.34 2553.71 17568.7

1000 102Ka 106Ka 109 605.472 3.33334 × 108 3213.34 2553.71 17568.7

1000 102Ka 107Ka 1010 605.472 3.33333 × 109 3213.34 2553.71 17568.7

stiffness of the passive constraining leg.

Based on the results of the preceding section and the expression of eqs. (5.144) –

(5.149), the following design guidelines can be established and as reference for designing

such kind of mechanisms.

1. The stiffnesses (except Kθz
) are increasing with the increase of actuator stiffness,

actuated link stiffness and the passive constraining leg’s rigidity, and there is a

critical stiffness value for the actuated flexible links to keep the structure virtually

rigid. In this case, the passive constraining leg affects the stiffness around the X

axis since the platform is not in the horizontal position, the projections of the

direction which is orthogonal to the Hooke joint located at the platform are in

the XY and XZ planes, when the Hooke joint at platform limits the rotation

around the Z axis, it also limits the rotation around the X axis.

2. The limitation of the platform’s rotation around the Z axis is dependent on the

stiffnesses of the actuators, actuated links and of passive constraining leg’s.

3. From the equations, one can find that the stiffness along the Z axis is the largest

one among all the directions, and Kθx
is larger than Kθy

(in the reference config-

uration).

4. For a certain platform size, the larger the link length is, the smaller the global
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stiffness values will be in all directions.

5. For a given link length, the larger the platform size (within a certain range, less

than the size of the base platform), the larger the torsional stiffness values around

the X and Y axes, and the smaller the stiffness values along the X and Y axes.

6. From Figure 5.13 and Table 5.5, one can see that Kθz
is approaching infinite

while the flexible links are approaching rigid, which corresponds to the motions

prevented by the passive constraining leg. Kθx
is also large enough because of

the structure of the passive constraining leg. The stiffness in Z is higher near the

center of the workspace, which is the best position for supporting vertical loads

along the Z axis. All these results can be obviously observed.

5.6 Conclusions

A new type of n-DOF parallel mechanism with one passive constraining leg is pre-

sented in this chapter. This type of architecture can be used in several applications

including machine tools. The kinematic analysis of this class of spatial parallel n-

degree-of-freedom mechanisms has been presented. The geometric configurations of

the mechanisms have first been shown. In this chapter, mechanisms with revolute ac-

tuators have been considered. Solutions for the inverse kinematic problem have been

given. The Jacobian matrices obtained have been used to establish the kinetostatic

model of the mechanisms. The lumped models of the link and joint compliances have

been used for the study of the Cartesian compliance. It has been shown that the kineto-

static analysis can be used to assess the stiffness properties of this family of mechanisms.

Finally, examples have been investigated and numerical results have been obtained, the

results clearly demonstrate the relevance of the kinetostatic analysis in the context of

design of such mechanisms.

Additionally, there exist some common design guidelines for this series of mecha-

nisms, they are

1. With the increase of link stiffnesses, the mechanism’s compliance is very close

to that of the mechanism with rigid links. This suggests that one can assume
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the flexible mechanism to be rigid only if the link stiffness reaches a high value

(107Kactuator).

2. The passive constraining leg’s lumped stiffness(es) does not affect all directional

stiffnesses, it plays a very important role in limiting the platform’s motion to the

desired ones.

3. The limitation of the platform’s degrees of freedom are dependent on the actuator

stiffness and link stiffness.

4. If the passive constraining leg’s stiffness(es) is fixed as the same value as actuator’s

(e.g. 1000), then it cannot adequately limit the motion to the desired degree of

freedom. Only if the passive constraining leg’s lumped stiffness(es) is large enough

(102Kactuator), then it begins to efficiently play the role of limiting the platform

motions to the desired ones.



Chapter 6

Kinetostatic Analysis of Spatial

Fully-Parallel 6-dof Mechanisms

6.1 Introduction

This chapter presents the kinetostatic modeling and the stiffness analysis of spatial

fully-parallel 6-dof mechanisms. The lumped models for the joints and links have been

introduced in Sections 3.3.2 and 4.2.2. According to these models, the compliance of

the links can be replaced by virtual compliant joints and rigid links. Two different

methods are presented for the derivation of the stiffness equations suitable respectively

for rigid model and flexible model, and the corresponding Jacobian matrices are de-

rived. The variation of the link parameters is then briefly discussed. Finally, stiffness

contour graphs are obtained using the stiffness equations and examples are given to

156
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illustrate the results. It is shown that if the link stiffnesses are large enough, then the

stiffness of the parallel mechanism with flexible links is very close to that of the parallel

mechanism with rigid links which suggests that one can rely on this model to estimate

and improve the stiffness of the flexible mechanism. Spatial six-degree-of-freedom par-

allel mechanisms can be used in several robotic applications as well as in machine tools.

The stiffness analysis and the determination of the most rigid areas of the mechanism’s

workspace are very important design issues. In this chapter, examples of 3-leg and

6-leg fully-parallel mechanisms with revolute actuators and 6-leg fully-parallel mecha-

nism with prismatic actuators are given respectively. The objective is also to provide

some comparative results for the mechanisms analyzed in the previous chapters.

6.2 Spatial Six-Degree-of-Freedom Mechanisms with

Prismatic Actuators

6.2.1 Geometric Modeling and Inverse Kinematics

A 6-dof parallel mechanism and its joint distributions both on the base and on the

platform are shown in Figures 6.1, 6.2 and 6.3. This mechanism consists of six identical

variable length links, connecting the fixed base to a moving platform. The kinematic

chains associated with the six legs, from base to platform, consist of a fixed Hooke

joint, a moving link, an actuated prismatic joint, a second moving link and a spherical

joint attached to the platform. It is also assumed that the vertices on the base and on

the platform are located on circles of radii Rb and Rp, respectively.

A fixed reference frame O − xyz is connected to the base of the mechanism and

a moving coordinate frame P − x′y′z′ is connected to the platform. In Figure 6.2,

the points of attachment of the actuated legs to the base are represented with Bi

and the points of attachment of all legs to the platform are represented with Pi, with

i = 1, . . . , 6, while point P is located at the center of the platform with the coordinate

of P (x, y, z).

The Cartesian coordinates of the platform are given by the position of point P with

respect to the fixed frame, and the orientation of the platform (orientation of frame
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Figure 6.1: CAD model of the spatial 6-dof parallel mechanism with prismatic actuators

(Figure by Thierry Laliberté and Gabriel Coté).

P − x′y′z′ with respect to the fixed frame), represented by three Euler angles φ, θ and

ψ or by the rotation matrix Q.

If the coordinates of point Bi in the fixed frame are represented by vector bi, then

we have

pi =









xi

yi

zi









, r
′

i =









Rp cos θpi

Rp sin θpi

0









, p =









x

y

z









, bi =









Rb cos θbi

Rb sin θbi

0









(6.1)

where pi is the position vector of point Pi expressed in the fixed coordinate frame whose

coordinates are defined as (xi, yi, zi), r
′

i is the position vector of point Pi expressed in

the moving coordinate frame, and p is the position vector of point P expressed in the

fixed frame as defined above, and

θbi =

























θb1

θb2

θb3

θb4

θb5

θb6

























=

























θb

2π/3− θb

2π/3 + θb

4π/3− θb

4π/3 + θb

−θb

























, θpi =

























θp1

θp2

θp3

θp4

θp5

θp6

























=

























θp

2π/3− θp

2π/3 + θp

4π/3− θp

4π/3 + θp

−θp

























(6.2)
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Figure 6.2: Schematic representation of the spatial 6-dof parallel mechanism with pris-

matic actuators.

Similarly to the procedures in Section 4.2.3, the solution of the inverse kinematic of

this mechanism can be written as

ρ2
i = (pi − bi)

T (pi − bi), i = 1, . . . , 6 (6.3)

6.2.2 Global Velocity Equation

Since the mechanism is actuated in parallel, its global velocity equation can be obtained

using the same method as in Section 4.2.5. Based on eqs. (4.18) – (4.23), one has the

velocity equation as

At = Bρ̇ (6.4)

where vectors ρ̇ and t are defined as

ρ̇ =
[

ρ̇1 . . . ρ̇6

]T

(6.5)

t =
[

ωT ṗT
]T

(6.6)
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where ω and ṗ are the angular velocity and velocity of one point of the platform,

respectively, and

A =
[

m1 m2 m3 m4 m5 m6

]T

(6.7)

B = diag[ρ1, ρ2, ρ3, ρ4, ρ5, ρ6] (6.8)

and mi is a six-dimensional vector expressed as

mi =

[

(Qr′i)× (pi − bi)

(pi − bi)

]

(6.9)

Therefore, Jacobian matrix J can be written as

J = B−1A (6.10)

The derivation of the relationship between Cartesian velocities and joint rates is thereby

completed.

6.2.3 Stiffness Model

Since the mechanism is fully parallel, the stiffness of the mechanism has been obtained

in Section 3.2

K = JTKJJ (6.11)
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6.2.4 Implementation and Results

Given the geometric properties as

θp = 22.34◦, θb = 42.883◦,

Rp = 6 cm,Rb = 15 cm,

Ki = −1, i = 1, . . . , 6

ki1 = 1000 N/m, i = 1, . . . , 6

where ki1 is the actuator stiffness, and the Cartesian coordinates are given by

x ∈ [−4, 4] cm, y ∈ [−4, 4] cm, z = 51 cm,

φ = 0, θ = 0, ψ = 0,

The stiffness model described above is now used to obtain the stiffness mappings.

Figure 6.4 shows the stiffness mappings on a section of the workspace of the platform.

From such plots one can determine which regions of the workspace will satisfy some

stiffness criteria.

Another example of mechanism is the INRIA “left-hand” prototype described in

(Gosselin 1990). The dimensions are given in Table 6.1, the stiffness mappings and

mesh graphs are illustrated in Figures 6.5 and A.11, the results show the same trends

of stiffness as in (Gosselin 1990).

Table 6.1: Geometric properties of the INRIA prototype (all lengths are in centimeters)

i 1 2 3 4 5 6

bix 9.258 13.258 4.000 -4.000 -13.258 -9.258

biy 9.964 3.036 -13.000 -13.000 3.036 9.964

biz 2.310 2.310 2.310 2.310 2.310 2.310

xi 3.000 7.822 4.822 -4.822 -7.822 -3.000

yi 7.300 -1.052 -6.248 -6.248 -1.052 7.300

zi -3.710 -3.710 -3.710 -3.710 -3.710 -3.710

Li 51 51 51 51 51 51



162

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X

Y

Stiffness in X

105
105

10
5

10
5

10
5

105

110

11
0

11
0

11
0

110
110

115
115

11
5

11
5

115
115

120

12
0

12
0

12
0

120
120

125

12
5

12
5

12
5

125
125

130

13
0

13
0

13
0

130
130

135

13
5

13
5

13
5

135
135

140

14
0

14
0

14
0

14
0

140

145

14
5

14
5

(a) Stiffness in x (N/m)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X

Y

Stiffness in Y

105
105 105

105
105

105

110
110 110

110
110 110

115 115 115

115 115 115

120 120 120

120 120 120

125 125 125

125 125 125

130 130 130

130 130 130

135 135 135

135 135 135

140 140 140

140 140 140
145 145

(b) Stiffness in y (N/m)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X

Y

Stiffness in Z

5730

5730 5730

5730
5740

5740

5740

57
40

5750

57
50

5750

5750

5750

57
50

5750

5750

5760

5760

5760
5760

5760

5760

5760

5760

5770
5770

5770

57
70

5770

5770

57
70

5780

5780

57
80

5780

5780

5790

5790

5790

(c) Stiffness in z (N/m)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X

Y

Stiffness in θ
X

10
.2

8

10.28

10
.3

10.3

10
.32

10.32

10
.3

4

10
.3

4

10.34

10.34

10.34

10.36

10
.3

6

10.36

10.36

10.36

10.36

10.36

10.38

10.38

10.38

10.38

10.38

10.38

10
.3

8

10.4

10.410.4

10
.4

10.4
10.4

10.42

10.42

10
.4

2

10.42

(d) Stiffness in θx (Nm)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X

Y

Stiffness in θ
Y

10.3

10.3

10
.3

2

10.32

10.34

10.34 10.34

10
.3

4

10.34

10.36 10.36

10.36

10
.3

6

10.36

10.36

10.36

10
.3

8

10.38

10.38

10.38

10.38

10.38

10.38

10.4 10.4

10
.4

10.4

10.4

10
.4 10.42

10.42

10.42

10.42

(e) Stiffness in θy (Nm)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

X

Y

Stiffness in θ
Z

0.24

0.24

0.24

0.24

0.26

0.26 0.26

0.26

0.26
0.26

0.
28

0.28

0.28

0.28

0.
28

0.28

0.28

0.28

0.3

0.
3

0.3

0.3

0.3

0.3

0.3

0.3

0.
3

0.32

0.32
0.32

0.32

0.34

0.34

0.34

0.34

(f) Stiffness in θz (Nm)

Figure 6.4: Stiffness mappings of the spatial 6-dof parallel mechanism with prismatic

actuators (all length units in m).
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Figure 6.5: Stiffness mappings of the spatial 6-dof parallel mechanism with prismatic

actuators (using data of INRIA prototype) (all length units in m).
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From the graphs, one observes that Kθx
and Kθy

, Kx and Ky are symmetric with

respect to each other, and in Figure 6.4(a) the stiffness in X becomes higher when the

platform moves further from the Y axis. This was to be expected because when the

platform moves aside along the X axis, the projection of the legs on this axis becomes

larger, and the mechanism is stiffer in Y . The same reasoning applies to Figure 6.4(b)

for the stiffness in Y .

In Figures 6.4(d) and 6.4(e), the torsional stiffnesses in θx and θy are shown, the

stiffness is larger when it moves further from the Y axis. In Figure 6.4(c) the stiffness in

Z is higher near the center of the workspace, which is the best position for supporting

vertical loads. It can also be noted that the stiffness in Z is much larger than the

stiffness in the X or Y directions. This is due to the architecture chosen, which aims

at supporting heavy objects in an environment where the gravity is acting along the

negative direction of Z axis. All these are in accordance with what would be intuitively

expected.

Table 6.2 shows the variation of the stiffness with Kactuator . Clearly, the Cartesian

stiffnesses in each direction are increased with the improvement of the actuator stiffness.

Table 6.2: The Cartesian stiffness as a function of the actuator stiffness.

Kactuator Kx Ky Kz Kθx
Kθy

Kθz

200 20.5936 20.5936 1158.81 2.08586 2.08586 0.0444375

600 61.7809 61.7809 3476.44 6.25759 6.25759 0.133313

1000 102.968 102.968 5794.06 10.4293 10.4293 0.222188

2000 205.936 205.936 11588.1 20.8586 20.8586 0.444375

3000 308.904 308.904 17382.2 31.2879 31.2879 0.666563

4000 411.872 411.872 23176.3 41.7173 41.7173 0.888751

6000 617.809 617.809 34764.4 62.5759 62.5759 1.33313
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6.3 Spatial Six-Degree-of-Freedom Mechanisms with

Revolute Actuators

6.3.1 Geometric Modeling

Figures 6.6 and 6.7 represent a 6-dof parallel mechanism with revolute actuators. The

joint distribution is the same as in Figure 6.3. This mechanism consists of six actuated

legs with identical topology, connecting the fixed base to a moving platform. The

kinematic chains consist — from base to platform — of an actuated revolute joint, a

moving link, a Hooke joint, a second moving link and a spherical joint attached to the

platform.

Figure 6.6: CAD model of the spatial 6-dof parallel mechanism with revolute actuators

(Figure by Thierry Laliberté and Gabriel Coté).

6.3.2 Global Velocity Equations

6.3.2.1 Rigid Model

A fixed reference frame O − xyz is connected to the base of the mechanism and a

moving coordinate frame P − x′y′z′ is connected to the platform. We use the same

Cartesian coordinates of the platform P as in Section 6.2 and the orientation of the

platform (orientation of frame P − x′y′z′ with respect to the fixed frame), represented

by three Euler angles φ, θ and ψ or by the matrix Q.
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Figure 6.7: Schematic representation of the spatial 6-dof parallel mechanism with rev-

olute actuators.

Based on the same inverse kinematics as in Section 5.2.2 and eqs. (5.1) – (5.34), one

obtains the global velocity equation as

At = Bθ̇ (6.12)

where vectors θ̇ and t are defined as

θ̇ =
[

θ̇1 . . . θ̇6

]T

(6.13)

t =
[

ωT ṗT
]T

(6.14)

and

A =
[

m1 m2 m3 m4 m5 m6

]T

(6.15)

B = diag[(p1 − b′

1)
Te1, (p2 − b′

2)
Te2, (p3 − b′

3)
Te3,

(p4 − b′

4)
Te4, (p5 − b′

5)
Te5, (p6 − b′

6)
Te6] (6.16)

and mi is a six-dimensional vector expressed as

mi =

[

(Qr′i)× (pi − b′

i)

(pi − b′

i)

]

, i = 1, . . . , 6 (6.17)

and again, the Jacobian matrix J can be written as

J = B−1A (6.18)
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6.3.2.2 Compliant Model

Figure 5.4 represents one of the kinematic chains for the 6-dof parallel mechanism

above. Based on eqs. (5.17) – (5.19) in Section 5.2.2.2, one can find θi3 and θi4 easily.

Similarly to Section 5.2.2.2, one can obtain the global velocity equation as

At = Bθ̇ (6.19)

where vector θ̇ is defined as

θ̇ =
[

θ̇11 θ̇12 θ̇21 θ̇22 θ̇31 θ̇32 θ̇41 θ̇42 θ̇51 θ̇52 θ̇61 θ̇62

]T

(6.20)

matrix A and its terms are as given in eqs. (6.15) and (6.17) and

B6×12 =

























b11 b12 0 0 0 0 0 0 0 0 0 0

0 0 b21 b22 0 0 0 0 0 0 0 0

0 0 0 0 b31 b32 0 0 0 0 0 0

0 0 0 0 0 0 b41 b42 0 0 0 0

0 0 0 0 0 0 0 0 b51 b52 0 0

0 0 0 0 0 0 0 0 0 0 b61 b62

























(6.21)

where

bij = (pi − b′

i)
Tdij, i = 1, . . . , 6, j = 1, 2 (6.22)

The derivation of the relationship between Cartesian velocities and joint rates is thereby

completed.

6.3.3 Stiffness Model of the Mechanism with Rigid Links

Again, the stiffness of the structure has been obtained in Section 3.2

K = JTKJJ (6.23)

6.3.4 Kinetostatic Model of the Mechanism with Flexible Links

From eq. (6.12), one obtains

t = J′θ̇ (6.24)
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where

J′ = A−1B (6.25)

according to the principle of virtual work, one has

τ T θ̇ = wT t (6.26)

where τ is a vector of the actuator torques applied at each actuated joint or joint with

spring. If we assume that no gravitational forces act on any of the intermediate links,

and w is a vector composed of forces and moments (hereafter called wrench) applied

by the end-effector. Substituting eq. (6.24) into (6.26) one can obtain

τ = J′
T
w (6.27)

The joint forces and displacements of each joint can be related by Hooke’s law, i.e.,

τ = KJ∆θ (6.28)

∆θ only includes the actuated joints and joint with springs i.e.,

KJ∆θ = J′
T
w (6.29)

hence

∆θ = K−1
J J′

T
w (6.30)

pre-multiplying by J′ on both sides, one obtains

J′∆θ = J′K−1
J J′

T
w (6.31)

Substituting eq. (6.24) into eq. (6.31), one obtains

t = J′K−1
J J′

T
w (6.32)

therefore, one obtains the compliance matrix of the mechanism κ as follow

κ = J′K−1
J J′

T
(6.33)

and the system stiffness matrix is

K = [J′K−1
J J′

T
]
−1

(6.34)

where

KJ = diag[k11, k12, k21, k22, k31, k32, k41, k42, k51, k52, k61, k62] (6.35)

where ki1 is stiffness of the ith actuator, and ki2 is the lumped stiffness of each leg.
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6.3.5 Implementation and Results

In order to illustrate the effect of the flexible links on the parallel mechanism, an

example of 6-dof mechanism is presented. The parameters for Figure 5.3 are given as

θp = 22.34◦, θb = 42.883◦,

Rp = 6 cm,Rb = 15 cm,

li1 = 46 cm, li2 = 36 cm, i = 1, . . . , 6

ki1 = 1000 Nm, i = 1, . . . , 6

where ki1 is the stiffness of each leg, li1, li2 are the link lengths for the 1st and 2nd link

of each leg, and the Cartesian coordinates are given by

x ∈ [−3, 3] cm, y ∈ [−3, 3] cm, z = 68 cm,

φ = 0, θ = 0, ψ = 0,

Figure 6.8 shows the variation of the stiffness for the above example. The compar-

ison between the parallel mechanism with rigid link and the parallel mechanism with

flexible links is given in Table 6.3. The results are similar to those obtained in previous

cases.

Table 6.3: Comparison of the mechanism stiffness between the mechanism with rigid

links and the mechanism with flexible links.

Kactuator Klink Kx Ky Kz Kθx
Kθy

Kθz

1000 1000 3700.65 3700.65 10082.1 18.1478 18.1478 20.633

1000 10Ka 6967.15 6967.15 18981.4 34.1665 34.1665 38.8454

1000 100Ka 7641.67 7641.67 20819.1 37.4743 37.4743 42.6062

1000 1000Ka 7716.37 7716.37 21022.6 37.8406 37.8406 43.0227

1000 10000Ka 7723.92 7723.92 21043.2 37.8777 37.8777 43.0648

1000 100000Ka 7724.68 7724.68 21045.2 37.8814 37.8814 43.069

1000 1000000Ka 7724.76 7724.76 21045.4 37.8818 37.8818 43.0694

1000 10000000Ka 7724.76 7724.76 21045.4 37.8818 37.8818 43.0695

1000 rigid 7724.76 7724.76 21045.4 37.8818 37.8818 43.0695
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Figure 6.8: Evolution of the stiffness as a function of the link’s lumped stiffness in

different directions.
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Figure 6.9: Stiffness mappings of the spatial 6-dof parallel mechanism with revolute

actuators (6 legs) (all length units in m).
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From Figure 6.9, one can find that Kx and Ky, Kθx
and Kθy

are symmetric with

respect to each other. In Figure 6.9(a), the stiffness in X becomes higher when the

platform moves further from the Y axis. This was to be expected because when the

platform moves aside along the X axis, the projection of the legs on this axis be-

comes larger, and the mechanism is stiffer in Y . And the same reasoning applies to

Figure 6.9(b) for the stiffness in Y .

In Figures 6.9(d) and (e), the torsional stiffnesses in θx and θy are shown, the

stiffness is larger when the platform moves further from the Y axis. However, in the

center of the workspace, the Kz is at its minimum, and the stiffness in the Z becomes

higher when the platform moves further from the center of the workspace. On the other

hand, from Figure 6.9(f), the stiffness in θz is higher near the center of the workspace,

which is the best position for supporting torsional loads around Z axis. All these are

in accordance with what would be intuitively expected.

6.4 Six-Degree-of-Freedom Spatial Parallel Mecha-

nisms with Three Legs

A 6-dof parallel mechanism with 3 legs is shown in Figure 6.10. This mechanism

consists of three kinematic chains, connecting the fixed base to a moving platform, all

the kinematic chains have the identical topology. In this 6-dof parallel mechanism, the

kinematic chains associated with the three legs consist of a fixed revolute actuator, a

moving link, then a second revolute actuator, a moving link, a revolute joint, a third

moving link and a passive spherical joint attached to the platform.

6.4.1 Stiffness Model of the Mechanism with Rigid Links

6.4.1.1 Inverse Kinematics

From Figure 6.11, one can find θi1 as

tan θi1 =
yi − ybi
xi − xbi

i = 1, 2, 3 (6.36)



173

i

P
P i

Z’

X’ Y’

Z

X

Y
O

B

Figure 6.10: Schematic representation of the 6-dof parallel mechanism with 3 legs.

where (xbi, ybi, zbi) are the coordinates of point Bi while (xi, yi, zi) are the coordinates

of point Pi. Knowing θi1, one can obtain θi2 from eq. (6.44)

sin θi2 =
B2iC2i +KA2i

√

A2
2i +B2

2i − C2
2i

A2
2i +B2

2i

i = 1, 2, 3 (6.37)

cos θi2 =
A2iC2i −KB2i

√

A2
2i +B2

2i − C2
2i

A2
2i +B2

2i

i = 1, 2, 3 (6.38)

where K = ±1 is the branch index associated with the kinematic chain of the mech-

anism and where A2i, B2i and C2i are defined in eqs. (6.45) to (6.47). Therefore, one

can find the inverse kinematics from the equations above.

6.4.1.2 Global Velocity Equation

Figure 6.11 represents the ith actuated leg of the mechanism with two revolute actuators

distributed in the first and second joint (from base). The Cartesian coordinates of point

Oi3 are expressed in the fixed coordinate frame and noted as (xi3, yi3, zi3). Assuming

that all the coordinates attached to the base actuators are in the same orientations

with the fixed coordinates frame. Therefore, one has

xi3 = li2 cos θi2 cos θi1 + xbi i = 1, 2, 3 (6.39)
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Figure 6.11: One of the kinematic chains with rigid links.

yi3 = li2 cos θi2 sin θi1 + ybi i = 1, 2, 3 (6.40)

zi3 = li2 sin θi2 + li1 + zbi i = 1, 2, 3 (6.41)

where θi1, θi2 are the joint variables, i.e., rotation angle around the revolute joints

defined by the DH nomenclature, and li2 is the length of the second link of the ith

leg. The coordinates of the base joints are given by (xbi, ybi, zbi, i = 1, 2, 3), from the

geometry of the mechanism, one can write

(xi3 − xi)
2 + (yi3 − yi)

2 + (zi3 − zi)
2 = l2i3 (6.42)

where xi, yi, zi, (i = 1, 2, 3) have been previously defined as the coordinates of point Pi

and li3 is the length of the third link of each leg. Substituting eqs. (6.39) – (6.41) into

eq. (6.42), one obtains the equation as

2li2 cos θi2 cos θi1(xbi − xi) + 2li2 sin θi1 cos θi2(ybi − yi) + 2li2 sin θi2(zbi + li1 − zi)
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= l2i3 − l2i2 − (xbi − xi)
2 − (ybi − yi)

2 − (zbi + li1 − zi)
2 (6.43)

This equation can be rewritten as

A2i cos θi2 +B2i sin θi2 = C2i i = 1, 2, 3 (6.44)

with

A2i = 2li2 cos θi1(xbi − xi) + 2li2 sin θi1(ybi − yi) i = 1, 2, 3 (6.45)

B2i = 2li2(zbi + li1 − zi) i = 1, 2, 3 (6.46)

C2i = l2i3 − l2i2 − (xbi − xi)
2 − (ybi − yi)

2 − (zbi + li1 − zi)
2 i = 1, 2, 3 (6.47)

Differentiating eq. (6.43) with respect to time, one obtains

Aiθ̇i1 +Biθ̇i2 = rTi ṗi i = 1, 2, 3 (6.48)

where rTi =
[

C ′

i21 C ′

i22 C ′

i23

]T

and where for i = 1, 2, 3

Ai = 2li2 cos θi1 cos θi2(ybi − yi)− 2li2 cos θi2 sin θi1(xbi − xi) (6.49)

Bi = 2li2 cos θi2(zbi + li1 − zi)− 2li2 sin θi2 sin θi1(ybi − yi)

−2li2 sin θi2 cos θi1(xbi − xi) (6.50)

C ′

i21 = 2(xbi − xi) + 2li2 cos θi2 cos θi1 (6.51)

C ′

i22 = 2(ybi − yi) + 2li2 cos θi2 sin θi1 (6.52)

C ′

i23 = 2(zbi + li1 − zi) + 2li2 sin θi2 (6.53)

ṗi = [ẋi, ẏi, żi]
T (6.54)

Differentiating eq. (6.36) with respect to time, one obtains

θ̇i1 =
[

Ci11 Ci12 Ci13

]T

ṗi i = 1, 2, 3 (6.55)

for i = 1, 2, 3, with

Ci11 =
− cos2 θi1(yi − ybi)

(xi − xbi)2
(6.56)

Ci12 =
cos2 θi1
xi − xbi

(6.57)

Ci13 = 0 (6.58)

Substituting eq. (6.55) into eq. (6.48), one obtains the equation for θ̇i2 as

θ̇i2 =
[

Ci21 Ci22 Ci23

]T

ṗi, i = 1, 2, 3 (6.59)
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where for i = 1, 2, 3,

Ci21 =
1

Bi

(C ′

i21 − AiCi11) (6.60)

Ci22 =
1

Bi

(C ′

i22 − AiCi12) (6.61)

Ci23 =
1

Bi

(C ′

i23 − AiCi13) (6.62)

therefore, one has

[

θ̇i1

θ̇i2

]

=

[

Ci11 Ci12 Ci13

Ci21 Ci22 Ci23

]









ẋi

ẏi

żi









(6.63)
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(6.64)

which can be written as

θ̇ = Dṗ (6.65)

Moreover, considering the platform as a rigid body, one can write

Ṗ = Rt (6.66)

where

R =









R1

R2

R3









(6.67)

with Ri a 3× 6 matrix written as

Ri =
[

(P−Pi) 1
]

(6.68)
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where 1 is a 3× 3 identity matrix, and P = 1×p, Pi = 1×pi. Substituting eq. (6.66)

into (6.65), one then has

θ̇ = Jt (6.69)

with

J = DR (6.70)

6.4.1.3 Stiffness Model

The stiffness model of the structure with rigid links can be expressed as

K = JTKJJ (6.71)

where KJ = diag[kj1, . . . , kj6] is the joint stiffness matrix.

6.4.2 Kinetostatic Model of the Mechanism with Flexible Links

6.4.2.1 The DH Table for Each Kinematic Chain

Figure 6.12 represents one of the legs with flexible links, one can obtain the Denavit-

Hartenberg parameters as in Table 6.4.

Table 6.4: The DH parameters for the ith leg with flexible links.

i ai bi αi θi

1 0 0 90◦ θi1

2 0 0 90◦ θi2

3 l1 0 90◦ θi3

4 0 0 90◦ θi4

5 l2 0 90◦ θi5

6 0 0 90◦ θi6

7 l3 0 0 θi7
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Figure 6.12: One of the kinematic chains with flexible links.

6.4.2.2 Jacobian Matrix for Each Kinematic Chain

The Jacobian matrix of the ith leg of the mechanism Ji can be expressed as

Ji =
[

ei1 × ri1, ei2 × ri2, ei3 × ri3, ei4 × ri4, ei5 × ri5, ei6 × ri6, ei7 × ri7

]

(6.72)

therefore, the Jacobian matrix of the mechanism can be written as

J = diag[J1,J2,J3] (6.73)

for the 6-dof parallel mechanism being discussed, one has

Jθ̇ = ṗ (6.74)

where J is a 9× 21 matrix, θ̇ is the vector of 21 joint rates, i.e., θ̇ =
[

θ̇
T

1 θ̇
T

2 θ̇
T

3

]T

,

and ṗ is the velocity vector of points P1, P2 and P3, i.e., ṗ =
[

ṗT1 ṗT2 ṗT3

]T

.
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6.4.2.3 Elimination of the Unactuated Joints

In this mechanism, some of the joints are unactuated while the system’s stiffness ma-

trix should be established on the basis of joints with actuation or with springs. The

procedure to eliminate all these unactuated joints is as follow.

Based on the theorem of velocity compatibility (Angeles 1997), the velocities of

three points of a rigid body satisfy the compatibility condition, i.e.,

ĊTC + CT Ċ = 0 (6.75)

where matrices C and Ċ are defined as in eqs. (6.76) and (6.77), 0 denoting the 3× 3

zero matrix.

C =
[

p1 − c p2 − c p3 − c
]

(6.76)

Ċ =
[

ṗ1 − ċ ṗ2 − ċ ṗ3 − ċ
]

(6.77)

Eq. (6.75) states that for given velocities of three points of a rigid body to be com-

patible, the product ĊTC must be skewsymmetric and it represents six independent

scalar equations that the data of the problem must satisfy. The three diagonal entries

represent the distance between any pair of points (kinematic chain constraints) while

the off-diagonal entries represent the angles between the pairs of lines formed by each

pair of points (shape constraints). Assuming c = p1, substituting eqs. (6.76) and (6.77)

into eq. (6.75), one obtains

(p2 − p1)
T (ṗ2 − ṗ1) = 0 (6.78)

(p3 − p1)
T (ṗ3 − ṗ1) = 0 (6.79)

(p2 − p1)
T (ṗ3 − ṗ1) + (p3 − p1)

T (ṗ2 − ṗ1) = 0 (6.80)

Hence, one can eliminate the passive joints from the Jacobian through a partitioning

of the equations. Finally, one can obtain

Aθ̇
�

= Bθ̇
� �

(6.81)

where θ̇
�

is the vector of joint rates without passive joints and θ̇
� �

is the vector of joint

rates with only passive joints. Hence

θ̇
� �

= B−1Aθ̇
�

(6.82)
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Since vector θ̇ contains all joint rates, the objective is to obtain the relationship between

θ̇ and θ̇
�

as

θ̇ = Vθ̇
�

(6.83)

In this 6-dof parallel mechanism, the unactuated joint parameter distributed in

three legs is θi6, i = 1, 2, 3. One can eliminate all these unactuated joints as follows.

Substituting eq. (6.74) into eqs. (6.78) to (6.80), one obtains

(p2 − p1)
TJ2θ̇2 = (p2 − p1)

TJ1θ̇1 (6.84)

(p3 − p1)
TJ3θ̇3 = (p3 − p1)

TJ1θ̇1 (6.85)

(p2 − p1)
TJ3θ̇3 + (p3 − p1)

TJ2θ̇2 = [(p2 − p1)
T + (p3 − p1)

T ]J1θ̇1 (6.86)

where θ̇i is the vector of joint rates of the ith leg. One can partition the equations and

take the unactuated joints out of the matrix as

(p2 − p1)
T (J′2θ̇

′

2 + [e26 × r26][θ̇26]) = (p2 − p1)
T (J′1θ̇

′

1 + [e16 × r16][θ̇16]) (6.87)

(p3 − p1)
T (J′3θ̇

′

3 + [e36 × r36][θ̇36]) = (p3 − p1)
T (J′1θ̇

′

1 + [e16 × r16][θ̇16]) (6.88)

(p2 − p1)
T (J′3θ̇

′

3 + [e36 × r36][θ̇36]) + (p3 − p1)
T (J′2θ̇

′

2 + [e26 × r26][θ̇26])

= [(p2 − p1)
T + (p3 − p1)

T ](J′1θ̇
′

1 + [e16 × r16][θ̇16]) (6.89)

where for i = 1, 2, 3

J′i =
[

ei1 × ri1, ei2 × ri2, ei3 × ri3, ei4 × ri4, ei5 × ri5, ei7 × ri7

]

(6.90)

θ̇
′

i =
[

θ̇i1 θ̇i2 θ̇i3 θ̇i4 θ̇i5 θ̇i7

]T

(6.91)

from eqs. (6.87), (6.88) and (6.89), one can obtain eq. (6.81) with

A3×18 =









A11 A12 A13

A21 A22 A23

A31 A32 A33









, B3×3 =









B11 B12 B13

B21 B22 B23

B31 B32 B33









(6.92)

θ̇
�

=
[

θ̇
T

1 θ̇
T

2 θ̇
T

3

]T

(6.93)

θ̇
� �

=
[

θ̇16 θ̇26 θ̇36

]T

(6.94)

and

A11 = (p2 − p1)
TJ′1 (6.95)
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A12 = −(p2 − p1)
TJ′2 (6.96)

A13 = 01×6 (6.97)

A21 = (p3 − p1)
TJ′1 (6.98)

A22 = 01×6 (6.99)

A23 = −(p3 − p1)
TJ′3 (6.100)

A31 = [(p2 − p1)
T + (p3 − p1)

T ]J′1 (6.101)

A32 = −(p3 − p1)
TJ′2 (6.102)

A33 = −(p2 − p1)
TJ′3 (6.103)

B11 = −(p2 − p1)
T [e16 × r16] (6.104)

B12 = (p2 − p1)
T [e26 × r26] (6.105)

B13 = 0 (6.106)

B21 = −(p3 − p1)
T [e16 × r16] (6.107)

B22 = 0 (6.108)

B23 = (p3 − p1)
T [e36 × r36] (6.109)

B31 = −[(p2 − p1)
T + (p3 − p1)

T ][e16 × r16] (6.110)

B32 = (p3 − p1)
T [e26 × r26] (6.111)

B33 = (p2 − p1)
T [e36 × r36] (6.112)

hence

θ̇
� �

= B−1Aθ̇
�

(6.113)

assume

[B−1A]3×18 =









M1×18

N1×18

S1×18









(6.114)

One has then

θ̇21×1 = V21×18θ̇
�

18×1 (6.115)
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where

V =































I5×5 05×13

M1×18

06×5 I6×6 06×7

N1×18

06×11 I6×6 06×1

S1×18

01×17 I1×1































(6.116)

Finally, the joint stiffness matrix is defined as

KJ = diag[k11, . . . , k15, k17, k21, . . . , k25, k27, k31 . . . , k35, k37] (6.117)

6.4.2.4 Kinetostatic Model

From eqs. (6.74) and (6.66) one can obtain

Jθ̇ = Rt (6.118)

since matrix R represents a system of 9 compatible linear equations in 6 unknowns, one

can use the least square solution to this equation, to obtain an exact solution. Using

eq. (6.83), one obtains

t = (RTR)−1RTJVθ̇
′

(6.119)

let J′ be represented as

J′ = (RTR)−1RTJV (6.120)

then one has

t = J′θ̇
′

(6.121)

According to the principle of virtual work, one has

τ T θ̇
�

= wT t (6.122)

where τ is a vector of the actuator torques applied at each actuated joint or joints

with spring. It is assumed that no gravitational forces act on any of the intermediate

links, and w is a vector composed of forces and moments (wrench) applied by the end-

effector. Equating these two powers, one obtains substituting eq. (6.121) to (6.122) one

can obtain

τ = J′
T
w (6.123)
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The joint forces and displacements of each joint can be related by Hooke’s law, i.e.,

τ i = ki∆θi (6.124)

and for the whole structure, one has

τ = KJ∆θ′ (6.125)

∆θ′ only includes the actuated joints and joints with springs i.e.,

KJ∆θ′ = J′
T
w (6.126)

hence

∆θ′ = K−1
J J′

T
w (6.127)

pre-multiplying both sides by J′, one obtains

J′∆θ′ = J′K−1
J J′

T
w (6.128)

substituting eq. (6.121) into eq. (6.128), one obtains

t = J′K−1
J J′

T
w (6.129)

therefore, one obtains the compliance matrix of the mechanism κ as follows

κ = J′K−1
J J′

T
(6.130)

and the Cartesian stiffness matrix is

K = (J′K−1
J J′

T
)
−1

(6.131)

6.4.3 Implementation and Results

Based on the model above, an example is now given to illustrate the effect of flexible

links on the precision of the mechanism. A reference configuration is given below (all

lengths are in centimeters)

xb1 = 0, yb1 = 32, zb1 = 0,

xb2 = −16
√

3, yb2 = −16, zb2 = 0,
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xb3 = 16
√

3, yb3 = −16, zb3 = 0,

a1 = −8
√

3, b1 = 8, c1 = 0,

a2 = 0, b2 = −16, c2 = 0,

a3 = 8
√

3, b3 = 8, c3 = 0,

l11 = l21 = l31 = 6,

l12 = l22 = l32 = 26,

l13 = l23 = l33 = 12,

Ki = ±1, (i = 1, 2, 3)

where

xbi, ybi, zbi are the coordinates of the base attachment points in a local coordinate frame,

ai, bi, ci are the coordinates of the platform attachment points in their local coordinate

frame,

l1i, l2i, l3i, (i = 1, 2, 3) are the length of each link,

Ki is the branch index.

and the Cartesian coordinates are given as

x = 0, y = 0, z = 22 cm,

φ = 0, θ = 0, ψ = −π/6,

and

kai1 = kai4 = 1, i = 1, 2, 3

ki2 = ki3 = ki5 = ki7 ∈ [1, 50000], i = 1, 2, 3

kbi4 ∈ [1, 50000], i = 1, 2, 3

where kai1 and kai4 are the actuator stiffnesses of joints i1 and i4, respectively, ki2, ki3,

ki5 and ki7 are the lumped link stiffnesses induced by bending, kbi4 is also lumped link

stiffness induced by torsion.

Figure 6.13 shows the variation of the stiffness as a function of link stiffness and

Table 6.5 exhibits the Cartesian stiffness of the 6-dof mechanism with flexible links and

with rigid links. All these results are similar to that obtained in previous sections.
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Figure 6.13: Evolution of the stiffness as a function of the link’s stiffness in different

directions.
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Table 6.5: Comparison of Cartesian stiffness between the mechanism with flexible links

and the mechanism with rigid links.

Kactuator Klink Kφ Kθ Kψ Kx Ky Kz

1 1 0.074758 0.074758 0.312083 13.8907 13.8907 5.84047

1 10 0.205028 0.205028 0.905732 40.8851 40.8851 16.0178

1 1000 0.253647 0.253647 1.14695 52.06 52.06 19.8162

1 5000 0.254134 0.254134 1.14942 52.1754 52.1754 19.8542

1 10000 0.254195 0.254195 1.14973 52.1898 52.1898 19.859

1 50000 0.254244 0.254244 1.14998 52.2014 52.2014 19.8628

1 10000000 0.254256 0.254256 1.15004 52.2043 52.2043 19.8637

1 rigid 0.254256 0.254256 1.15004 52.2043 52.2043 19.8637

Assuming that the cross section of the first link (from base to platform) is progres-

sively increased, the stiffness progressively increases as shown in Table 6.6, the same

for the 2nd and 3rd links in each leg, for which the results are shown in Tables 6.7 and

6.8. The results are also illustrated in Figures 6.14 and 6.15.

From Tables 6.6 – 6.8 and Figures 6.14 and 6.15, one can observe that the 1st

link in each leg (from base to platform) has the largest effects on the stiffness of the

mechanism, then the 2nd link of each leg, but the 3rd link of each leg has no effect on

Kφ, Kθ, Kz, and has very little effect on Kψ, Kx and Ky. Anyhow, the smallest link

stiffness should not be less than that of the actuator’s.

The stiffness model described above is now used to obtain the stiffness mappings for

this spatial six-degree-of-freedom parallel mechanism. As shown in Figure 6.16, from

such plots one can determine which regions of the workspace will satisfy some stiffness

criteria.

From the stiffness mappings, one can observe that Kφ and Kθ, Kx and Ky are

symmetric, and in Figure 6.16(d) the stiffness in X becomes higher when the platform

moves further from the Y axis. This was to be expected because when the platform

moves aside along the X axis, the projection of the legs on this axis becomes larger,

and the mechanism is more rigid in Y . The same reasoning applies to Figure 6.16(e)

for the stiffness in Y .
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Table 6.6: Comparison of Cartesian stiffness between the mechanism with rigid links

and the mechanism with flexible links. (The cross section of the 1st link in each leg is

progressively increased, all the other Klink = 20000 Nm.)

Kactuator Klink Kφ Kθ Kψ Kx Ky Kz

1 1 0.105891 0.105891 0.486243 21.9064 22.3921 8.27276

1 10 0.223001 0.223001 1.01132 45.8274 46.0434 17.422

1 100 0.250731 0.250731 1.1344 51.4837 51.511 19.5883

1 1000 0.253888 0.253888 1.14839 52.1281 52.1308 19.835

1 5000 0.254172 0.254172 1.14965 52.1862 52.1866 19.8572

1 10000 0.254208 0.254208 1.14981 52.1934 52.1936 19.86

1 20000 0.254225 0.254225 1.14989 52.1971 52.1971 19.8614

1 50000 0.254236 0.254236 1.14994 52.1992 52.1992 19.8622

1 100000 0.25424 0.25424 1.14995 52.2 52.1999 19.8625

1 1000000 0.254243 0.254243 1.14997 52.2006 52.2005 19.8627

1 rigid 0.254256 0.254256 1.15004 52.2043 52.2043 19.8637

In Figures 6.16(a) and (b), the torsional stiffnesses in φ and θ are shown, the stiffness

is larger when the platform moves further from the Y axis. However, in the center of

the workspace, Kz and Kψ are at their minimum when ψ = −π/6. This is due to the

singularity which may appear with a rotation around the Z axis. On the other hand,

from Figure 6.17 when φ = θ = ψ = 0, the stiffness in Z is higher near the center of

the workspace, which is the best position for supporting vertical loads. It can also be

noted that the stiffness in Z is much larger than the stiffness in the X or Y directions.

This is due to the architecture chosen, which aims at supporting heavy objects in an

environment where the gravity is acting along the negative direction of Z axis. All

these are in accordance with what would be intuitively expected.

6.5 Conclusions

The kinetostatic analysis and the general stiffness model of spatial parallel six-degree-

of-freedom mechanisms have been addressed in this chapter. Solutions for the inverse
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Table 6.7: Comparison of the mechanism stiffness between the mechanism with rigid

links and the mechanism with flexible links. (The stiffness of the 2nd link in each leg

is progressively increased, all the other Klink = 20000 Nm.)

Kactuator Klink Kφ Kθ Kψ Kx Ky Kz

1 1 0.127124 0.127124 0.528982 23.5252 23.5252 9.93153

1 10 0.231127 0.231127 1.02832 46.4978 46.4978 18.0568

1 100 0.251721 0.251721 1.13649 51.5671 51.5671 19.6657

1 1000 0.253984 0.253984 1.1486 52.1362 52.1362 19.8425

1 5000 0.254187 0.254187 1.14968 52.1875 52.1875 19.8584

1 10000 0.254213 0.254213 1.14982 52.1939 52.1939 19.8604

1 20000 0.254225 0.254225 1.14989 52.1971 52.1971 19.8614

1 50000 0.254233 0.254233 1.14993 52.199 52.199 19.862

1 100000 0.254236 0.254236 1.14994 52.1996 52.1996 19.8622

1 1000000 0.254238 0.254238 1.14996 52.2002 52.2002 19.8623

1 rigid 0.254256 0.254256 1.15004 52.2043 52.2043 19.8637

kinematic problem have been given and the methods for the derivation of the general

stiffness model have been presented. The effects of flexible links on the mechanism have

been demonstrated. Finally, plots of the stiffness mappings have been given in order

to illustrate the results. Six-degree-of-freedom mechanisms are of interest for many

applications in robotics and other fields such as machine tools. The determination of

the stiffness mappings is an important design issue which can be efficiently handled

with the procedures described in this chapter.

Based on the results included in Figures and Tables of this chapter, the following

conclusions can be drawn:

1. The flexibility of links has obvious effects on the stiffness of the mechanism.

2. The larger the link’s stiffness, the larger the mechanism’s stiffness in each direc-

tion.

3. If the link stiffness is large enough, then the mechanism’s stiffness with flexible

beams is very close to that of rigid model which suggests that one can depend on
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Table 6.8: Comparison of the mechanism stiffness between the mechanism with rigid

links and the mechanism with flexible links. (The stiffness of the 3rd link in each leg is

progressively increased, all the other Klink = 20000 Nm.)

Kactuator Klink Kφ Kθ Kψ Kx Ky Kz

1 1 0.254225 0.254225 0.967253 41.9736 41.9736 19.8614

1 10 0.254225 0.254225 1.12583 50.8503 50.8503 19.8614

1 100 0.254225 0.254225 1.14742 52.0586 52.0586 19.8614

1 1000 0.254225 0.254225 1.14965 52.1838 52.1838 19.8614

1 5000 0.254225 0.254225 1.14985 52.195 52.195 19.8614

1 10000 0.254225 0.254225 1.14988 52.1964 52.1964 19.8614

1 20000 0.254225 0.254225 1.14989 52.1971 52.1971 19.8614

1 50000 0.254225 0.254225 1.1499 52.1975 52.1975 19.8614

1 100000 0.254225 0.254225 1.1499 52.1976 52.1976 19.8614

1 1000000 0.254225 0.254225 1.1499 52.1977 52.1977 19.8614

1 rigid 0.254256 0.254256 1.15004 52.2043 52.2043 19.8637

such a method to estimate the stiffness of the compliant model.

4. If the mechanism has symmetric structure, then Kφ = Kθ and Kx = Ky.

5. For a uniform cross section beam or circular cylinder with homogeneous material,

EI = constant, therefore, for a required beam stiffness, one can design the beam

or circular cylinder structure according to their area moments of inertia equations.

6. From the flexible beam stiffness values obtained from the real case, one finds that

proper sizes and material of flexible beams are required to reduce the effects of

flexible beams for the stiffness of the mechanism.

7. For the 6-dof parallel mechanism with three legs, the most serious effect on the

mechanism stiffness is the first link’s stiffness in each leg, followed by the 2nd and

3rd link. The 3rd link’s stiffness has almost no effect on the system stiffness as

long as it is larger or equal to the actuator’s stiffness.
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Figure 6.14: Cartesian stiffness as a function of the link’s stiffness. (Kactuator =

1 Nm,Klink = 20000 Nm, the stiffness of the first link (from base to platform) is

progressively increasing.)
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Figure 6.15: Cartesian stiffness as a function of the link’s stiffness. (Kactuator =

1 Nm,Klink = 20000 Nm, the stiffness of the second link (from base to platform)

is progressively increasing.)
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Figure 6.16: Stiffness mappings of the spatial 6-dof parallel mechanism with revolute

actuators (3 legs). (φ = θ = 0, ψ = −π/6, z = 22 cm) (all length units in m)
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Figure 6.17: Stiffness mappings of the spatial 6-dof parallel mechanism with revolute

actuators (3 legs). (φ = θ = ψ = 0, z = 22 cm) (all length units in m)



Chapter 7

Optimization of the Global Stiffness

7.1 Introduction

Optimization plays an important role in engineering design problems, it deals with

problems of minimizing or maximizing a function with several variables. For the mech-

anisms studied here, the highest global stiffnesses are desired so as to reach the high

rigidity and high precision. This can be achieved either through maximizing the global

stiffnesses or through minimizing the global compliances for a certain parallel mech-

anism by selecting mechanism’s geometric parameters (link length, height, etc.) and

behavior parameters (link stiffnesses). In this chapter, the optimization criteria are

first established. In order to address the optimization issue, an optimization technique

194
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must be selected. Considering the complexity of the problems, a novel optimization

technique called genetic algorithms is applied, and the rationale for using this method

together with the determination of parameters and objective function are addressed as

well. The detailed analysis of the kinetostatics of the parallel mechanisms conducted

in previous chapters will now be used to define and optimize their geometric sizes and

properties. Finally, the implementation and optimal results for all kinds of mechanisms

discussed in this thesis are given.

7.1.1 Optimization Criteria

In this thesis, the main consideration for the optimization criteria is to maximize global

stiffnesses (or minimize the global compliances). The global stiffness/compliance used

here is the diagonal entry of the Cartesian stiffness/compliance matrix. It represents

the pure stiffness/compliance in each direction.

Genetic algorithm methods are used to conduct the optimal design of the system

in terms of a better system stiffness. The objective functions are established and max-

imized/minimized in order to find the suitable geometric parameters (coordinates of

the attachment points, coordinates of the moving platform, link length, vertex distri-

butions at base and moving platform, platform height, etc.) and behavior parameters

(actuator stiffness, actuated link stiffness, and kinetostatic model stiffness, etc.) of

the mechanisms. Since the objective function is closely related to the topology and

geometry of the structure, the general optimization methodology can be described as

follows:

• analyze the requirements including the stiffness, the mechanical interferences, the

workspace properties and the singularities.

• analyze the constraints including geometric size and properties.

• establish a reasonable initial guess of the geometry of the mechanism, then use

a numerical optimization to further improve the kinematic properties and ensure

the optimum characteristics are obtained. Finally, a program gives a potential

solution to allow the verification of other important properties.
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7.1.2 Genetic Algorithms

Introduced in the 1970s by John Holland (Holland 1975), genetic algorithms are part

of the larger class of evolutionary algorithms that also include evolutionary program-

ming (Fogel et al. 1966), evolution strategies (Rechenberg 1973) and genetic program-

ming (Koza 1991). The genetic algorithms (GAs) are powerful and broadly applicable

stochastic search and optimization techniques based on the evolutionary principle of

natural chromosomes (Goldberg 1989). Specifically, the evolution of chromosomes due

to the operation of crossover and mutation and natural selection of chromosomes based

on Darwin’s survival-of-the-fittest principles are all artificially simulated to constitute

a robust search and optimization procedure. The genetic algorithms are the computer

simulation of such evolution where the user provides the environment (function) in

which the population must evolve.

A comparison between conventional optimization methods and genetic algorithms

is now given. The conventional methods are usually limited to convex regular func-

tions while the genetic algorithm is robust, global and generally more straightforward

to apply to all kinds of functions including multi-modal, discontinuous, and non-

differentiable functions. Goldberg (1989) has summarized the differences as follows:

1. Genetic algorithms work with a coding of the solution set, not the solutions

themselves.

2. Genetic algorithms search from a population of solutions, not a single solution.

3. Genetic algorithms use payoff information (fitness function), not derivatives or

other auxiliary knowledge.

4. Genetic algorithms use probabilistic transition rules, not deterministic rules.

In recent years, the GAs have been applied to a broad range of real-world prob-

lems (Boudreau and Turkkan 1996; Davis 1991; Gen and Cheng 1997; Boudreau and

Gosselin 1998; Michalewicz 1994; Winter et al. 1995; Nearchou 1998; Davidor 1991;

Goldberg and Samtani 1986) such as ecosystem modeling, combinatorial and paramet-

ric optimization, reliability design, vehicle routing and scheduling, machine intelligence,
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robotic trajectory optimization, neural networks implementations, pattern recognition,

analysis of complex systems and financial prediction.

The basic procedure of genetic algorithms can be described as follows:

1. Create an initial population

The initial population of chromosomes is created randomly.

2. Evaluate all of the individuals (apply some function or formula to the individuals)

The fitness is computed in this step. The goal of the fitness function is to numer-

ically encode the performance of the chromosomes.

3. Selection

Select a new population from the old population based on the fitness of the

individuals as given by the evaluation function. In this step, the chromosomes

with the largest fitness rates are selected while the chromosomes with low fitness

rates are removed from the population.

4. Genetic operations (mutation and crossover)

If the parents are allowed to mate, a recombination operator is employed to

exchange genes between the two parents to produce two children. If they are not

allowed to mate, the parents are placed into the next generation unchanged. A

mutation simply changes the value for a particular gene.

5. Evaluate these newly created individuals.

6. Repeat steps 3-5 (one generation) until the termination criteria has been satisfied.

Suppose P (t) and C(t) are parents and children in current generation t, then a

genetic algorithm is expressed in Figure 7.1,

From Figure 7.1, one can find that there are only two kinds of operations included

in genetic algorithms, i.e., genetic operations (crossover and mutation) and evolution

operation (selection).
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initialize P(t);
evaluate P(t);

t

while 

begin

0;

select P ’ (t) from P(t);

do

reproduce C(t) from P ’ (t);

mutate C(t);

evaluate  C(t);

end

t t + 1;

end

(unfinished condition)

Figure 7.1: The structure of genetic algorithms.

7.1.3 Rationale for Using Genetic Algorithms

Genetic algorithms have the advantages of robustness and good convergence properties,

namely:

• They require no knowledge or gradient information about the optimization prob-

lems. They can solve any kind of objective functions and any kind of constraints

(i.e., linear or nonlinear) defined on discrete, continuous, or mixed search spaces.

• Discontinuities present on the optimization problems have little effect on the

overall optimization performance.

• They are effective at performing global search (in probability) instead of local

optima.

• They perform very well for large-scale optimization problems.

• They can be employed for a wide variety of optimization problems.
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Genetic algorithms have been shown to solve linear and nonlinear problems by

exploring all regions of state space and exponentially exploiting promising areas through

mutation, crossover, and selection operations applied to individuals in the population

(Michalewicz 1994).

In the present work, there are many optimization parameters (up to 13 variables,

depending on mechanism, make up the optimization problem) and complex matrix

computations. Hence, it is very difficult to write out the analytical expressions for

each stiffness element. Moreover, with traditional optimization methods, only a few

geometric parameters (Gosselin and Guillot 1991) could be handled due to the lack

of convergence of the optimization algorithm when used with more complex problems.

This arises from the fact that traditional optimization methods use a local search by

a convergent stepwise procedure (e.g. gradient, Hessians, linearity, and continuity),

which compares the values of the next points and moves to the relative optimal points.

Global optima can be found only if the problem possesses certain convexity properties

that essentially guarantee that any local optima is a global optimal. Therefore, genetic

algorithms are the best candidate for the optimization problems studied here.

7.1.4 Determination of Parameter Settings for Genetic Algo-

rithms

In order to use genetic algorithms properly, several parameter settings have to be

determined, they are: chromosome representation, selection function, genetic operators,

the creation of the population size, mutation rate, crossover rate, and the evaluation

function.

1. Chromosome representation

This is a basic issue for the GA representation, it is used to describe each indi-

vidual in the population of interest. In the original algorithm, each individual or

chromosome used to be expressed as a sequence of genes from binary digits (0 and

1) (Holland 1975). However, it has been shown that more natural representations

are more efficient and produce better solutions (Michalewicz 1994). Michalewicz
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(1994) has done extensive experimentation comparing real-valued and binary ge-

netic algorithms and shows that the real-valued genetic algorithm is an order of

magnitude more efficient in terms of CPU time. He also shows that a real-valued

representation moves the problem closer to the problem representation which of-

fers higher precision with more consistent results across replications (Michalewicz

1994). It outperformed binary genetic algorithm and simulated annealing in terms

of computational efficiency and solution quality (Houck et al. 1995). Hence, real-

valued expressions are used in our case to represent each individual or chromosome

for function optimization. For the problem studied here, the chromosomes consist

of the architecture parameters (coordinates of the attachment points, coordinates

of the moving platform, link lengths, vertex distributions at base and moving

platform, platform height, etc.) and behavior parameters (actuator stiffness, ac-

tuated link stiffness, and kinetostatic model stiffness, etc.) of the mechanisms.

2. Selection function

This step is a key procedure to produce the successive generations. It determines

which of the individuals will survive and continue on to the next generation. A

probabilistic selection is performed based on the individual’s fitness such that

the better individuals have an increased chance of being selected. There are

several methods for selection: roulette wheel selection and its extensions, scal-

ing techniques, tournament, elitist models, and ranking methods (Goldberg 1989;

Michalewicz 1994). In our case, the normalized geometric ranking method (Joines

and Houck 1994) is used since it only requires the evaluation function to map the

solutions to a partially ordered set and it tends to eliminate chromosomes with

extreme values, thus allowing for minimization and negativity. In normalized geo-

metric ranking methods, Joines and Houck (1994) define a probability of selection

Pi for each individual as

P [ selecting the ith individual ] = q′(1− q)(r−1) (7.1)

where

q represents the probability of selecting the best individual,

r represents the rank of the individual, where 1 is the best,

P is the population size.
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q′ = q

1−(1−q)P .

3. Genetic operators

The operators are used to create new children based on the current generation

in the population. Basically, there are two types of operators: crossover and

mutation. Crossover takes two individuals and produces two new individuals

while mutation alters one individual to produce a single new solution.

In binary representations, the applications of these two types of operators are

only binary mutation and simple crossover.

In real-valued representations, the applications of these two types of operators

have been developed by Michalewicz (1994), they are: uniform mutation, non-

uniform mutation, multi-non-uniform mutation, boundary mutation, simple crossover,

arithmetic crossover, and heuristic crossover (Michalewicz 1994).

Uniform mutation randomly selects one variable and sets it equal to a uniform

random number while boundary mutation randomly selects one variable and sets

it equal to either its lower or upper bound.

Non-uniform mutation randomly selects one variable and sets it equal to a non-

uniform random number, according to Michalewicz (1994), it is defined as follows:

if sx
t = (x1, x2, x3, . . . , xm) is a chromosome (t is the generation number) and

the element xj was selected for non-uniform mutation, the result is a vector

sx
t+1 = (x1, x2, x3, . . . , x

′

j, . . . , xm), where

x′j = xj + ∆(t, UB − xj), if a random digit is 0 (7.2)

x′j = xj −∆(t, xj − LB), if a random digit is 1 (7.3)

where UB and UL are the upper and lower bounds for the variable, and ∆(t, y)

is given by

∆(t, y) = y(1− r(1− t
G

)b

) (7.4)

where

r is a uniform random number between (0,1),

G represents the maximum number of generations,

t is the current generation.
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b is a parameter determining the degree of dependency on the generation number.

4. Population size

The population size represents the number of individuals or chromosomes in the

population. Usually, larger population sizes increase the amount of variation

present in the initial population, it requires more fitness evaluations. If the pop-

ulation loses diversity, the population is said to have premature convergence and

little exploration is being done. For longer chromosomes and challenging opti-

mization problems, larger population sizes are needed to maintain diversity —

higher diversity can also be achieved through higher mutation rates and uniform

crossover — and hence better exploration. Usually, the population size is deter-

mined by the rule of thumb of seven to eight times the number of the optimization

parameters.

5. Mutation rate

The mutation rate is defined as the percentage of the total number of genes in the

population (Gen and Cheng 1997), it determines the probability that a mutation

will occur. Mutation is employed to give new information to the population and

also prevents the population from becoming saturated with similar chromosomes

(premature convergence). Large mutation rates increase the probability that good

schemata will be destroyed, but increase population diversity. The best mutation

rate is application dependent but for most applications is between 0.001 and 0.1.

6. Crossover rate

The crossover rate (denoted by pc) is defined as the ratio of the number of offspring

produced in each generation to the population size, P (Gen and Cheng 1997).

This ratio controls the expected number pc × P of chromosomes to undergo the

crossover operation. The best crossover rate is application dependent but for

most applications is between 0.80 and 0.95.

7. Evaluation functions

Evaluation functions are subject to the minimal requirement that the function

can map the population into a partially ordered set. In the present work, the sum

of diagonal elements in stiffness/compliance matrix with relative weight factors

for each direction is set as the evaluation function.
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7.2 Implementation

In this research work, the stiffness for certain mechanism configurations is expressed

by a (6× 6) matrix, as discussed before. The diagonal elements of the matrix are the

mechanism’s pure stiffness in each Cartesian direction. To obtain the optimal stiffness

in each direction, one can write an objective function, eq. (7.5), with stiffness element

to maximize or write an objective function, eq. (7.6), with compliance elements whose

negative is to be maximized, i.e., maximize(val) where

val = η1K11 + η2K22 + η3K33 + η4K44 + η5K55 + η6K66 (7.5)

or

val = −(λ1κ11 + λ2κ22 + λ3κ33 + λ4κ44 + λ5κ55 + λ6κ66) (7.6)

where, for i = 1, . . . , 6

Kii represents the diagonal elements of the mechanism’s stiffness matrix,

κii represents the diagonal elements of mechanism’s compliance matrix,

ηi is the weight factor for each directional stiffness, which characterizes the priority

of the stiffness in this direction.

λi is the weight factor for each directional compliance, which characterizes the priority

of the compliance in this direction.

This would maximize/minimize the SUM of the diagonal elements. Although we

could not maximize/minimize each diagonal element individually, we always can opti-

mize each stiffness by distributing the weighting factors. Once the objective function is

written, a search domain for each optimization variable (lengths, angles, etc.) should

be specified to create an initial population. The limits of the search domain are set by

a specified maximum number of generations or population convergence criteria, since

the GAs will force much of the entire population to converge to a single solution.

For the optimization of the stiffness, a real-valued method is used combined with the

selection, mutation and crossover operators with their optional parameters used for all

these type of parallel mechanism stiffness/compliance function optimization as shown
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in Table 7.1. The first optional parameter is the number of times to apply the operators

for real-valued representation, Gm represents the maximum number of generations, b

is a parameter determining the degree of dependency on the generation number, we

use 3 in our case (Michalewicz 1994). The other optional parameters depend on the

operators we are using. Since Matlab requires matrices to have the same length in all

rows, many of the parameters are 0 indicating that they are really place holders only.

In the following sections, we will describe it in more detail.

Table 7.1: Genetic algorithm parameters used for real-valued stiffness function opti-

mization.

Name Parameters

Uniform Mutation [4 0 0]

Non-Uniform Mutation [4 Gm b]

Multi-Non-Uniform Mutation [6 Gm b]

Boundary Mutation [4 0 0]

Simple Crossover [2 0]

Arithmetic Crossover [2 0]

Heuristic Crossover [2 3]

Normalized Geometric Selection 0.08

7.2.1 Spatial Six-Degree-of-Freedom Mechanism with Prismatic

Actuators

7.2.1.1 Parameters Selection

The spatial six-degree-of-freedom mechanism with prismatic actuators is shown in Fig-

ures 6.2 and 6.3. In order to obtain the maximum global stiffness, five architecture and

behavior parameters are used as optimization parameters, the vector of optimization

variables is

s = [Rp, Rb, z, Tp, Tb] (7.7)
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where Rp is the radius of the platform, Rb is the radius of the base, z is the height of

the platform, Tp, Tb are the angles to determine the attachment points on the base and

on the platform, and their bounds are

Rp ∈ [5, 10] cm,Rb ∈ [12, 22] cm,

z ∈ [45, 56] cm,

Tp ∈ [18, 26]◦, Tb ∈ [38, 48]◦,

In this research work, the objective function of eq. (7.5) is maximized where the fol-

lowing is assumed

ηi = 1 i = 1, . . . , 6,

P = 80

Gmax = 100

where P is the population size and Gmax is the maximum number of generations.

7.2.1.2 Results

The genetic algorithm is implemented in Matlab to search for the best solutions. The

results are given only for one case with φ = 0, θ = 0, ψ = 0. Figure 7.2 shows the

evolution of the best individual for 100 generations. The architectural and behavior

parameters found by the GA after 100 generations are

s = [Rp, Rb, z, Tp, Tb] = [10, 12, 56, 18, 48]

and the stiffnesses in each direction are

K = [Kx, Ky, Kz, Kθx
, Kθy

, Kθz
]

= [34.1918, 34.1918, 5931.6164, 29.65808182, 29.65808182, 0.68092535]

the sum of the stiffnesses is 6059.997.

Before optimization, the parameters for this mechanism were given as

s′ = [Rp, Rb, z, Tp, Tb] = [6, 15, 51, 22.34, 42.88]
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and the stiffness in each direction was

K′ = [K ′

x, K
′

y, K
′

z, K
′

θx
, K ′

θy
, K ′

θz
]

= [102.968, 102.968, 5794.06, 10.4293, 10.4293, 0.222188]

and the stiffness sum is 6021.08. Hence, after optimization, the stiffness sum is improved

1.01 times.
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Figure 7.2: The evolution of the performance of the 6-dof mechanism with prismatic

actuators.

From Figure 7.2, it can be seen that after a sufficient number of generations (around

30 generations), the track of the best solution and the track of the average of the

population converge to the final best solution.

7.2.2 Spatial Six-Degree-of-Freedom Mechanism with Revo-

lute Actuators

7.2.2.1 Parameters Selection

A spatial six-degree-of-freedom mechanism with revolute actuators is represented in

Figure 6.7. The vertex distribution is the same as in Figure 6.3. From Figure 6.8, it

is clear that the Cartesian stiffness is a monotonically increasing function of the link
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stiffnesses (for all the case with revolute actuators). Nevertheless, there exists a critical

link stiffness, which has tiny effects on mechanism’s Cartesian stiffness when it is larger

than the critical link stiffness, therefore, for all mechanisms with revolute actuators,

link stiffnesses are also included as optimization parameters. Nine (9) optimization

parameters are specified in this mechanism for maximizing the mechanism’s global

stiffnesses. The vector of optimization variables can be expressed as

s = [Rp, Rb, z, Tp, Tb, l1, l2, K2, Kb] (7.10)

where Rp is the radius of the platform, Rb is the radius of the base, z is the height of

the platform, Tp, Tb are the angles to determine the attachment points on the base and

on the platform, l1, l2 are the link lengths and Kb, K2 are the link stiffnesses of the 1st

and 2nd link of each leg, respectively, and the bound for each parameter is

Rp ∈ [5, 7] cm,Rb ∈ [14, 16] cm,

z ∈ [66, 70] cm,

Tp ∈ [20, 26]◦, Tb ∈ [40, 45]◦,

l1 ∈ [42, 48] cm, l2 ∈ [32, 40] cm,

K2 ∈ [106, 1010], Kb ∈ [106, 1010],

In this case, the objective function of eq. (7.5) is maximized assuming

ηi = 1 i = 1, . . . , 6,

P = 80

Gmax = 100

where P is the population size and Gmax is the maximum number of generations.

7.2.2.2 Results

A program based on the genetic algorithm is applied to search for the best solutions.

The results are given only for one configuration with θ = 0, φ = 0, ψ = 0. Figure 7.3

shows the evolution of the best individual and the average of the population for 100

generations. The optimal geometric and behavior parameters obtained by the GA after

100 generations are

s = [Rp, Rb, z, Tp, Tb, l1, l2, K2, Kb] = [5, 16, 70, 20, 45, 42, 32, 1010, 1010]
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and the stiffnesses in each direction are

K = [Kx, Ky, Kz, Kθx
, Kθy

, Kθz
]

= [18873.14, 18873.14, 159835.85, 199.79, 199.79, 41.04]

the sum of the stiffnesses is 198022.766.

Initially, the geometric and behavior values were given for this mechanism as

s′ = [Rp, Rb, z, Tp, Tb, l1, l2, K2, Kb]

= [6, 15, 68, 22.34, 42.883, 46, 36, 1010, 1010]

and the stiffnesses in each direction were

K′ = [K ′

x, K
′

y, K
′

z, K
′

θx
, K ′

θy
, K ′

θz
]

= [7725, 7725, 21045, 37.8818, 37.8818, 43.0695]

the stiffness sum is 36613.8. Therefore, after optimization, the stiffness sum is improved

5.4 times.
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Figure 7.3: The evolution of the performance of the 6-dof mechanism with revolute

actuators.

Figure 7.3 shows that after 34 generations, the track of the best solution and the

track of the average of the population converge to the final best solution.
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7.2.3 Spatial Five-Degree-of-Freedom Mechanism with Pris-

matic Actuators

7.2.3.1 Parameters Selection

The spatial five-degree-of-freedom mechanism with prismatic actuators is shown in

Figure 4.2 and the position of the attachment points both on the base and on the

platform is shown in Figure 4.17. In order to obtain the maximum global stiffness, the

global compliance (since there are infinite terms among the diagonal stiffness elements)

is minimized. However, from eqs. (4.110) – (4.115), it is clear that the Cartesian stiffness

is a monotonically increasing function of the link and actuator stiffnesses (for all the

case with prismatic actuators). Hence, the optimum solution always corresponds to

the maximum link or actuator stiffnesses and these parameters are not included in the

optimization variables. Seven (7) parameters are specified as optimization parameters,

they are

s = [Rp, Rb, l61, l62, z, Tp, Tb] (7.12)

where Rp is the radius of the platform, Rb is the radius of the base, l61, l62 are the link

length for the 1st and 2nd link of the passive leg, respectively, z is the height of the

platform, Tp, Tb are the angles to determine the attachment points on the base and on

the platform, and their bounds are

Rp ∈ [10, 14] cm,Rb ∈ [20, 26] cm,

l61 ∈ [52, 70] cm, l62 ∈ [52, 70] cm,

z ∈ [66, 70] cm

Tp ∈ [18, 26]◦, Tb ∈ [38, 48]◦,

In this work, the objective function of eq. (7.6) is minimized assuming

λi = 1 i = 1, . . . , 6,

P = 80

Gmax = 100
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7.2.3.2 Results

Results are given here only for the case with θ65 = −π, θ66 = 2π/3. Figure 7.4 shows

the evolution of the best individual for 100 generations. The architectural and behavior

parameters found by the GA after 100 generations are

s = [Rp, Rb, l61, l62, z, Tp, Tb]

= [14, 21.2, 52, 70, 66, 18, 48]

and the compliances in each direction are

κ = [κθx
, κθy

, κθz
, κx, κy, κz]

= [0.03687, 0.03113, 0.03646, 0.03962, 0.01657, 2.46× 10−4]

the sum of the compliances is 0.16.

Before optimization, the parameter values of the mechanism were given as

s′ = [Rp, Rb, l61, l62, z, Tp, Tb]

= [12, 22, 68, 68, 68, 22.34, 42.883]

and the compliances in each direction were

κ
�

= [κ′θx
, κ′θy

, κ′θz
, κ′x, κ

′

y, κ
′

z]

= [0.08627, 0.0981, 0.2588, 0.07342, 0.030325, 2.55× 10−4]

the compliance sum is 0.54714. After optimization, the compliance sum is improved

3.4 times.

7.2.4 Spatial Five-Degree-of-Freedom Mechanism with Revo-

lute Actuators

7.2.4.1 Parameters Selection

The schematic representation of this type mechanism and its vertex distribution are

shown in Figures 5.2 and 4.17, respectively. Twelve architecture and behavior param-

eters are specified as optimization parameters to minimize the compliances, they can
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Figure 7.4: The evolution of the performance of the 5-dof mechanism with prismatic

actuators.

be represented as a vector of s

s = [Rp, Rb, l61, l62, l1, l2, z, kb, k62, k2, Tp, Tb] (7.13)

where Rp is the radius of the platform, Rb is the radius of the base, l61, l62 are the link

lengths for the 1st and 2nd link of the passive leg, respectively, l1, l2 are the link length

for the 1st and 2nd link of the each actuated leg, respectively, z is the height of the

platform, Tp, Tb are the angles to determine the attachment points on the base and on

the platform, and the bound of each optimization parameter is

Rp ∈ [5, 7] cm,Rb ∈ [14, 18] cm,

l61 ∈ [67, 70] cm, l62 ∈ [67, 70] cm,

l1 ∈ [33, 35] cm, l2 ∈ [45, 47] cm,

z ∈ [66, 70] cm, Tp ∈ [18, 30]◦, Tb ∈ [38, 50]◦,

kb, k62, k2 ∈ [106, 1010]

For this mechanism, the objective function of eq. (7.6) is minimized with

λi = 1 (i = 1, . . . , 6), P = 80, Gmax = 200
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7.2.4.2 Results

Results are given here for the case with θ65 = −π, θ66 = 2π/3. Figure 7.5 shows the

evolution of the best individual for 200 generations. The mechanism’s geometric and

behavior parameters found by the GA after 200 generations are

s = [Rp, Rb, l61, l62, l1, l2, z, kb, k62, k2, Tp, Tb]

= [7, 16, 68.622, 67.208, 33, 45, 69, 9.126× 109, 9.968× 109, 7.99× 109, 19.97, 47.97]

and the compliances in each direction are

κ = [κθx
, κθy

, κθz
, κx, κy, κz]

= [7.77× 10−2, 0.10345, 0.24256, 1.116× 10−3, 1.87× 10−3, 2.67× 10−4]

the sum of the compliances is 0.426999.

The initial guess of the geometric and structure behavior parameters of the mech-

anism were given as

s′ = [Rp, Rb, l61, l62, l1, l2, z, kb, k62, k2, Tp, Tb]

= [6, 15, 68, 68, 34, 46, 68, 1010, 1010, 1010, 22.34, 42.883]

and the compliances in each direction were

κ
�

= [κ′θx
, κ′θy

, κ′θz
, κ′x, κ

′

y, κ
′

z]

= [0.1244, 0.2327, 0.3732, 0.001, 0.002464, 3.589× 10−4]

the compliance sum is 0.734195. Hence after optimization, the compliance sum is

improved 1.72 times.

7.2.5 Spatial Four-Degree-of-Freedom Mechanism with Pris-

matic Actuators

7.2.5.1 Parameters Selection

Figure 4.11 shows the spatial four-degree-of-freedom mechanism with prismatic actua-

tors, and Figure 4.12 represents position of the attachment points. For this mechanism,
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Figure 7.5: The evolution of the performance of the 5-dof mechanism with revolute

actuators.

the optimization parameters are

s = [Rp, Rb, l51, l52, z, Tp, Tb] (7.15)

where Rp is the radius of the platform, Rb is the radius of the base, l51, l52 are the link

lengths for the 1st and 2nd link of the passive leg, respectively, z is the height of the

platform, Ta, Tb are the angles to determine the attachment points on the base and on

the platform, and their bounds are

Rp ∈ [10, 14] cm,Rb ∈ [20, 26] cm,

l51 ∈ [52, 70] cm, l52 ∈ [52, 70] cm,

z ∈ [66, 70] cm, Ta ∈ [25, 35]◦, Tb ∈ [55, 65]◦,

Again, the compliances are minimized as above.

7.2.5.2 Results

Results are given here only for one case with θ55 = −π/3, θ56 = 2π/3. Figure 7.6 shows

the evolution of the best individual for 100 generations. The geometric and behavior

parameters found by the GA after 100 generations are

s = [Rp, Rb, l51, l52, z, Ta, Tb]
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= [14, 26, 70, 55, 66, 35, 55]

and the compliances in each direction are

κ = [κθx
, κθy

, κθz
, κx, κy, κz]

= [0.12, 0.5742, 3.747× 10−3, 0.3165, 5.006× 10−11, 3.345× 10−3]

the sum of the compliances is 1.017897.

Initially, the parameters for this mechanism were given as

s′ = [Rp, Rb, l51, l52, z, Ta, Tb]

= [12, 22, 68, 68, 68, 30, 60]

and the compliances in each direction were

κ
�

= [κ′θx
, κ′θy

, κ′θz
, κ′x, κ

′

y, κ
′

z]

= [0.5164, 1.4046, 1.5× 10−10, 0.9087, 5.78× 10−11, 0.011139]

the compliance sum is 2.84085. Therefore, after optimization the compliance sum has

been improved 2.8 times.
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Figure 7.6: The evolution of the performance of the 4-dof mechanism with prismatic

actuators.
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7.2.6 Spatial Four-Degree-of-Freedom Mechanism with Revo-

lute Actuators

7.2.6.1 Parameters Selection

A spatial four-degree-of-freedom mechanism with revolute actuators is shown in Fig-

ure 5.10 and the vertex distributions both on the base and on the platform are the

same as in Figure 4.12. The parameters are

s = [Rp, Rb, l51, l52, L1, L2, z, kb, k52, k54, K2, Tp, Tb] (7.16)

where Rp is the radius of the platform, Rb is the radius of the base, l51, l52 are the

link lengths for the 1st and 2nd link of the passive leg, respectively, L1, L2 are the link

lengths for the 1st and 2nd link of the actuated leg, respectively, z is the height of the

platform, kb and K2 are the stiffnesses of the 1st and 2nd link of the actuated leg, k52,

k54 are the stiffnesses of the 1st and 2nd link of the passive leg, Ta, Tb are the angles

to determine the attachment points on the base and on the platform, and their bounds

are

Rp ∈ [5, 7] cm,Rb ∈ [14, 16] cm,

l51 ∈ [67, 69] cm, l52 ∈ [67, 69] cm,

L1 ∈ [33, 35] cm, L2 ∈ [45, 47] cm,

z ∈ [66, 70] cm,

Ta ∈ [25, 35]◦, Tb ∈ [55, 65]◦,

kb, k52, k54, K2 ∈ [106, 1010]

7.2.6.2 Results

Results are given here for one case with θ55 = −π/3, θ56 = 2π/3. Figure 7.7 shows

the evolution of the best individual for 100 generations. After 100 generations, the

optimum geometric and behavior parameters for this configuration are

s = [Rp, Rb, l51, l52, L1, L2, z, kb, k52, k54, K2, Ta, Tb]

= [7, 16, 67, 69, 35, 47, 67, 1010, 9.9958× 109, 1010, 9.9844× 109, 35, 55]
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and the compliances in each direction are

κ = [κθx
, κθy

, κθz
, κx, κy, κz]

= [0.28857, 0.019376, 8.66× 10−5, 9.39× 10−4, 5.751× 10−11, 3.646× 10−5]

the sum of the compliances is 0.309.

The initial guess for this mechanism was

s′ = [Rp, Rb, l51, l52, L1, L2, z, kb, k52, k54, K2, Ta, Tb]

= [6, 15, 68, 68, 34, 46, 68, 1010, 1010, 1010, 1010, 30, 60]

and the compliances in each direction were

κ
�

= [κ′θx
, κ′θy

, κ′θz
, κ′x, κ

′

y, κ
′

z]

= [1.2807, 0.0628078, 0, 0.00276278, 0, 0.00003838]

the compliance sum is 1.3463. Hence, after optimization, the total compliance is im-

proved 4.36 times.
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Figure 7.7: The evolution of the performance of the 4-dof mechanism with revolute

actuators.
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7.2.7 Spatial Three-Degree-of-Freedom Mechanism with Pris-

matic Actuators

7.2.7.1 Parameters Selection

The spatial three-degree-of-freedom mechanism with prismatic actuators is shown in

Figure 4.4 and the position of the attachment points both on the base and on the

platform is shown in Figure 4.5. The parameters are

s = [Rp, Rb, z] (7.17)

where Rp is the radius of the platform, Rb is the radius of the base, z is the height of

the platform, and their bounds are set as

Rp ∈ [5, 10] cm,Rb ∈ [12, 14] cm,

z ∈ [66, 70] cm,

7.2.7.2 Results

Here only the case with θ45 = π/2, θ46 = 0 is discussed. Figure 7.8 shows the evolution

of the best individual for 100 generations. After 100 generations, the optimal geometric

and behavior parameters found by the GA are

s = [Rp, Rb, z]

= [10, 12, 70]

and the compliances in each direction are

κ = [κθx
, κθy

, κθz
, κx, κy, κz]

= [6.8355× 10−2, 6.8355× 10−2, 0, 0, 0, 3.4177× 10−4]

the sum of the compliances is 0.137.

The initial geometric and behavior values for this mechanism were given as

s′ = [Rp, Rb, z]

= [6, 15, 68]
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and the compliances in each direction were

κ
�

= [κ′θx
, κ′θy

, κ′θz
, κ′x, κ

′

y, κ
′

z]

= [0.192, 0.192, 0, 0, 0, 3.4566× 10−4]

the compliance sum is 0.3844. Therefore, after optimization, the total compliance is

improved 2.81 times which is a minor gain.
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Figure 7.8: The evolution of the performance of the 3-dof mechanism with prismatic

actuators.

7.2.8 Spatial Three-Degree-of-Freedom Mechanism with Rev-

olute Actuators

7.2.8.1 Parameters Selection

The spatial three-degree-of-freedom mechanism with revolute actuators is shown in

Figure 5.6 and the vertex distributions are the same as in Figure 4.5. The parameters

are

s = [Rp, Rb, l1, l2, z, k2, kb, k41, k42, k43] (7.18)

where Rp is the radius of the platform, Rb is the radius of the base, l1, l2 are the

link length and kb, k2 are the stiffnesses for the 1st and 2nd link of the actuated leg,
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respectively, k41, k42 are the bending stiffnesses of the passive leg along x and y axes,

and k43 is the torsional stiffness of the passive leg, z is the height of the platform, and

their bounds are

Rp ∈ [5, 7] cm,Rb ∈ [14, 16] cm,

l1 ∈ [33, 35] cm, l2 ∈ [45, 47] cm,

z ∈ [66, 70] cm,

k2, kb, k41, k42, k43 ∈ [106, 1010]

7.2.8.2 Results

Here only one case with θ45 = π/2, θ46 = 0 is analyzed. Figure 7.9 shows the evolution of

the best individual for 100 generations. After running the program for 100 generations,

the optimal architectural and behavior parameters can be found as

s = [Rp, Rb, l1, l2, z, k2, kb, k41, k42, k43]

= [7, 16, 33, 45, 69, 1010, 1010, 1010, 1010, 1010]

and the compliances in each direction are

κ = [κθx
, κθy

, κθz
, κx, κy, κz]

= [1.0782× 10−2, 1.0782× 10−2, 0, 0, 0, 2.64× 10−5]

the sum of the compliances is 0.02159.

Before optimization, a series of parameters were guessed as

s′ = [Rp, Rb, l1, l2, z, k2, kb, k41, k42, k43]

= [6, 15, 34, 46, 68, 1010, 1010, 1010, 1010, 1010]

and the compliance in each direction can be computed as

κ
�

= [κ′θx
, κ′θy

, κ′θz
, κ′x, κ

′

y, κ
′

z]

= [2.12264× 10−2, 2.12264× 10−2, 0, 0, 0, 3.82× 10−5]

the compliance sum is 0.04249. Hence, after optimization, the total compliances is

improved 1.97 times.



220

0 10 20 30 40 50 60 70 80 90 100
−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

Generation

F
itt

ne
ss

the average of the population
the best solution            

Figure 7.9: The evolution of the performance of the 3-dof mechanism with revolute

actuators.

7.2.9 The Tricept Machine Tool Family

7.2.9.1 Parameters Selection

The schematic representation of the Tricept machine tool and the geometry of the

joint distribution both on the base and platform are shown in Figures 4.23 and 4.24,

respectively. The vector of optimization variables is therefore

s = [Rp, Rb, z] (7.19)

where Rp is the radius of the platform, Rb is the radius of the base, z is the height of

the platform, and their bounds are specified based on the dimensions of the Tricept

machine tool

Rp ∈ [200, 300] mm,Rb ∈ [400, 600] mm,

z ∈ [900, 1500] mm,

7.2.9.2 Results

The case with θ41 = π/2, θ42 = 0 is discussed here. Figure 7.10 shows the evolution

of the best individual for 100 generations. The optimal architectural and behavior
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parameters found by the GA after 100 generations are

s = [Rp, Rb, z] = [300, 600, 900]

and the compliances in each direction are

κ = [κθx
, κθy

, κθz
, κx, κy, κz]

= [2.0576× 10−3, 2.0576× 10−3, 0, 1.667× 10−3, 1.667× 10−3, 3.703× 10−4]

the sum of the compliances is 0.0078189. Before optimization, the dimensions of the

Tricept machine tool provided by Neos Robotics AB were

s′ = [Rp, Rb, z] = [225, 500, 1300]

and the compliances in each direction were

κ′ = [κ′θx
, κ′θy

, κ′θz
, κ′x, κ

′

y, κ
′

z]

= [2.786× 10−3, 2.786× 10−3, 0, 4.708× 10−3, 4.708× 10−3, 3.4825× 10−4]

The sum of the compliances is 0.0153369. Hence, after optimization, the sum of the

compliances is improved by a factor of 1.96 just by slightly enlarging the radius of the

base and platform.
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Figure 7.10: The evolution of the performance of the Tricept machine tool.
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7.3 Conclusions

The kinetostatic model with its underlying design principles has been made more ex-

plicit through the implementation of optimization based on genetic algorithms in this

chapter. A very remarkable implementation is the optimization of the Tricept machine

tool family. After slightly adjusting the radius of the platform and the base, the total

global stiffness can be improved 1.96 times. For the other mechanisms, the global stiff-

ness are all obviously improved (normally 1.01 to 5.4 times). The kinetostatic model

analyzed and obtained in previous chapters is employed for optimal structure design.

From the results which have been achieved, it can be seen that the kinetostatic model

can be applied for flexible mechanism analysis and global stiffness analysis, it can be

further used as an optimization tool for parallel mechanisms. Moreover, the versatility

of genetic algorithm compare to the conventional optimization methods is shown in this

chapter, it is quite appropriate for dealing with multi-parameters problem.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

Design of a parallel mechanism for machine tools which can achieve the desired rigidity

and precision is a difficulty issue. This issue can now be addressed using a kineto-

static modeling method. The research described in this thesis is aimed at developing

a kinetostatic model which can be used for kinematic analysis, design and optimiza-

tion of parallel kinematic machines. Both a theoretical study and implementation have

been carried out. The theoretical study has resulted in new observations and design

guidelines for parallel kinematic machines, which have been verified through the imple-

mentation of the kinetostatic modeling.

This thesis also demonstrates how the kinetostatic modeling can be applied in the

design and optimization of the parallel kinematic machines with the consideration of

223



224

the characteristics of joint and link flexibilities and shows the idea that flexible links

have significant effects on the parallel kinematic machines’ stiffness and accuracy. Link

flexibility cannot be neglected in machine tool design.

In this last chapter, a number of conclusions already drawn in the preceding chapters

are now highlighted again with some concluding remarks.

1. Degree-of-freedom issue for PKMs

Most of the work in the literature proposes a general architecture based on the

concept of traditional “Gough-Stewart” mechanism type. This suggests that their

parallel kinematic mechanisms have six degrees of freedom. However, in many

applications such as axisymmetric machining — which requires at most five dofs

— six degrees of freedom are not required. Moreover, most machining operations

can be performed with 3 or 4 dofs. Hence, there is a need for efficient parallel

mechanisms with less than six degrees of freedom. By contrast, the new types of

PKMs described in Chapters 4 and 5 of this thesis represent a different view on

a proper kinematic architecture design of PKMs. The mechanisms introduced in

this thesis are a series of n-dof parallel mechanisms which consist of n identical

actuated legs with six degrees of freedom and one passive leg with n degrees of

freedom connecting the platform and the base. The degrees of freedom of the

mechanism are dependent on the passive leg’s degree of freedom. The purpose

of using the passive leg is to limit the degrees of freedom to the desired ones.

Since the external loads on the platform will induce bending and/or torsion in

the passive leg, its mechanical design is a very important issue which can be

addressed using the kinetostatic model proposed in this thesis.

2. The most promising architectures

A topological study of different combinations of kinematic chain structures which

correspond to the requirements — provide 5 degrees of freedom between the tool

and the workpiece — is completed and the most promising kinematic structures

are generated based on the Chebychev-Grübler-Kutzbach criterion and some other

design criteria.

3. The general stiffness model
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The general stiffness model for fully-parallel mechanisms with various actuator

stiffnesses is established. The reliability of the general stiffness model is verified

both in numerical method and in the software Pro/Engineer with the examples

of a planar 2-dof parallel mechanisms with revolute actuators and a planar 3-dof

parallel mechanism with prismatic actuators.

4. Lumped modeling

The sensitivity analysis — the errors on the platform positioning in the presence

of the manufacturing tolerances, joint clearances and leg flexibility — has received

less attention in the past. However, these influences could not be neglected in

practice, and it has been shown that if the mechanism flexibility is considered,

then the performances may become very poor and the main feature of the mech-

anism vanishes. Also there may exist singular mechanism configurations which

must be avoided during motion, but that cannot be found from the mobility

analysis of the rigid mechanism model. Therefore, a new method to analyze the

effect of the link and joint flexibility on the mechanism’s stiffness and precision is

provided in this thesis. With this model, a significant effect on the mechanism’s

precision has been demonstrated. The influence of the structure parameters in-

cluding material properties on the system behavior is discussed. The relationships

between the mechanism stiffness and the flexibility of the links are derived and

the necessity of taking the links’ flexibility into account is demonstrated.

5. Kinetostatic analysis of new types of parallel mechanisms

Several new types of parallel mechanisms with prismatic/revolute actuators whose

degrees of freedom are dependent on a constraining passive leg connecting the base

and the platform are introduced. A general lumped kinetostatic model is pro-

posed in order to account for joint and link compliances and for the analysis of

the structural rigidity and accuracy of spatial parallel mechanisms which can be

used for machine tool design. One can improve the rigidity of parallel kinematic

mechanisms through optimization of the link rigidities and geometric dimensions

to reach the maximized global stiffness and precision. Examples for 3-dof, 4-dof,

5-dof, 6-dof and the Tricept machine tool families are given in detail to illustrate

the results. The discussions are given to account for the influence of the structure
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parameters including material properties on the system behavior, and the behav-

ior vs structural parameters. Stiffness/Compliance mappings are obtained as a

visualization tool to aid in the use of the kinetostatic model. From plots, one can

determine which regions of the workspace will satisfy some stiffness/compliance

criteria.

6. Establishment of the kinetostatic modeling

While establishing the kinetostatic model of the parallel kinematic mechanisms,

two methods are applied, one is the principle of virtual work while the other is

based on the theorem of velocity compatibility, both methods are verified.

7. Optimization issue

Genetic algorithms have the advantages of robustness and good convergence prop-

erties. Since there are many optimization parameters and complex matrix com-

putations, it is very difficulty to write the analytical expressions for each stiffness

element. Hence, GAs are selected to fulfill the optimization issue. Interesting op-

timization results for the Tricept machine tool family are obtained: after slightly

adjusting the radius of platform and base, the total global stiffness can be im-

proved 1.96 times. The kinetostatic model analyzed and obtained in previous

chapters is employed for optimum structure design. From the results which have

been achieved, it can be seen that kinetostatic model can be applied for flexible

mechanism analysis and global stiffness analysis. It can be further used as an

optimization design tool for parallel manipulators.

Although the procedures are developed in particular for the new type of spatial

parallel mechanisms proposed in this thesis, the approaches can be extended to all

kinds of mechanisms.

8.2 Future Work

The work presented in this thesis was primarily concerned with kinematic structure

design, analysis, optimization and establishment of the general kinetostatic model for

parallel kinematic machines. No consideration was given to PKMs’ dynamic behavior,
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simulation and control issues. These are by no means neglected research topics. In

order to make the parallel kinematic mechanisms into the parallel kinematic machines

in reality, the future work is recommended.

1. A natural extension of this thesis work is the implementation of dynamic anal-

ysis, simulation, workspace volume optimization and control of PKMs with the

consideration of flexible links. Such that an integrated design environment for

configuration, design and analysis of parallel kinematic machines can be built. It

can provide a concurrent synthesis of the physical machine prototype, the virtual

machine (with virtual reality) and control algorithms. The kinetostatic analysis

and optimization conducted in this thesis can be the basis for such an integration.

The final results can further be evaluated by experimentation.

2. It is noted that the advantages of high speed machining of PKMs will be lost if

the machine is not fully integrated into the overall manufacturing system. The

integrated flexible infrastructure consists of each of the manufacturing support

functions, i.e. CAD/CAM, inspection, fixturing, etc. Here, the simulation can be

used to bridge the gaps between CAD, CAM and machine tool.

3. The reconfigurability (modularity) of PKMs is worth further research. Compo-

nents of PKMs are simple and consist of standard units such as joints and links,

which can be efficiently configured into the most suitable leg geometry for desired

tasks. The modularity design of PKMs can lead to product sustainability.
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Figure A.1: Compliance mesh maps for the spatial 3-dof parallel mechanism with

prismatic actuators.
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Figure A.2: Compliance mesh maps for the spatial 4-dof parallel mechanism with

prismatic actuators.
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Figure A.3: Compliance mesh maps for the spatial 5-dof parallel mechanism with

prismatic actuators.
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Figure A.4: Compliance mesh maps for the Tricept machine tool.
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Figure A.5: Compliance mesh maps for the spatial 3-dof parallel mechanism with

revolute actuators.
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Figure A.6: Compliance mesh maps for the spatial 4-dof parallel mechanism with

revolute actuators.
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Figure A.7: Compliance mesh maps for the spatial 5-dof parallel mechanism with

revolute actuators.
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Figure A.8: Stiffness mesh maps for the spatial 6-dof fully-parallel mechanism with

revolute actuators (3 legs). (φ = θ = 0, ψ = −π/6, z = 22 cnm)
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Figure A.9: Stiffness mesh maps for the spatial 6-dof fully-parallel mechanism with

revolute actuators (3 legs). (φ = θ = ψ = 0, z = 22 cm)
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Figure A.10: Stiffness mesh maps for the spatial 6-dof fully-parallel mechanism with

prismatic actuators (6 legs).
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Figure A.11: Stiffness mesh maps for the spatial 6-dof fully-parallel mechanism with

prismatic actuators (6 legs).



251

Stiffness in X

5

10

15

X

5

10

15

Y

12000

12200

12400

12600

K-x

5

10

15

X

(a) Stiffness in x

Stiffness in Y

5

10

15

X

5

10

15

Y

12000

12200

12400

12600

K-y

5

10

15

X

(b) Stiffness in y

Stiffness in Z

5

10

15

X

5

10

15

Y

8480

8485

8490

8495

K-z

5

10

15

X

(c) Stiffness in z

Stiffness in thetaX

5

10

15

X

5

10

15

Y

15.2

15.25

15.3

15.35

K-tx

5

10

15

X

(d) Stiffness in θx

Stiffness in thetaY

5

10

15

X

5

10

15

Y

15.2

15.25

15.3

15.35

15.4

K-ty

5

10

15

X

(e) Stiffness in θy

Stiffness in thetaZ

5

10

15

X

5

10

15

Y

74.4

74.45

74.5

74.55

K-tz

5

10

15

X

(f) Stiffness in θz

Figure A.12: Stiffness mesh maps for the spatial 6-dof fully-parallel mechanism with

revolute actuators (6 legs).



Appendix B

Inverse Kinematics of the Passive

Constraining Leg

B.1 Spatial 4-dof Parallel Mechanism with Prismatic

Actuators

Figure 4.13 illustrates the configuration of the passive leg with rigid joints. Point B ′

5

is defined as the center of the Hooke joint connecting the two moving links of the

passive leg. Moreover, the Cartesian coordinates of the points B ′

i expressed in the fixed

coordinate frame are represented as (b′5x, b
′

5y, b
′

5z), the coordinates of the point B ′

5 in

the fixed frame are represented by vector b′

5. Since the axis of the fixed revolute joint

of the 5th leg is assumed to be parallel to the xy plane of the fixed coordinate frame,
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one can write

b′5x = l51 cos θ51 (B.1)

b′5y = 0 (B.2)

b′5z = l51 sin θ51 (B.3)

where θ51 is the joint variable – rotation angle around the fixed revolute joint – associ-

ated with 5th leg. Moreover, l51 is the length of the first link of the 5th leg. From the

configuration of Figure 4.13, we can write the relationships of the parameters as

(b′5x − x)2 + (b′5y − y)2 + (b′5z − z)2 = l252 (B.4)

where x, y, z are the coordinates of point P5 and l52 is the length of the second link of

the passive leg.

Substituting eqs. (B.1) – (B.3) into eq. (B.4), one has

E cos θ51 + F sin θ51 = G (B.5)

where

E = 2l51x (B.6)

F = 2l51z (B.7)

G = x2 + y2 + z2 + l251 − l252 (B.8)

therefore θ51 can be obtained as

sin θ51 =
FG+KE

√
H

E2 + F 2
(B.9)

cos θ51 =
EG−KF

√
H

E2 + F 2
(B.10)

where K = ±1 is the branch index of the mechanism associated with the configuration

of the passive leg and

H = E2 + F 2 −G2 (B.11)

hence the solution of the inverse kinematic problem is then completed by the expression

θ51 = atan2[sin θ51, cos θ51] (B.12)

from Figure 4.13, one can also obtain the θ52 simply using Cosine function.
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B.2 Spatial 5-dof Parallel Mechanism with Prismatic

Actuators

Figure 4.18 illustrates the configuration of the passive leg. Point B ′

6 is defined as the

center of the Hooke joint connecting the two moving links of the passive leg. Moreover,

the Cartesian coordinates of the points B ′

i expressed in the fixed coordinate frame are

represented as (b′6x, b
′

6y, b
′

6z), the coordinates of the point B ′

6 in the fixed frame are

represented by vector b′

6. Since the axis of the fixed revolute joint of the passive leg is

assumed to be parallel to the xy plane of the fixed coordinate frame, we can write

b′6x = l61 cos θ61 (B.13)

b′6y = 0 (B.14)

b′6z = l61 sin θ61 (B.15)

where θ61 is the joint variable – rotation angle around the fixed revolute joint – asso-

ciated with passive leg. Moreover, l61 is the length of the first link of the passive leg.

From the configuration of Figure 4.18, we can write the relationships of the parameters

as

(b′6x − x)2 + (b′6y − y)2 + (b′6z − z)2 = l262 (B.16)

where x, y, z are the coordinates of point P6 and l62 is the length of the second link of

the 6th leg.

Substituting eqs. (B.13) – (B.15) into eq. (B.16), we have

E cos θ61 + F sin θ61 = G (B.17)

where

E = 2l61x (B.18)

F = 2l61z (B.19)

G = x2 + y2 + z2 + l261 − l262 (B.20)

and we also can find the θ61 as

sin θ61 =
FG+KE

√
H

E2 + F 2
(B.21)
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cos θ61 =
EG−KF

√
H

E2 + F 2
(B.22)

where K = ±1 is the branch index of the mechanism associated with the configuration

of the 6th leg and

H = E2 + F 2 −G2 (B.23)

hence the solution of the inverse kinematic problem is then completed by the perform

θ61 = atan2[sin θ61, cos θ61] (B.24)

From Figure 4.18, we can also obtain the θ62 and θ63, we can write point P in

Frame2 as

x62 = l62 cos θ63 cos θ62 (B.25)

y62 = l62 cos θ63 sin θ62 (B.26)

z62 = l62 sin θ63 (B.27)

since we have

PB′ = p− b′

6 (B.28)

and

[P]2 = QT
61Q

T
60[p− b′

6] (B.29)

then combine eqs. (B.25) – (B.27) and (B.29), we can find θ62 and θ63 easily.



Appendix C

Expressions of e and r for the

Compliant Model

C.1 Spatial Three Degrees of Freedom Mechanisms

e4i = Q40 · · ·Q4(i−1)e40, i = 1, . . . , 6 (C.1)

and the position vectors are expressed as follows

r4i =

6
∑

j=i

Q40 · · ·Q4(i−1)a4i, i = 1, . . . , 6 (C.2)
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C.2 Spatial Four Degrees of Freedom Mechanisms

e5i = Q50 · · ·Q5(i−1)e50, i = 1, . . . , 6 (C.3)

and the position vectors are expressed as follows

r5i =

6
∑

j=i

Q50 · · ·Q5(i−1)a5i, i = 1, . . . , 6 (C.4)

C.3 Spatial Five Degrees of Freedom Mechanisms

e6i = Q60 · · ·Q6(i−1)e60, i = 1, . . . , 6 (C.5)

and the position vectors are expressed as follows

r6i =

6
∑

j=i

Q60 · · ·Q6(i−1)a6i, i = 1, . . . , 6 (C.6)


