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Short Abstract

The kinematic analysis, the dynamic analysis and the static balancing of planar and
spatial parallel mechanisms or manipulators with revolute actuators are presented in

this thesis.

First, the inverse kinematics of each mechanism is computed and a new general
algorithm is proposed to locate the boundaries of the workspace of the mechanism.
Two approaches are used to derive the velocity equations of the mechanisms. One of
them is a new approach. The singularity loci is then determined using the velocity
equations. The kinematic optimization of mechanisms with reduced degree of freedom

is also discussed.

A new approach based on the principle of virtual work for the dynamic analysis
of parallel mechanisms or manipulators is proposed in the thesis. The Newton-Euler
approach is also used for the dynamic analysis of parallel mechanisms or manipulators.

Each approach has its own advantages and is suitable for different usage.

Finally, the static balancing of parallel mechanisms or manipulators is studied in this

thesis. Two approaches are used to derive the balancing conditions of the mechanisms.

Jiegao Wang Clement M. Gosselin



Abstract

This thesis deals with the kinematic analysis, dynamic analysis and static balancing of

planar and spatial parallel mechanisms or manipulators with revolute actuators.

The inverse kinematics of each mechanism is first computed and a new general al-
gorithm is used to locate the boundaries of the workspace of the mechanism. Two
approaches, namely, the algebraic formulation and the vector formulation are used to
derive the velocity equations of the mechanisms. The singularity loci is then determined
using the velocity equations. The approach of vector formulation is a new approach
and leads to simpler expressions for the determination of the singularity loci . Kine-
matic optimization of mechanisms with reduced degrees of freedom is also discussed in
the thesis. The generalized reduced gradient method of optimization is used to find
the optimal solutions of the link parameters which enable the dependent Cartesian
coordinates to follow an ideal trajectory as closely as possible when the independent

Cartesian coordinates pass through some prescribed points.

A new approach for the dynamic analysis of parallel mechanisms or manipulators
is proposed in the thesis. This approach is based on the principle of virtual work. As
compared to the conventional approach of Newton-Euler, the new approach will lead
to a faster algorithm for derivation of the generalized forces, which is useful for the
control of a mechanism or manipulator. The Newton-Euler approach is also used for

dynamic analysis of parallel mechanisms or manipulators. Since the constraint forces

i



between the links are computed in the latter approach, it is useful for the design and

simulation of mechanisms or manipulators.

Finally, the static balancing of parallel mechanisms or manipulators is studied in this
thesis. The conditions of static balancing of the parallel mechanisms or manipulators
are derived using two approaches, namely, using counterweights and using springs.
The two approaches each have their advantages and drawbacks and the approach to
be used depends on the application of the balanced mechanism. Static balancing of
parallel mechanisms or manipulators is useful since it leads to improvement of the

control accuracy and energy efficiency of the mechanisms or manipulators.

Jiegao Wang Clement M. Gosselin
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Résumeé

Cette these porte sur I'analyse cinématique et dynamique ainsi que sur I’équilibrage
statique des mécanismes et manipulateurs paralleles plans et spatiaux avec actionneurs

rotoides.

Le probleme géométrique inverse de chaque mécanisme est d’abord résolu et un
nouvel algorithme général est proposé pour la détermination des frontieres de 1’espace
atteignable. Deux approches, soit la formulation algébrique et la formulation vecto-
rielle, sont utilisées pour obtenir les équations de vitesse des mécanismes. Le lieu des
configurations singulieres est ensuite déterminé en utilisant les équations de vitesse. La
formulation vectorielle est une nouvelle approche qui conduit a des expressions plus sim-
ples pour les lieux de singularité. L’optimisation cinématique de mécanismes a degré de
liberté réduit est aussi traitée dans cette these. La méthode du gradient généralisé est
utilisée afin de trouver des valeurs optimales des parametres géométriques permettant
aux coordonnées cartésiennes dépendantes de suivre une trajectoire prédéterminée en

fonction des coordonnées cartésiennes dépendantes en certains points prescrits.

Une nouvelle approche pour ’analyse dynamique des mécanismes et manipulateurs
paralleles est aussi proposée dans cette these. Cette approche est basée sur le principe
du travail virtuel. En comparaison avec la formulation traditionnelle de Newton-Euler,
la méthode proposée ici conduit a un algorithme plus rapide pour le calcul des efforts

articulaires, ce qui est intéressant pour la commande. Les équations de Newton-Euler
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sont également utilisées pour fin de comparaison. Cette dernieére approche est aussi

utile dans un contexte de design puisqu’elle permet de déterminer les efforts internes.

Finalement, 1’équilibrage statique des mécanismes et manipulateurs paralleles est
étudié dans cette these. Les conditions pour ’équilibrage statique de mécanismes et ma-
nipulateurs paralléles sont obtenues grace a deux approches distinctes soit: 1'utilisation
de contrepoids et l'utilisation de ressorts. Chacune de ces approches a ses propres
avantages et inconvénients et 1’approche a privilégier dépend de 'application con-
sidérée. L’équilibrage statique des mécanismes ou manipulateurs est utile puisqu’il

permet d’améliorer la qualité de la commande et 'efficacité énergétique.

Jiegao Wang Clement M. Gosselin
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Chapter 1

Introduction

According to their geometric architecture, robot manipulators are classified as serial
robot manipulators and parallel robot manipulators. Each type of robotic manipulator
has its advantages and drawbacks and is suitable for different applications. Figure 1.1
represents simple planar two-degree-of-freedom serial and parallel manipulators. The
serial manipulator (Figure 1.1(a)) consists of two moving links and two revolute joints.
Two revolute actuators are respectively mounted at joint O and O; with joint variables
f, and 6. Point P is the position of the end-effector of the manipulator. The parallel
manipulator represented in Figure 1.1(b) which will be studied in this thesis consists of
two kinematic chains connecting the fixed base to the end-effector of the manipulator;
the two kinematic chains are OOy P and 010304 P respectively. Two revolute actuators
are mounted at joints O and O with joint variables #; and 65, while joints O, O3 and
O, are passive revolute joints. Similarly, point P is the position of the end-effector of

the manipulator.
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(a) Planar two-dof serial manipulator. (b) Planar two-dof parallel manipulator.

Figure 1.1: Two different types of robotic manipulators.

In general, an n-degree-of-freedom parallel manipulator is one in which the end-
effector is connected to the base with n distinct kinematic chains and in which one

joint of each of these chains is actuated.

Comparing the two types of robot manipulators, one can realize that serial robot
manipulators have a simpler structure, wider reachable area and relatively simpler
kinematics. These advantages led to an extensive use of this type of manipulator in
the industry, for instance, for assembling, welding, painting, etc. However, since the
serial structure leads to low rigidity, this type of manipulator has smaller load capacity,
lacks stiffness and cannot reach high dynamic performances. Therefore, they are not

suitable for some applications where large load or high speed and accuracy are needed.

As opposed to serial robot manipulators, parallel robot manipulators consist of sev-
eral kinematic chains connecting the fixed base to the end-effector, which leads to sev-
eral advantages. For example, the weight of the manipulator is reduced and the rigidity
of the manipulator is increased. Therefore, the manipulators have large load ability,
good stiffness and high dynamic performances and are suitable for applications requir-
ing large load ability or high speed and accuracy. However, complex parallel structures
also lead to some drawbacks such as a smaller workspace and a complex mathemat-

ical model as compared to the serial robot manipulators. Two typical examples of
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(a) Stewart platform. (b) Agile-eye.
Figure 1.2: Parallel mechanisms used for robot manipulators.

the application of parallel manipulators are the spatial six-degree-of-freedom parallel
mechanism with prismatic actuators [48] (Gough-Stewart platform Figure 1.2(a)) and
the spherical three-degree-of-freedom parallel mechanism with revolute actuators [17]
(agile-eye Figure 1.2(b)). The former is used for flight simulators and the latter is used
for the orientation of a camera at high speed. They respectively illustrate the cases of

large load and high speed and accuracy.

Although parallel manipulators have received more and more attention over the
last two decades (see for instance, [3], [4], [10], [11], [13], [14], [15] and [17], and many
more), their applications have been limited to only a few areas so far. The complex
mathematical models of parallel robot manipulators is the main factor to hinder their
applications. Therefore, the development of efficient approaches for the kinematic and
dynamic analysis is extremely important for the study and the application of the mech-

anisms.

It can be noticed in the literature that parallel mechanisms or manipulators with
prismatic actuators have received more attention than those with revolute actuators.
Indeed, parallel mechanisms or manipulators with prismatic actuators have a simpler
architecture and kinematic model than those with revolute actuators. For example, the
singularity loci of planar three-degree-of-freedom parallel manipulators with prismatic

actuators is quadratic [47]. However, for the planar three-degree-of-freedom parallel



manipulator with revolute actuators, the curves representing the singularity loci in
the Cartesian space are of a very high degree ([19] and [20]). However, as will be
seen in the thesis, parallel mechanisms or manipulators with revolute actuators can be
statically balanced. A statically balanced parallel manipulator could be easier to control
and leads to higher energy efficiency. Additionally, since the architecture is similar,
the approaches used in the kinematic and dynamic analysis of parallel mechanisms or
manipulators with revolute actuators can be directly applied to parallel mechanisms
or manipulators with prismatic actuators [58]. Therefore, in this thesis, only parallel
mechanisms or manipulators with revolute actuators are discussed, which does not limit

the generality of the study of parallel mechanisms or manipulators.

Depending on the applications, the parallel devices studied here may be called
“mechanisms” or “manipulators”; both terms can be found in the literature. In general,
the term “manipulator” is used in robotic applications while the more general term
“mechanism” is used in all other applications. In this thesis, both terms will be used
and will be considered equivalent since the present work is generic and is not application

dependent.

In Chapter 2, the kinematic analysis of parallel mechanisms or manipulators is
presented. Several important issues are addressed, namely, inverse kinematics and
workspace analysis, the velocity equations and singularity loci and the kinematic opti-

mization of mechanisms with reduced degrees of freedom.

The determination of the workspace of parallel manipulators has been studied by
many authors, see for instance, [1], [2], [4], [11], [13], [37], [38], [40] and [65]. Most
of the approaches proposed by these authors for the determination of the workspace
mainly use analytical methods to find the explicit expressions of the boundary of the
workspace. For some simple planar mechanisms or for the spatial six-dof (where “dof”
stands for “degree of freedom”) parallel mechanism with prismatic actuators [13], the
boundaries of the workspace consist of low degree curves or surfaces. It is possible to
find an explicit expression which will lead to a faster algorithm for locating the limits
of the workspace. However, for some complex multi-degree-of-freedom spatial parallel
mechanisms, especially, parallel mechanisms or manipulators with revolute actuators,
it is very difficult or impossible to find explicit expressions of the boundary of the

workspace since the curves or surfaces of the boundary are of a very high degree.



In Chapter 2, a new numerical algorithm for the determination of the workspace is
proposed. The compact expressions corresponding to the workspace boundaries of
parallel mechanisms or manipulators are first obtained from the analysis of the solution
of the inverse kinematics. Then, a numerical procedure is used to locate the curve of
the boundary of the workspace. Although this algorithm is much slower than those
developed by the authors mentioned above, it is a general algorithm and it can be

applied to any type of planar or spatial parallel manipulator.

Kinematic singularity is an important issue. When a mechanism or manipulator is
in a singular configuration, the output link or the end-effector gains one or more degrees
of freedom and the input links or the actuators lose their independence which means
that the manipulator is uncontrollable. Such singular configurations must be avoided.
Singularity loci consist of the sets of reachable end-effector poses corresponding to the
singular configurations of the mechanism or manipulator. The singularity problem of
parallel manipulators has been studied by some authors. The singularity of single-
loop kinematic chains is analyzed in [24] and [50]. In [3], [30], [39] and [55] various
criteria and classifications for the singularities of parallel mechanisms were analyzed and
presented. However, these studies do not provide a systematic approach to determine

the singularity loci.

Gosselin and Angeles in [16] used the Jacobian matrices of the input-output ve-
locity equations of parallel manipulators to classify the different types of singularities.
Three general types of singularities which can occur in parallel manipulators have been
identified. This classification has been further refined in [66] where several sub-classes
of singularities are defined. The approach presented in [16] allows the determination
of singularity loci using velocity equations of manipulators and will therefore be used
in the thesis. According to this singularity classification, the first type of singularity
corresponds to the boundary of the workspace, which has been obtained using the new
algorithm mentioned above and the third type of singularity can be avoided by proper
arrangement, of the architecture of the manipulator. Therefore, the second type of sin-
gularity loci is the major singularity whose loci must be determined using the Jacobian
matrix of the velocity equations. In other words, the velocity equations are critical
in the determination of the singularities of type two. Usually, the velocity equations

are obtained through differentiation of the kinematic equations of manipulators. This



approach leads to a direct relationship between the joint and Cartesian velocities and
will be referred to here as the algebraic formulation. It will be used for the derivation of
the velocity equations. However, at the same time, a new approach for the derivation
of the velocity equations of complex manipulators is introduced and will be referred to

here as the vector formulation.

The new approach of derivation of the velocity equations consists in writing the ve-
locity equations using components of angular velocities of the links to form the Carte-
sian velocity vector and relative velocities of some chosen points of the links to form
the joint coordinate vector ([58], [60] and [61]). This leads to a redundant formulation,
i.e., one in which the number of Cartesian or joint velocity components is larger than
the degree of freedom of the mechanism. However, the Jacobian matrices obtained are
rather simple and sparse and can be written in terms of the components of vectors asso-
ciated with the geometry of the mechanism. Although the dimensions of the Jacobian
matrices obtained with this method are larger than with the algebraic approach, the
expression for the determinant — which is used for the determination of the singularity
loci — is in general simpler, which leads to faster algorithms for the computation of the
loci. On the other hand, for purposes of control of a mechanism, the algebraic approach

leads to a more direct relationship between the joint and Cartesian velocities.

Finally, it is pointed out that the vector formulation characterizes the local behavior
of the mechanism exactly as the algebraic formulation does and hence, singularity loci

obtained with both approaches will lead to identical results.

For mechanisms with reduced degrees of freedom, such as planar two-dof as well
as spatial four- and five-dof parallel mechanisms, since some Cartesian coordinates
cannot be prescribed—they are dependent on the prescribed independent Cartesian
coordinates—the kinematic optimization of the mechanisms is introduced in Chapter
2. The optimal synthesis of planar linkages has been addressed by many authors (for in-
stance, [12], [32] and many others). The synthesis of multi-loop spatial mechanisms has
also been studied in [44] using the Generalized Reduced Gradient method of optimiza-
tion. However, the optimal synthesis of the trajectories of the dependent Cartesian
coordinates of spatial parallel mechanisms or manipulators with reduced degrees of
freedom has received less or no attention. The optimum design of these mechanisms

is important for their practical applications. In Chapter 2, the optimization of planar



two-dof as well as spatial four- and five-dof parallel mechanisms is presented. The

Generalized Reduced Gradient method of optimization is used.

In a context of design and control, the dynamic analysis of parallel manipulators is
an important issue [5], [9], [43], [14], [17] and [34]. Indeed, it provides information on
the internal constraint forces and moments on the links as well as on input forces or

torques at the actuators for a specified trajectory.

The Newton-Euler equations of motion have been used by several authors for the
dynamic analysis of spatial parallel manipulators, for instance, in [10], [14] and [49].
In this approach the links constituting the manipulator are isolated and the Newton-
Euler equations are written for each link. Then, all interaction forces and moments
between the links are obtained. In [36], the dynamic analysis of a three-degree-of-
freedom parallel manipulator using a Lagrangian approach is presented. However,
because of the complexity of the kinematic model of the spatial parallel manipulator,
some assumptions have to be made to simplify the expressions of the kinetic energy and
potential energy. Therefore, this approach is not general and efficient for the dynamic

analysis of parallel mechanisms or manipulators.

In Chapter 3, the dynamic analysis of planar and spatial parallel mechanisms or
manipulators with revolute actuators is performed. Two different approaches are used.
The first approach is based on the principle of virtual work. This is a new approach
which is applied to parallel manipulators for the first time [59]. In this approach the
inertial forces and moments are determined using the linear and angular accelerations.
Then, the equilibrium of the whole manipulator is considered and the principle of
virtual work is applied to derive the input forces or torques. Since constraint forces
and moments do not need to be computed, this approach leads to faster computational
algorithms, which is an important advantage for the purposes of control of a manipula-
tor. The other approach is based on the Newton-Euler formulation mentioned above. It
is useful for the purposes of design. However, the computational algorithms are slower
than with the new approach. Therefore, the two approaches have their own advantages

and drawbacks and each of them is suitable for different applications.

The balancing of mechanisms has been an important research topic for several

decades (see for instance [35] for a literature review). A balanced mechanism leads



to better dynamic characteristics and less vibrations caused by motion. Static and
dynamic balancing of planar linkages have been studied extensively in the literature
(see for instance [6], [23], [51], [52] and [64]). Mechanisms are said to be force-balanced
when the total force applied by the mechanism on the fixed base is constant for any
motion of the mechanism. In other words, a mechanism is force-balanced when its
global center of mass remains fixed, for any arbitrary motion of the mechanism. This
condition is very important in machinery since unbalanced forces on the base will lead
to vibrations, wear and other undesirable side effects. For robotic manipulators or
motion simulation devices, however, the forces on the base are usually not critical and
designers are mostly concerned with the torques (or forces) which are required at the
actuators to maintain the manipulator or mechanism in static equilibrium. Hence, in
this context, manipulators or mechanisms are said to be statically balanced, when the
weight of the links does not produce any torque (or force) at the actuators under static
conditions, for any configuration of the manipulator or mechanism. This condition
is also referred to as gravity compensation. Gravity-compensated serial manipulators
have been designed in [26], [42], [53], [56] and [57] using counterweights, springs and
sometimes cams and/or pulleys. A hybrid direct-drive gravity-compensated manipula-
tor has also been developed in [31]. Moreover, a general approach for the equilibrium
of planar linkages using springs has been presented in [53]. The balancing of spatial

mechanisms has also been studied, for instance in [7] and [57].

However, the static balancing of spatial multi-degree-of-freedom parallel manipu-
lators or mechanisms has received very little attention. Since spatial parallel mani-
pulators find more and more applications in robotics and flight simulation, the static
balancing of spatial parallel manipulators becomes an important issue. As mentioned
above, a statically balanced parallel manipulator is one in which the actuators do not
contribute to supporting the weight of the moving links, for all configurations. Hence,
the actuators are used only to impart accelerations to the moving links, which leads to
a reduction of the size and power of the actuators and results in the improvement of
the accuracy of the control. In flight simulation, for instance, since the payload is very
large (usually in the order of tons) and the motion of the platform of the mechanism is
rather slow, the forces or torques exerted at the actuated joints are mainly due to the
weight of the platform. Hence, if the mechanism is statically balanced, the actuating

forces or torques will be greatly reduced, which will result in significant improvements



of the control and energy efficiency.

In Chapter 4, the static balancing of planar and spatial parallel mechanisms or
manipulators with revolute joints is addressed. Two approaches of static balancing are
presented, namely, i) static balancing using counterweights and i7) using springs ([21]
and [62]). When the mechanism is balanced using counterweights, a mechanism with a
fixed global center of mass is obtained. In other words, the static balancing is achieved
in any direction of the Cartesian space of the mechanism. This property is useful for
applications in which the mechanism is needed to be statically balanced in all directions
(e.g. if the mechanism is to be installed in an arbitrary direction with respect to the
gravity acceleration vector). However, for some parallel mechanisms, static balancing
with counterweights is difficult to realize. For example, in flight simulators, since the
mass of the platform is very large, the counterweights required would in general be too
large to be practical. However, springs can be used in such instances. When springs —
or other elastic elements — are used, the total potential energy of the manipulator —
gravitational and elastic — can be kept constant and the weight of the whole manipula-
tor can be balanced with a much smaller total mass than when using counterweights, as
pointed out in [53]. However, a mechanism which is statically balanced using springs
will be statically balanced for only one direction of the gravity vector, which may
be unsuitable for some applications. Therefore, both methodologies are discussed in

Chapter 4 since they each have their own merit.



Chapter 2

Kinematic analysis

Kinematic modeling is essential for the analysis and design of a parallel mechanism.
Usually, the kinematic analysis consists of forward kinematics, inverse kinematics, de-
termination of the workspace and singularity analysis. Unlike serial robotic manipu-
lators, the forward kinematic analysis of parallel manipulators is more complex than
its inverse kinematic analysis. For instance, for the spatial six-degree-of-freedom par-
allel manipulator with prismatic actuators (the Gough-Stewart platform) the inverse
kinematic analysis is very simple while the forward kinematic analysis is extremely dif-
ficult and only numerical solutions can be obtained. Fortunately, the solution of the
forward kinematics of a parallel manipulator is not necessary for its kinematic design.
Moreover, the forward kinematic analysis of different types of parallel manipulators is
often similar. Therefore, the forward kinematic analysis of parallel mechanisms is not

discussed in this thesis.
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The workspace of a manipulator is defined as the set of Cartesian poses (position
and orientation) that the end-effector of the manipulator can reach. The workspace
determines the volume or hyper-volume in which the manipulator can perform tasks.
Therefore, the determination of the workspace is an important first step for the design
of a manipulator. Moreover, inside the workspace of a manipulator there exist some
positions and orientations in which the end-effector gains or loses one or more degrees
of freedom and therefore the manipulator becomes uncontrollable. These positions
and orientations are called singular configurations and they must be considered in the
design of the manipulator. The singular configurations of parallel manipulators can be
determined using the velocity equations [16]. The determination of the workspace and

the singularity loci will be discussed here.

For mechanisms with reduced degrees of freedom, for instance, the planar two-
degree-of-freedom and spatial four- and five-degree-of-freedom parallel mechanisms,
only a subset of the three Cartesian coordinates z, y and ¢ (for planar parallel mech-
anisms) or of the six Cartesian coordinates z, y, z, ¢, @ and ¢ (for spatial parallel
mechanism) are independent (where ¢,6 and v are 3 Euler angles). If the manipula-
tors’ dependent coordinates are required to follow some desired trajectories as closely
as possible when its independent coordinates pass exactly through the specified trajec-
tories, there exists a kinematic optimization problem which can be solved to obtain a
set of optimal linkage parameters. In this chapter, the optimization problem of planar
two-degree-of-freedom and spatial four- and five-degree-of-freedom parallel mechanisms

is presented in a separate section.

Therefore, the kinematic analysis presented here consists of the inverse kinematics
and workspace analysis, the velocity equations and singularity loci as well as the kine-
matic optimization of mechanisms with reduced degrees of freedom. These topics will

be addressed in the following sections.

2.1 Inverse kinematics and workspace

If x is the Cartesian coordinate vector and @ is the actuated joint coordinate vector,

the inverse kinematic problem can be stated as: given the position and orientation of
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the platform x, find the corresponding actuated joint variables @. Since the trajecto-
ries are usually given in Cartesian space while the actuators are mounted at joints, the
solution of the inverse kinematic problem is necessary for controlling a manipulator.
In this section, the inverse kinematics of the planar two- and three-degree-of-freedom
as well as spatial four-, five- and six-degree-of-freedom parallel mechanisms with rev-
olute actuators is solved. It is the foundation for further analysis and design of the

mechanisms.

Moreover, as mentioned above, the determination of the workspace of a manipulator
is a basic requirement for its kinematic design. Based on the fact that the workspace
of manipulators is related to the solution of the inverse kinematics, a new general
numerical algorithm for the determination of the workspace is proposed. This algorithm
is used to solve high degree nonlinear equations and to plot the resulting curves in
a two-dimensional plane. In the algorithm, the bisection method is combined with
Newton-Raphson’s method to search for the roots of the equations. If it is assumed
that a cross-section of the workspace in the x — y plane is to be found, for given values

of other independent Cartesian coordinates, the procedure can be described as follows:

Step 1: In the x — y plane, divide the z axis and the y axis in m and n sections
respectively. At the same time, compute the values of § at points (z;,y,) (1 =1,2,...,m
and j = 1,2,...,n), where ¢ is an expression arising from the solution of the inverse
kinematic problem and which may be real (when the prescribed Cartesian coordinates
are inside the workspace) or complex (when the prescribed Cartesian coordinates are
outside the workspace). A typical example is the square root of an expression. There-

fore, the boundary of the workspace can be obtained as the locus of points for which
0=0.

Step 2: Check the values of § at points (z;,y;) and (z;,yj+1) (j = 1,2,...,n) and
if one of them is real while the other is not then it means that there is a root in this
interval. Use Newton-Raphson’s method to search for the root of equation § = 0 in the

interval.

Step 3: Repeat step 2 m times, that is, let 7 = 1,2, ..., m. Finally, all the points of

the boundaries of the workspace of the manipulator are obtained.

Step 4: Plot these points in the z — y plane.
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This algorithm is much slower than the algorithm presented in [13]. However, it is
more general and can be applied to any type of manipulator. This algorithm is used
here to plot the boundaries of the workspace of the studied planar and spatial parallel

mechanisms.

2.1.1 Planar parallel manipulators with revolute actuators

Planar two- and three-degree-of-freedom parallel manipulators are represented in Fig-
ures 2.1 and 2.2 respectively. All their joints are of the revolute type. The two-degree-
of-freedom manipulator can be used to position a point on the plane and the Cartesian
coordinates associated with this manipulator are the position coordinates of one point
of the platform, noted (z,y) (Figure 2.1). The three-degree-of-freedom manipulator
can be used to position and orient a body on the plane and hence, in this case the
Cartesian coordinates are the position of one point of the platform, noted (z,y), and
its orientation, given by angle ¢ (Figure 2.2). Vector € represents the actuated joint
coordinates of the planar parallel manipulator and is defined as @ = [0; 6, ... 0, ]T,
where n is the number of degrees of freedom of the manipulator studied. The only ac-
tuated joints are those which are directly connected to the fixed link (see for instance
[16], [46] and [19]).

Figure 2.1: Planar two-degree-of-freedom parallel manipulator.
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Figure 2.2: Planar three-degree-of-freedom parallel manipulator.

2.1.1.1 Planar two-degree-of-freedom manipulator

I) Inverse kinematics

This manipulator, illustrated in Figure 2.1, has four movable links and five revolute
joints (identified as O; to Os). The two links whose length are [; and [, are the input
links and the joints O; and O, are the only actuated joints. The lengths of the other
two links are noted I3 and [, respectively. Moreover, 5 is the distance from joint
Os to point P(z,y). Point P(z,y) is the point to be positioned by the manipulator.
The origin of the fixed Cartesian coordinate system is located on joint O;. Moreover,
(o1, Yo1) and (Zog, Yo2) are the coordinates of points O; and O, respectively, and one

has Zol = Yo1 = Yo2 = 0.
From the geometry of the linkage one can write
(295 — lizacos og)? + (Yoi — lLiyasinay)? =12, i=1,2 (2.1)

where the intermediate variables xo; and yo; (i = 1,2) are defined as

To1 = T — Tol (2.2)
Yo = Y~ Yo (2.3)
Tog = T — l5C080 — Ty (2.4)
Yoo = Y—Issinar — Yoo (2.5)
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and where angles a;; and o represent respectively the orientation of the links of length
l3 and [, with respect to the fixed link.

From eq.(2.1), one obtains

bici + Kiai/5;

sin oy P i=1,2 (2.6)

(2 2
ic; — K;b;0/0;

C%mrza&ﬁ+¥¢? i=1,2 (2.7)

7 2
where

a; = X9, 1= 1,2 (28)

bi = yu, 1=1,2 (2.9)

(2 2lz+2 7 7 N

6 = @i+ —c, i=1,2 (2.11)

K, = £1, i=1,2

where K is the ith branch index, which can be used to distinguish the four branches of
the inverse kinematic problem. Finally, the solution of the inverse kinematic problem

for this manipulator can be obtained as
Hi = atan?[(ygi — ZH_Q sin O!i), (3721' — li—|—2 COS O!Z')], 1= 1, 2 (212)

where 6;(i = 1,2) are defined as the angles between the link of length /; and the z axis
of the fixed Cartesian frame and atan2 is the inverse tangent function which uses 2

arguments and returns a unique value.
IT) Determination of the workspace

Considering egs.(2.6), (2.7), it is clear that whether or not angle «; is real depends
on ¢;. If §; < 0, «; is not real; if §; > 0, a; can be real; and if ;=0, a; has a unique
real solution. Because o; is related to the solution of the inverse kinematics of the ma-
nipulator, in fact it means that when §; = 0 the inverse kinematic problem has fewer
solutions. Recalling the properties of the first type of singularity of parallel manipula-
tors [16], it follows that the workspace boundaries of the planar parallel manipulators
consist of the set of configurations which satisfy the following equation in the Cartesian

space of the manipulator.

5 =1/611/6,=0 (2.13)
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The problem of determining the boundaries of the workspace of parallel manipula-
tors is equivalent to solving equation (2.13). Since the latter equation is highly non-
linear, it is usually impossible to obtain analytical solutions. Therefore, the numerical
method mentioned in a preceding section can be used to solve the equation and plot

the workspace limits in a two-dimensional plane.

A numerical example is now given to illustrate the application of the algorithm for

plotting the boundaries of the workspace.

For this manipulator, let [; = 0.8, [ = 1.0, I3 = 1.5, [4 = 0.8, l5 = 0.6, z,; = 0.0,
Yo1 = 0.0, zo2 = 2.0 and ypo = 0.0.

Figure 2.3 show two different workspaces with two different values of the branch
index K, namely, the workspace of the manipulator is different with K; = 1 and
K; = —1. This is because angle oy is a function of angle a;. In other words, there are

two different workspaces for this manipulator, depending on the value of Kj.

(a) Workspace 1 of the two-dof manip-
ulator with K1 = +1.

(b) Workspace 2 of the two-dof ma-
nipulator with K7 = —1.

Figure 2.3: Workspace of the two-dof manipulator

2.1.1.2 Planar three-degree-of-freedom manipulator

I) Inverse kinematics

A planar three-degree-of-freedom manipulator consists of seven movable links and
nine revolute joints (identified as O to Oy), as indicated in Figure 2.2. Such an architec-

ture has been studied in [15]. The moving link with three revolute joints is considered
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as the platform of the manipulator. The three links connected to the base are the
input links and the three joints O, O, and O3 are the actuated joints. Joints O; and
O7 are respectively the origin of the fixed Cartesian coordinate frame and the point to
be positioned by the end effector. It is assumed here that the three input links have
the same length /; and that the other three links which connect the input links to the
platform have a length ls.

From the geometry of the linkage, one can write
(xgi — lz COS O!z')z + (yQi - l2 sin O!Z')z = l%, 1= 1, 2, 3 (214)

where «; is defined as the angle between the 7th link of length /, and the x axis of
the fixed Cartesian frame; [3 and [, are as indicated on Figure 2.2 and where (24, Yoi),

i=1,2,3 are the coordinates of point O;, with x,1 = Yo1 = Y2 = Y03 = 0, and

T21 = T — o1
Y21 = Y — Yo1
Tog = T+ l3c08¢ — x00
Yoo = Y+ l3sing — yoo
Tog3 = T+ 14€c08¢0 — xo3

Y23 = Y+ lasing — yo3

From eq. (2.14) one obtains

bici + K;ai/5;
singg = 249 @Jai=L13 (2.21)
a; + b;
i — Kibi/3;
cosqy = ’;VF:, i=1,23 (2.22)
a; + b;
where
4 = w9, i=1,2,3 2.23
bz' = Y, Z:1,2,3 2.24

13 — I + a3 + 3
2, ’
§ = a2+b—-c, i=1,2,3

i=1,2,3

K; = £1, i=1,2,3
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where Kj is defined as the ith branch index [14], which can be used to distinguish the

eight branches of the inverse kinematic problem.

Finally, the solution of the inverse kinematic problem for this manipulator is ob-

tained as
02' = atanZ[(ygi — lg sin Oéz'), (3321' — lQ COS O[i)], 1= 1, 2, 3 (227)

where 60;(i = 1,2, 3) is defined as the angle between the ith link of length /; and the z

axis of the fixed Cartesian frame.
IT) Determination of the workspace

The workspace boundaries of the planar three-degree-of-freedom parallel manipu-
lator consist of the set of configurations which satisfy the following equation in the

Cartesian space of the manipulator.

5 = /611/6:1/85 = 0 (2.28)

Similarly to the previous case, in order to obtain the boundaries of the workspace of
this type of parallel manipulator, the algorithm presented in the first section of this

chapter is used to solve eq.(2.28).

A numerical example is now presented in order to illustrate the determination of

the workspace.

For this manipulator, let [y = 1.2, I, = 1.5, I3 = 0.7, I, = 1.6, z,; = 0.0, y,; = 0.0,
Zoa = 1.0, Yoo = 0.0, 23 = 2.4, y,3 = 0.0 and ¢ = 7/12.

The resulting workspace is represented in Figure 2.4.

2.1.1.3 Branches of parallel manipulators

In planar or spatial mechanisms with multiple chains, branches usually exist. Different
branches may have different kinematic characteristics. Sometimes, it is impossible for a
given mechanism to assume several branches without being disassembled. Hence, it is
important to be able to distinguish the different branches and to know their kinematic
characteristics in order to choose a configuration which is best suitable for the mani-

pulator to be designed.
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Figure 2.4: Workspace of the three-dof manipulator.

From egs.(2.6) and (2.7) and from egs.(2.21) and (2.22), it is clear that angles
a; (i = 1,2 for the two-degree-of-freedom manipulator and ¢ = 1,2,3 for the three-
degree-of-freedom manipulator) have two different solutions which depend on the value
of K;. Therefore the inverse kinematics of the manipulators have different sets of
solutions and Kj; is the ith branch index of the manipulator. It represents the two
different configurations of the ith leg of the manipulator. Hence, the three-degree-of-
freedom manipulator has eight different branches caused by the different configurations
of its three legs and, similarly, the two-degree-of-freedom manipulator has four different

branches.

2.1.2 Spatial parallel manipulators with revolute actuators

Spatial four-, five- and six-degree-of-freedom parallel mechanisms are respectively rep-

resented in Figures 2.5, 2.6 and 2.7.

A fixed reference frame O — zyz is attached to the base of the manipulator and a
moving coordinate frame Q' —z'y'2’ is attached to the platform. Moreover, the points of
attachment of the actuated legs to the base are noted O; and the points of attachment
of all legs to the platform are noted P;, with ¢ = 1,...,n where n is equal to 5, 6 and

6 respectively, for each of the manipulators studied here. Point O = O,, is located at
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(a) CAD model (b) Schematic representation

Figure 2.5: Spatial four-degree-of-freedom parallel manipulator with revolute actuators.

the center of the joint connecting the nth leg to the base.

The Cartesian coordinates of the platform are given by the position of point O" with
respect to the fixed frame, noted p = [z y z]T and the orientation of the platform
(orientation of frame O — z'y'2" with respect to the fixed frame), represented by three

Euler angles ¢, 6 and ¢ or by the matrix Q.

If the coordinates of point P; in the moving reference frame are noted (a;, b;, ¢;) and

if the coordinates of point O; in the fixed frame are noted (Z;o, ¥i0, 2i0), then one has

X a; x
pi=|w|, pPy=|b]|, fori=1,....n, p=|y (2.29)
Z; C;

where p; is the position vector of point P; expressed in the fixed coordinate frame —
and whose coordinates are defined as (z;,v;, 2z;) —, p;- is the position vector of point
P; expressed in the moving coordinate frame, and p is the position vector of point O’

expressed in the fixed frame as defined above. One can then write

pi=p+Qp;-, i=1,...,n (2.30)

where Q is the rotation matrix corresponding to the orientation of the platform of the

manipulator with respect to the base coordinate frame. This rotation matrix can be
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(a) CAD model (b) Schematic representation
Figure 2.6: Spatial five-dof parallel manipulator with revolute actuators.

written as a function of the three Euler angles defined above. With the Euler angle
convention used in the present work, this matrix is written as
CHCOCY — 54Sy  —CyCySy — S¢Cy  CySg
Q = | 54CoCy + €4Sy —SpCoSy + CoCy  SpSp (2.31)
—50Cyp 505y Co

where s, denotes the sine of angle x while ¢, denotes the cosine of angle x.

2.1.2.1 Spatial four-degree-of-freedom parallel manipulator with revolute

actuators

I) Inverse kinematics

As represented in figure 2.5, this type of manipulator consists of five kinematic
chains, numbered from 1 to 5, connecting the fixed base to a moving platform. Four of
these kinematic chains have the same topology. The kinematic chains associated with
these four legs consist — from base to platform — of a fixed actuated revolute joint,
a moving link, a Hooke joint, a second moving link and a spherical joint attached to
the platform. The fifth chain connecting the base to the platform is not actuated and
has an architecture which differs from the other chains. It consists of a revolute joint

attached to the base, a moving link and a spherical joint attached to the platform. This
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(a) CAD model (b) Schematic representation

Figure 2.7: Spatial six-dof parallel manipulator with revolute actuators.

last leg is used to constrain the motion of the platform to only four degrees of freedom.
It is pointed out, however, that the manipulator could also be built using only four
legs, i.e., by removing one of the four identical legs and actuating the first joint of the

special leg. Both arrangements lead to similar kinematic equations.

Since the platform of the manipulator has four degrees of freedom, only four out of
the six Cartesian coordinates of the platform are independent. In the present study,
the independent Cartesian coordinates have been chosen as (z,y, 2, ¢) since it is as-
sumed that the manipulator will be used to position a point in space while specifying
a rotation about one axis. The two remaining coordinates, i.e., Euler angles # and v
can be determined using the constraints associated with the special 5th leg. Although
this choice of coordinates is arbitrary, it can be easily justified by the applications.
Moreover, the analysis reported here can easily be repeated with a different choice of

coordinates, which would lead to very similar results.

Hence, the four independent coordinates (z,y, z, ¢) are first specified and the re-
maining Cartesian coordinates describing the pose of the platform are then determined
using the kinematic constraints associated with the special leg. This constitutes the

first step of the solution of the inverse kinematic problem. Hence, eq.(2.30) is first
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written for chain 5, i.e.,
ps — P = Qp; (2.32)

Taking the square of the norm of both sides of eq.(2.32), one then obtains
(@5 —2)" + (s — )" + (55— 2)" = a5 + b5 + 3 (2.33)

Since the unactuated leg is mounted on a passive fixed revolute joint (Figure 2.5), point
P5 is constrained to move on a circle and hence, the coordinates of this point can be
written as

T5 =lssine, ys =0, 25=I5co8a (2.34)

where « is the angle defined by link OPs with respect to the Z axis of the fixed
coordinate frame, as illustrated in Figure 2.8, and [5 is the length of link OP; of the
fiftth kinematic chain. It is noted that the fixed coordinate frame is defined such that
the axis of the fixed revolute joint is along the Y axis of the fixed frame and point O

is located such that point Pj is constrained to move in the X Z plane.

Figure 2.8: Geometry of the fifth leg of the four-dof mechanism.

Upon substitution of eq.(2.34) into eq.(2.33) and further simplification, one then
obtains

A41 cosa + B41 sino = 041 (235)
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where
Ay = =z
B41 = T
o2+ y? + 22+ 12 — a2 — b2 — ¢
Cy =

215

The solution of eq.(2.35) then leads to

B;1Cy + K1 AnvAg

sina =
Al + B,

cos & ApnCy — K1BuvAg
Aj, + By

(2.39)

(2.40)

where K; = =1 is the branch index associated with the fifth kinematic chain of the

manipulator and where
Ay = AL + B} —Ch

(2.41)

Once angle « is obtained, eq.(2.32) can be used to compute the dependent Euler angles

¥ and #. Indeed, multiplying the second component of the latter equation by cos ¢ and

subtracting from the first component times sin ¢, one obtains

A42 COS ¢7 + B42 sin 1/) = 042

where
Ay = bs
By = a5
Ci = —ycos¢— (lssina — x)sin ¢
which leads to
sin 4 B45Clhs + KoAgon/Ayo
A%, + B,
AyClao — KyByov/ Ay
cos 1 5 5
Ajs + Bi,

(2.42)

(2.43)
(2.44)
(2.45)

(2.46)

(2.47)

where Ky = +1 is another branch index associated with the orientation of the platform

and where
Ay = A?u + BZz - CZQ

(2.48)
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Moreover, the last two component of eq.(2.32) can be rewritten as

Aty =D (2.49)
where
A — [a5sin¢cosw—b5sin¢sin@/} C5 sin ¢ ]
Cs b5 sin 1) — a5 cos 1
§, = [cosﬁ]’ b:l—y—%cosq&sind)—b5cosg/>cos¢]
sin 0 lscosa — z

Hence, once angles ¢ and 1 are known, angle 6 can be determined by solving eq.(2.49)

for t,.

Having obtained the Euler angles, the pose of the platform (its position and ori-
entation) is completely known. The rest of the inverse kinematic procedure therefore
consists in computing the actuated coordinates for a given Cartesian pose of the plat-

form. This problem is rather straightforward.

0 (%, %, %)

\ O‘ (Xio, ywo, Zio)

Figure 2.9: Configuration of the ith actuated joint of the four-dof manipulator with

revolute actuators.

Figure 2.9 represents the configuration of the ¢th actuated joint of the manipulator
with revolute actuators. Point O; is defined as the center of the Hooke joint connecting
the two moving links of the ith actuated leg. Moreover, the Cartesian coordinates of

point O} expressed in the fixed coordinate frame are noted (z;1, yi1, zi1). Since the axis

25



of the fixed revolute joint of the i¢th actuated leg is assumed to be parallel to the zy

plane of the fixed coordinate frame (Figure 2.9), one can write

Tyt = Tjp — ljsiny;cosp;, 1=1,...,4 (2.50)
Yt = Yo+ lincosy;cosp;, 1=1,...,4 (2.51)
Zi1 = Zz'o+li1 sinpz-, 1= ]_,...,4 (252)

where ~; is the angle between the positive direction of the x axis of the base coordinate
frame and the axis of the ith actuated joint while p; is the joint variable — rotation angle
around the fixed revolute joint — associated with the ith actuated leg. Moreover, l;; is
the length of the first link of the ¢th actuated leg. From the geometry of the mechanism,

one can write
(i1 — )+ (in —v)° + (20 —z)2 =15, i=1,...,4 (2.53)

where x;, y;, 2; have been previously defined as the coordinates of point P; and I;5 is the

length of the second link of the ith actuated leg.
Substituting egs.(2.50), (2.51) and (2.52) into equation (2.53), one obtains
R;cosp; + S;sinp; =T;, i=1,...,4 (2.54)
where

R; = (Yi — Yio) cos i — (T; — Tjp) siny;

Si = Zi— Zio
o (i = 2io)® + (Yi — io)* + (20 — 2i0)” + 17 — I
! 2l
which leads directly to
sin p; SiTi + KisFay/Vi =1,...,4
' R? 4+ S? ’ Y
(2.55)
cos p; = RiTi — KiSiy/Vi 1=1,...,4
’ R?+52 Y
(2.56)

where K;3 = +1 is the branch index of the manipulator associated with the configura-

tion of the ith leg and

Vi=R24+S?2-T2 i=1,...,4 (2.57)
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27
The solution of the inverse kinematic problem is then completed by performing

p; = atan2[sin p;,cos p;], i=1,...,4 (2.58)

Since two solutions are obtained for each of the p;’s, it is clear that the inverse

kinematic problem of this manipulator leads to 64 solutions.
IT) Determination of the workspace

Similarly to what was done for planar parallel mechanisms, the first type of sin-
gularity will be obtained by finding the boundaries of the Cartesian workspace of the

manipulator. Hence, the locus of the limit of the workspace is given by the following

() [0 e

where Ay, Aye and V; are respectively defined in eqgs.(2.42), (2.48) and (2.57) and the

same algorithm is used here to determine the curves corresponding to this locus.

equation

An example is now given to illustrate the determination of the workspace of this

type of mechanism. The parameters used in this example are given as
To1 = —1.5, Yo1 = 15, Too = —3.0, Yo2 = 15, To3 = —3.0, Yo3 = —-1.5

ZTog = —1.5, You = —1.5, 255 = 0.0, yo5 = 0.0, 2,;, = 0.0(: =1,...,5)
a; = 02, bl = 06, C1 = —04, a9 = —06, b2 = 06, Co = —-0.4
a3 = —0.6, b3 = —0.6, c3 = —0.4, ay = 0.2, by = —0.6, ¢, = —0.4

as = 0.6, bs = 0.0, ¢5 = 0.0

_ T T 3T 3T
71_4772_4773_ 4774_ 4

l5 - ].0, lil - 20, li2 - 30(’1, - 1, . ,4)
and the Cartesian coordinates being imposed are respectively

T Vs
, ¥y =0.0 and ¢ 10’

T T )

¢
WlthKlzKQIKzgz—l,Zzl,,él

Figure 2.10 shows two sections of the workspace for this example.



(a) A section of the workspace (over (b) A section of the workspace (over y

and z). and z).

Figure 2.10: Example of the workspace of the four-dof mechanism

2.1.2.2 Spatial five-degree-of-freedom parallel manipulator with revolute

actuators

I) Inverse kinematics

As represented in Figure 2.6, the spatial five-degree-of-freedom parallel manipulator
mechanism consists of six kinematic chains, numbered from 1 to 6, connecting the fixed
base to a moving platform. Five of these kinematic chains have the same topology.
The kinematic chains associated with these five legs consist — from base to platform
— of a fixed actuated revolute joint, a moving link, a Hooke joint, a second moving link
and a spherical joint attached to the platform (Figure 2.6). The sixth chain connecting
the base to the platform is not actuated and has an architecture which differs from
the other chains. It consists of a Hooke joint attached to the base, a moving link
and a spherical joint attached to the platform. This last leg is used to constrain the
motion of the platform to only five degrees of freedom. Similarly to the case of the
four-dof mechanism, this mechanism could also be built using only five legs, i.e., by
removing one of the five identical legs and actuating the first joint of the special leg.

Both arrangements lead to similar kinematic equations.

Since the platform of the mechanism has five degrees of freedom, only five of the
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six Cartesian coordinates of the platform are independent. In the present study, the
independent Cartesian coordinates have been chosen as (z, y, z, @, #) since it is assumed
that the mechanism will be used to position a point in space while specifying two
independent rotations. The remaining coordinate, i.e., Euler angle 1/ can be determined
using the constraints associated with the special 6th leg. Similarly to the four-degree-
of-freedom parallel mechanism, although this choice of coordinates is arbitrary, it can
be justified by the applications to be considered, i.e., the position and orientation of
axisymmetric bodies, and the analysis reported here can easily be repeated with a

different choice of coordinates, which would lead to very similar results.

Hence, the five independent coordinates (x,y, z, ¢, ) are first specified and the
remaining Cartesian coordinate describing the pose of the platform is then determined
using the kinematic constraints associated with the special leg. Hence, eq.(2.30) is first

written for chain 6, i.e.,
Ps =P + Qpg (2.60)

or, in terms of the components,

xg = 1+ ag(cosdcosbcosp —sin¢psin) + bg(— cos ¢ cos O sin ) — sin ¢ cos )
+cg cos ¢sin @ (2.61)

Ye = Y+ ag(singcoshcost) + cos dsin)) + bg(— sin ¢ cos sin 1) + cos ¢ cos 1))
+cgsin¢sing (2.62)

26 = 2+ ag(—sinfcos 1)) + bgsin fsin 1) + cg cos (2.63)

Moreover, from the geometry of the special leg, one can write
Ty + ys + 25 = I (2.64)

where [ is the length of the special leg.

Squaring both sides of equations (2.61), (2.62) and (2.63) and adding, one then
obtains
Acosy + Bsiny =C (2.65)

where

A = 2bgycoso+ agxcos (¢ — 0) + agz cos (¢ + 6) — 2bgx sin ¢ + agy sin (¢ — )
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—2agz sin 0 + agy sin (¢ + 0) (2.66)
B = 2agycos ¢ — bz cos (¢ — 0) — bex cos (¢ + 0) — 2agx sin ¢ — bgy sin (¢ — 6)
+2bsz sin 0 — bgy sin (¢ + 0) (2.67)

C = E—(a+bi+ci+a”>+y>+ 2>+ csycos (¢ — 0) + 2csz cos O — cgy cos (¢ + 6)
—cgxsin (¢ — 0) + cexsin (¢ + 6)) (2.68)

The solution of eq.(2.65) then leads to

. BC + KgAVA
sin v B (2.69)
AC — K¢BVA
cosyp = PR (2.70)

where Kg = =£1 is the branch index associated with the sixth kinematic chain of the
mechanism and where

A=A*+B? - (C? (2.71)

Having obtained the last Euler angle, the pose of the platform (its position and orien-
tation) is completely known. The rest of the inverse kinematic procedure therefore con-
sists in computing the actuated coordinates for a given Cartesian pose of the platform.
It is identical to what is encountered in the four-degree-of-freedom parallel mechanism

and the procedure is not repeated here.

Since two solutions are obtained for each of the p;’s, it is clear that the inverse
kinematic problem of this mechanism leads to 64 solutions, which can be distinguished

using branch indices K; to Ks.
IT) Determination of the workspace

Similarly, for this mechanism the locus of the limit of the workspace, namely, the

first type of singularity locus, are given by the following equation
5
s=vVAI[Vi=0 (2.72)
i=1

where V; is defined in eq.(2.57) and A is defined in eq.(2.71).

An example is now given to illustrate the determination of the workspace of this

type of mechanism. The parameters used in this example are given as

30



To1 = 2.0, Yo1 = 1.5, o2 = —1.0, Yoo = 1.5, o3 = —2.0, yo3 = 0.0,
Tos = —1.0, You = —1.5, To5 = 2.0, yo5 = —1.5, 2,6 = 0.0, y,6 = 0.0,
20i = 0.0(G=1,...,6),
a1 =0.8, by =0.6, c; =—0.4, a, = —0.4, by =0.6, co = —0.4
a3 = —0.8, b3 =0.0, c3 = —04, ay = —0.4, by = —0.6, ¢, = —0.4,
as = 0.8, by = —0.6, c5 = —0.4, ag = 0.1, bg = 0.2, ¢g = —0.6
Y= gy = =3y =Ty =2
le =1.0,1;; =3.0,lo=30,(i=1,...,5)

and the three fixed Cartesian coordinates are respectively given by

z z
15 o 15
e N P
1 / T T 1 ,/ P \‘ ‘\\\
05 05 \
0 0
/ x — y
~. - A
0.5 N / 05 /
S~ P 7
atb T 1
15 -15
1 0.5 0 0.5 1 15 2 -15 1 0.5 0 0.5 1 15
(a) A section of the workspace (over x (b) A section of the workspace (over y
and z). and z).

Figure 2.11: Example of the workspace of the five-dof mechanism.



2.1.2.3 Spatial six-degree-of-freedom parallel manipulator with revolute

actuators

As represented in Figure 2.7, spatial six-degree-of-freedom parallel manipulator consists
of six identical legs connecting the base to the platform. Each of these legs consists of
an actuated revolute joint attached to the base, a first moving link, a passive Hooke
joint, a second moving link and a passive spherical joint attached to the platform. A

parallel manipulator of this type was described in [8].

The procedure for the computation of the inverse kinematics therefore consists in
computing the actuated joint coordinates for a given Cartesian pose of the platform.
It is exactly identical to the procedure of the last part of the computation of the
inverse kinematics of the four- and five-degree-of-freedom parallel mechanisms and is

not repeated here.

Similarly, for this mechanism the locus of the limit of the workspace is given by the

following equation
6
=TI \/E =0 (2.73)
i=1
where V; is defined in eq.(2.57).

However, it is pointed out here that for this mechanism there exists an algorithm

to find the analytical description of the boundary of the workspace [13].

An example is now given to illustrate the determination of the workspace of this

type of mechanism. The parameters used in this example are given as

ZTo1 = —1.0, Yo1 = 1.5, T = —3.0, Yo2 = 1.5, o3 = —4.0, yo3 = 0.0,
Toa = —3.0, You = —1.5, o5 = —1.0, yo5 = —1.5, o6 = 0.0, Y6 = 0.0,
26 =0.00=1,...,6),
a1 =0.8, b =0.6, c; =—04, a, = —0.4, by =0.6, co = —0.4
az = —0.8, b3 = 0.0, c3 = —0.4, ay = —0.4, by = —0.6, ¢, = —0.4,
a5 = 0.8, bs = —0.6, c5 = —0.4, ag = 0.8, bg = —0.6, cg = —0.4
m= =" k= u=T %=, %=1,

i =20, ln=20,(i=1,...,6)
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and the four fixed Cartesian coordinates are respectively given by

(a) A section of the workspace (over x (b) A section of the workspace (over y

and z). and z).

Figure 2.12: Example of the workspace of the six-dof mechanism.



2.2 Velocity equations and singularity loci

The velocity equations of manipulators are important for their kinematic analysis.
Indeed, since the velocity equations represent the linear mapping between the actuated
joint velocities and the Cartesian velocities, they characterize the kinematic accuracy of
a manipulator and they allow the determination of the singularities. Here, two different
methods will be used to derive the velocity equations of the manipulators studied. Each

of these methods has its own advantages and drawbacks, as will be shown below.

Moreover, the determination of the singular configurations of mechanisms is an issue
of the utmost importance, since when the singularities occur, the end-effector of the
manipulator gains or loses one or more degree(s) of freedom and therefore becomes

uncontrollable. Hence, such configurations must be avoided.

In [16], three general types of singularities which can occur in parallel manipulators
have been identified. Moreover, in [66], this classification has been further refined and
several types of singularities have been defined according to their physical interpre-
tation. However, the mathematical description of these types of singularities is more
difficult to obtain and hence, the classification proposed in [16] will be used here. In-
deed, the mathematical expressions allowing the identification of these singularities is

readily available.

In what follows, vector @ is used to denote the actuated joint coordinates of the ma-
nipulator, representing the vector of kinematic input. Moreover, vector x denotes the
Cartesian coordinates of the manipulator gripper, representing the kinematic output.

The velocity equations of the manipulator can be written as

Ax+BO =0 (2.74)
where
9 = [01 9.2 On]T
Xx=[2 % .. @,]"

and where A and B are square matrices of dimension 7, called Jacobian matrices, with

n representing the number of degrees of freedom of the manipulator.

34



Referring to eq.(2.74), Gosselin and Angeles [16] have defined three types of singu-

larities which can occur in parallel manipulators.

I) The first type of singularity occurs when det(B) = 0. In such a situation, the
gripper of the manipulator loses one or more degrees of freedom and lies in a deadpoint
position. In other words, the gripper can resist one or more forces or moments without
exerting any torque or force at the actuated joints. These configurations correspond
to a set of points defining the outer and internal boundaries of the workspace of the

manipulator. They have been studied in the previous section of this chapter.

IT) The second type of singularity occurs when det(A) = 0. As opposed to the first
one, the gripper of the manipulator gains one or more degrees of freedom, namely, it
cannot resist the forces or moments from one or more directions even when all actuated
joints are locked. The actuated joints are at a deadpoint. This kind of singularity

corresponds to a set of points within the workspace of the manipulator.

IIT) The third kind of singularity occurs when the positioning equations degenerate.
This type of singularity is also referred to as an architecture singularity [6]. Only
when the parameters of a manipulator satisfy certain special conditions can this kind
of singularity occur. It corresponds to a set of configurations where a finite motion of
the gripper of the manipulator is possible even if the actuated joints are locked (referred
to as self-motion in [27], [28] and [29]) or where a finite motion of the actuated joints

produces no motion of the gripper.

The singularity classification method presented above is applicable to any parallel
manipulator. In this Chapter, it is used to analyze the second type of singularity
of the manipulators introduced earlier in order to find Cartesian loci associated with
this type of singularity. For the first type of singularity, the loci can be obtained
by computing the boundary of the workspace of the manipulator, which has been
completed in the previous section and will not be discussed any further here. The second
type of singularity loci will be found from the expressions of the determinant of the
Jacobian matrices of the mechanisms, as will be shown in the following. Furthermore,
it is assumed that the third type of singularity is avoided by a proper choice of the

kinematic parameters.
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In [47], the singularity loci of planar three-degree-of-freedom parallel manipula-
tors with prismatic actuators have been obtained. Because of the prismatic actuators,
the mathematical expressions obtained were very simple and the loci were shown to
correspond to quadratic forms. However, for manipulators with revolute actuators,
expressions are much more complex as will be shown next and the simple approach
used in the latter reference cannot be applied directly. Similarly, for spatial six-degree-
of-freedom parallel manipulators with prismatic joints, an expression for the singularity
loci has been obtained in [41]. It was shown, in the latter reference, that for a given
orientation of the platform, the loci were surfaces of degree 3. However, this approach
cannot be directly applied to manipulators with revolute actuators, since the joint

coordinates and the Cartesian coordinates both appear in the Jacobian matix.

2.2.1 Planar parallel manipulators

The velocity equations of planar two- and three-degree-of-freedom parallel mechanisms
or manipulators will first be derived, and then used to determine the singularity loci of

type II.

Let a; be the two-dimensional position vector connecting the ith joint O; to one
of its neighboring joints, as indicated in Figures 2.13 and 2.16 (except az and as on
Figure 2.13, which connect O3 and O5 to P and ag in Figure 2.16, which connects O7
to Og), and let w; be the angular velocity of the ith link. From these definitions, it is

possible to obtain the velocity equations, as will now be illustrated.

2.2.1.1 Two-degree-of-freedom manipulator

Using the closed loop of the two-degree-of-freedom manipulator 0103050405, one can

write

leal + ng(ag — a5) = wQEag + w4Ea4 (275)

=) 7]

is a 2 x 2 operator rotating an arbitrary two-dimensional vector counterclockwise

where
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Figure 2.13: Loop vectors associated with the two-degree-of-freedom manipulator.

through an angle of 90° [45]. Using eq.(2.75) as the velocity equation of the manipula-
tor is equivalent to using the angular velocity of links of length /3 and [, to represent

its Cartesian velocity instead of using the velocity of one of the points on the platform.

Then, from eq.(2.75), one obtains
where

A" = [(az—a5) —a4]

B* = [a1 —ag]
w3

wo = |2
Wy
w1

w = [
Wa

Equation (2.76) can be used as the velocity equation of the two-degree-of-freedom

manipulator since for this manipulator, we can use the angular velocities of links 3 and

4 as the output vector. From eq.(2.76), A* is then written as

I3 —1 -1
. [(3 5) COS (v 4c0sa2] (2.77)

(I3 —ls)sina;  —lysinay
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From eq.(2.77), one then obtains

det(A™) = l3lysin(a; — ) (2.78)

From eq.(2.78), it is clear that when o; = ag+nm,n = 0,41, £2, ..., then det(A*) =
0. In other words, if the two vectors az and a, are aligned, the manipulator is in a
configuration which corresponds to the second type of singularity. The polynomial
formulation of the singularity loci for this type of mechanism is given in Appendix A.

It leads to a curve of degree 6.

The determination of the singularity loci of the manipulators consists in finding
the roots of equation det(A*) = 0. This can be accomplished using the expressions of
eqs.(2.78) directly. The detailed expressions associated with the equation are given in

Appendix B.

The above equations can be solved using a numerical procedure in order to determine
the singularity loci for each of the branches and to represent them graphically. This
results in the singularity locus according to each branch of the manipulator within its
workspace. The singularity loci of all the branches of the manipulator can also be

superimposed on the workspace.

With the same parameters used in the example on the determination of the workspace
of the manipulator, one can obtain the singularity loci over the workspace in each

branch, as shown in Figures 2.14 and 2.15.

The manipulators in Figures 2.14(b) and 2.14(d) are shown in a singular configu-
ration while they are represented in a nonsingular configuration in Figures 2.14(a) and
2.14(c). The singularity loci of all branches in the two workspaces of the manipulator

are shown in Figures 2.15(a) and 2.15(b), respectively.

2.2.1.2 Three-degree-of-freedom manipulator

From Figure 2.16, it is clear that this manipulator contains two independent closed
loops: for instance 010407050502 and O10,0703090603. Therefore, by using the

loop constraints, one can write the following velocity equations:

leal + w4Ea4 + w7Ea7 = wQEaQ + w5Ea5 (279)
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(a) Branch 1: K; = —1,K, = (b) Branch 2: K
—1. -1, Ky = +1.

(c) Branch 3: K; = +1, K> = (d)
1, Ky = +1.

—1.

From eqs.(2.79) and (2.80), one obtains

where

A*

B*

A*wo+B*w; =0

Branch 4:

leal + w4Ea4 + W7Eag = (4)3Eag + wﬁEae

K

Figure 2.14: Singularity locus and workspace of the two-dof manipulator.

(2.80)

(2.81)
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(a) Singularity locus of workspace 1. (b) Singularity locus of workspace 2.

Figure 2.15: Singularity locus and workspace of the two-dof manipulator.

T
Wo = [w4 Ws We w7]

T
W = [w1 Wa wg]

Equation (2.81) can be used as the velocity equation of the three-degree-of-freedom
manipulator, where the angular velocities of the input links are used as the joint ve-
locities and the angular velocities of the other moving links are used as the Cartesian

velocities.

Comparing eqs.(2.81) and (2.74), it is possible to use the angular velocities of links

4,5, 6 and 7 as output velocities, and hence, to write

w; = 0 (2.82)
wo = X (2.83)

Therefore, considering eqs. (2.82), (2.83) and (2.81) together, it can be concluded
that if det(A*) = 0, then the manipulator is in a singular configuration corresponding
to the second type of singularity. In other words, matrices A* and A are equivalent
for the purpose of determining the second type of singularity of the manipulator. In
a singular configuration, since the nullspace of A* is not empty, there exist nonzero

vectors wp which will be mapped into the origin by A*.
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Figure 2.16: Loop vectors associated with the three-degree-of-freedom manipulator.

It can be easily shown that when the three vectors a4, a; and ag are parallel to one
another or intersect at a common point Q(z,,y,) , as represented in Figure 2.17, then
det(A*) = 0, namely, the second type of singularity of the manipulator occurs. This

result has been obtained in [25].

Matrix A* can be written as

lycosa; —lycosay 0 l3cos ¢
losinoy  —lgSin o 0 l5 sin
Af = 2 1 2 2 38in ¢ (2.84)
{5 cos o 0 —lycosag lycos¢
lQ sin (e} 0 —l2 sin (0% l4 sin qb

where the notation for the link lengths refers to Figure 2.2.

From eq.(2.84), one has

det(A*) = I5sin¢(ly cos oy sin oy cos as
—1[4 sin aq cos oy €OS (i3
—I3 cos o cos ap Sin (g
+I3 sin oy cos ay cos ag)
+12 cos ¢ (1 sin oy cos an sin
2 3

—14 cos g sin avg sin a3
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—I3sin oy sin ap cOS o3
+13 cos ay sin ag sin a;z) (2.85)
and two cases may arise.

a) If a4, a5 and ag are parallel to one another, then

\:;f’// Q(xq ) yq)

/”\ x
/i>/ /)]

Figure 2.17: Three-degree-of-freedom manipulator in a configuration corresponding to

the second type of singularity.

ay = Q1+ myT, my = 0, :i:]_, :i:2, (286)
a3 = ap+mem, mo=0,+1£2,.. (2.87)

The substitution of egs.(2.86) and (2.87) into eq.(2.85), leads to
det(A*) =0
b) If the three vectors a4, a; and ag intersect at a common point Q(z4,y,) (as
represented in Figure 2.17), then one can write

tanonzy — yYq + (Y21 — 21 tancy) = 0 (2.88)
tan apxy — Yq + (Yoo — Tootanay) = 0 (2.89)

tan asx, — Yo + (Yo3 — Togtanaz) = 0 (2.90)
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where «q, ap and ag # 7/2 +mn, m=0,+1,+2, ...

Eqs.(2.88)—(2.90) constitute a linear system of 3 equations in two unknowns z, y,.

Hence, the following condition is required to obtain a real solution for z, and y,:
det(H) =0 (2.91)

where H is a matrix defined as
tanc; —1 (Y21 — 91 tan ;)
H= |[tanas —1 (Y20 — Zootanay)
tanag —1 (Y23 — oz tanaz)

The substitution of egs.(2.15)—(2.20) into eq.(2.91) leads to
det(H) = det(A™) cos ay cos ap cosaz = 0 (2.92)
Since cos v cos as cos ag # 0, from (2.88)—(2.90), one finally obtains
det(A*) =0

Therefore, in the formulation derived above, matrices A* can be used to investigate the

singularities of both manipulators.

Similarly to the previous case, the polynomial formulation of the singularity loci
for this type of mechanism is also found in Appendix A and the detailed expressions
associated with the equation are given in Appendix B. A polynomial of degree 64 is

obtained in this case.

For this manipulator, let [y = 1.2, I, = 1.5, I3 = 0.7, I, = 1.6, z,; = 0.0, y,; = 0.0,
Zoa = 1.0, Yoo = 0.0, T3 = 2.4, y,3 = 0.0 and ¢ = 7/12.

The singularity loci of the eight branches of the manipulator are shown on Fig-
ures 2.18 and 2.19, where the outer and internal solid curves are the boundaries of the
workspace of the manipulator—they are also the locus of the first type of singularity
of the manipulator—and where the curves within the workspace are the locus of the

second type of singularity of the manipulator.

The branch configurations of the three-degree-of-freedom manipulator are shown on
each graph. Figures 2.18(b), 2.18(c) and 2.19(d) show the manipulator in a configura-
tion corresponding to a singularity of type II while on the other graphs, the manipulator

is represented in a nonsingular configuration.
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(a) Branch 1: K; = (b) Branch 2: K; =
1Ky = -1, K5 = —1. 1L, Ky = —1,K3 = +1.

(¢) Branch 3: K; = (d) Branch 4: K; =
—].,K2 = +1,K3 =—1. —I,Kg = +1,K3 = +1

Figure 2.18: Singularity locus and workspace of the three-dof manipulator with

branches 1-4.

2.2.2 Spatial parallel manipulators

In this subsection, the velocity equations of the spatial four-, five- and six-degree-of-
freedom parallel mechanisms or manipulators are first derived using two approaches,

namely, the algebraic and vector formulation.

The first approach presented for the derivation of the velocity equations consists in
a direct differentiation of the kinematic equations derived above. It is the most popular

approach used for the derivation of the velocity equations of parallel manipulators [16].

The second approach, as mentioned in the introduction, is a new approach. In fact,



45

(a) Branch 5: K; = (b) Branch 6: K; =
11,Ky = —1,K3 = —1. 4+1,Ky = —1, K3 = +1.

(¢) Branch 5: K; = (d) Branch 6: K; =
+1,K2 = +1,K3 = —].. +1,K2 = +1,K3 = +1

Figure 2.19: Singularity locus and workspace of the three-dof manipulator with

branches 5-8.
it is the extension of the approach used above for the planar parallel mechanisms to

complex spatial parallel mechanisms.

2.2.2.1 Spatial four-degree-of-freedom parallel manipulators with revolute

actuators

I) Algebraic formulation

Differentiating eq.(2.54) with respect to time, one obtains

11(S; cos pi — Risin p;) p;



= (.’Ez — Ljo — lil sin 7Y; COS ,OZ)LL‘Z
+(Yi — Yio + i1 cOSy; sin p;)y;
+(Zz —_ Z’io+li1 sinpi)zi, 7, = 1,...,4 (293)

where Z;,y; and Z; can be obtained by the differentiation of eq.(2.30) with respect to

time, namely

G = d+Cd+Chf +Coyth, i=1,...,4 (2.94)
Ui = §+CLe+CLO+Cl, i=1,....4 (2.95)
o= 2+ 0o+ Clf+Clyp, i=1,....4 (2.96)

where one has, for i =1 to 4,

Cry =

7

6

7

Ty T

7 —
Cy¢ -

%
yo
%
v
7
z¢ T
%
20
%
2y T

Substituting

a;(— sin ¢ cos § cos 1 — cos @ sin 1)) + b;(sin ¢ cos  sin 1) — cos ¢ cos V)
+¢i(—sin ¢ sinf)

a;(— cos ¢ sin f cos 1) + b;(cos ¢ sin fsin 1)) + ¢; cos ¢ cos 0

a;(— cos ¢ cosf sin ) — sin ¢ cos ) + b;(— cos ¢ cos 6 cos 1 + sin ¢ sin 1))
a;(cos ¢ cos B cos 1 — sin ¢ sin 1)) + b;(— cos ¢ cos  sin 1 — sin ¢ cos )
~+c; cos ¢ sin f

a;(— sin ¢ sin 6 cos 1) + b;(sin ¢ sin @ sin 1)) + ¢; sin ¢ cos

a;(— sin ¢ cos 6 sin b + cos ¢ cos 1) + b;(— sin ¢ cos f cos 1) — cos ¢ sin 1))
0

a;(— cosf cos ) + b; cos O sin ) — c5sin 6

a;(sin @sin¢) + b; sin O cos ¢
eqs.(2.94)—(2.96) into eq.(2.93) then leads to

Brp = Krt (297)

where vectors t and p are defined as

t = (& § 2 ¢ 6 4]
p o= Ip p2 ps pul’
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Moreover, matrices B, and K, can be written as B, = diag[b] b} b} b}] and

with, fori =1,...,4,

r —
kiG -

ki, Ky ki3 KLy kis Kle
k3 ki Kz Ky ki kg
kg1 k3o kzg K3y ks ki
ki ki ki ki ki K
lin(Sicos p; — R;sinp;), i1=1,...,4
Tj — Tjp + L3 siny; cos p;
Yi — Yio — li1 cOS 7 sin p;
2i — Zip — ;1 81n p;
25(Ti — Tio + Ly sin 7; cos p;)
-1—01(25(?4Z — Yio — li1 COS7y; sin p;)
+C;, ¢(z, — Zio — i1 sin p;)
2o(Ti — Tio + L1 sin; cos p;)

+Ci0 (yz — Yio

— l;1 cos y; sin p;)

+Cy(2i = 2ip — lin sin p;)

2o (@i — Tio + Ly siny; cos p;)
"‘Czw(yz Yio — li1 €OSy; sin p;)
+C3y (2 — 2io — lin sin ;)

(2.98)

Then, from the geometry of the 5th leg of the manipulator, i.e., from eq.(2.32), one can

write

2 2 _ 12
xs + 25 =1z,

and y5 =0

Differentiating eqs.(2.99), one then obtains

$5.T.5 + 252'5 = 0,

and :l'j5 =0

where 5, 95, Z5 can be obtained by the differentiation of eqs.(2.32), i.e.,

Zs
Ys

Zs

= 4+ Co+ Ch0+ Coyih
= §+Coup+ Coyf + C5 1)

= 2+ Chb+Coh0+Co

(2.99)

(2.100)

(2.101)
(2.102)
(2.103)
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Substituting eqs.(2.101)—(2.103) into eqs.(2.100) then leads to an expression of the

dependent Cartesian velocities as a function of the independent velocities which can be

written as
t=J,% (2.104)
where x = [:cyz¢]T and
M1 0 0 0
0 1 0 0
0 0 1 0
J, = (2.105)
0 0 1
Js1 Js2 Jss Jsa
LJe1 Je2 Jé3  J6a

where

Js = $5CS¢/Ua Jgr = _955050/[]
Jg2 = _(%Caféw + z;,Czsw)/U, Jg2 = CSH/U
gis = zCp/U, o = —2Cp/U
Jsa = [($5C§¢ + 25Cz5¢)05w - C§¢($5C§¢ + Z5Cz5¢)]/U
Jea = [(335029 + Z50z5905¢ - ($502¢ + Z5C§¢)059)]/U
with U = (25025 +25C2)Coy — Coy (2505, +25C2, ). Bq.(2.104) represents the kinematic

velocity constraints associated with the special unactuated kinematic chain — the fifth

leg — connecting the base to the platform.

Finally, substituting eq.(2.104) into eq.(2.97), one obtains the velocity equations of

the four-degree-of-freedom manipulator with revolute actuators, i.e.,
B.p=Ax (2.106)
where A, is a 4 by 4 matrix which is defined as A, = K, J,.

IT) Vector formulation

Considering the quantities defined in Figure 2.20, one can write the velocity equa-

tions associated with the closed loop OZ-O;-PZP;)O, fori=1,...,4, as

wilxli1+wi2xli2+wxvi=w5xp5, 7,21,,4 (2107)
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where w;; (¢ = 1,...,4 and j = 1,2) is the vector of the angular velocity of the jth
link of the sth leg, while 1;; (i = 1,...,4) is the vector connecting point O; to point O
and 15 (i = 1,...,4) is the vector connecting point O} to point P;. Eq.(2.107) can be

Figure 2.20: Position and velocity vectors associated with the spatial four-degree-of-

freedom parallel manipulator with revolute actuators.

rewritten as

—Lﬂei,o'i = Ligwig + Vzw + ch, 1= 1, e, 4 (2108)

where the cross products appearing in eq.(2.107) have been written in matrix form and
where w, is the only nonvanishing component of vector ws, i.e., the latter vector can

be written as

ws=[0 w, 0] (2.109)
and where vector w;; has been written as
Wi1 :pz-ez-, 1= 1,...,4 (2110)

with e; the unit vector associated with the direction of the axis of the actuator. The

matrices used above are defined as
V, = [1]xv;, i=1,...,4 (2.111)
C = [ps. 0pso]”
Ly = [1]x1;, i=1,...,4
Lo = [1] x1p, i=1,...,4
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where 1 stands for the 3 x 3 identity matrix. Vectors Ljo(i = 1,.

..,4) are easily written

Zi’
0, | ) Py 2)
li2 i
Biz i
— |
3 wiZZ
o, [
| \/ Yi
\_//\\ 3 ,
Wi, o, 3
“

Figure 2.21: Vector 1,5 represented in spherical coordinates.

using spherical coordinates, as shown in Figure 2.21. Hence, one has

wiQZGiwigs, Z:1,,4
where
0 —sin (673
G, =0 cosqo;
1 0

Wizs = [duz Bia]”

(2.112)

(2.113)

Substituting eqgs.(2.112) into eq.(2.108) and using eq.(2.110), one obtains the velocity

equations of the manipulator as

Brvp =J,w

where B,, is a 12 x 4 matrix defined as

—L1161 0 0

BM} _ 0 —Lgleg 0
0 0 —Laie3

0 0 0

(2.114)
0
0 2.115
0 (2.115)

—Layiey

a0



where O denotes a zero 3-dimensional column vector, with p the joint velocity vector

defined as p=[p1 p2 ps pa]’, with vector w a 12-dimensional vector defined as
w=[wl Wl Wl Wl W w]" (2.116)

and with J,, a 12 x 12 matrix defined as

S, 0 0 0 V, C
0 S, 0 0 V, C
3, = (2.117)
0 0 S; 0 V3 C
0O 0 o0 S, Vv, C
where 0 denotes a 3 X 2 zero matrix and where

IIT) Determination of the singularity loci

The determination of the second type of singularity loci consists in finding the roots

of the following equations, i.e.,
det(A,) =0 or det(J,)=0 (2.119)

It can be noticed that the procedure to obtain matrix A, using the algebraic approach
is much more complicated than the one followed to obtain matrix J,, using the vector
method, which means that the expressions of the elements of matrix A, will be much
more complex than the expressions of the elements of matrix J,,. However, the former
matrix is of dimension 4 X 4 while the latter is of dimension 12 X 12 and the expression
of the determinant of a larger matrix will be much more complicated than for a smaller
matrix. On the other hand, matrix J,, is rather sparse and it is therefore easy to reduce
the expression of its determinant to the expression of the determinant of a 4 x 4 matrix.
The procedure for this simplification is given in Appendix C. Hence, globally, the use
of the matrices obtained with the vector method will provide simpler expressions which

will therefore lead to faster algorithms.

The loci of the singularities of the second type are determined using

det(J,) = D,det(J) =0 (2.120)
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where

Do = (l12y sin o + l12$ COS 011) (l22y sin 9 + l22$ COS 012)

(l32y sin o3 + l32w COS a3) (l42y sin g0 + l4w COS a4)

(Lig x V1)T (ps X 112)T11
J = (Ipg x V2)T (ps X 122)T11
(I32 x V3)T (ps X 132)T11
(Lig x V4)T (ps X 142)Tu

where u = [0 1 0]T.

From the above equations, it is clear, by inspection, that D, # 0. Therefore,

eq.(2.120) reduces to
det(J) =0 (2.121)

where J is a 4 x 4 matrix and hence, the determination of the singularity loci is greatly

simplified.
IV) Example

All the examples presented below have been produced using the two sets of velocity
equations described above (obtained with the algebraic method and with the vector
method). Both approaches have given identical results and the vector method has led

to faster computation times.

Since the manipulator has four degrees of freedom, its workspace is four-dimensional.
In order to be able to visualize the results, a computer program has been written
in which it is possible to fix two of the Cartesian coordinates and to obtain a two-
dimensional section of the workspace associated with the two other coordinates and on

which the limits of the workspace and the singularity loci can be plotted.

Using the parameters used in the example of determination of the workspace of the
mechanism, one can obtain the singularity locus over the workspace in two sections, as

represented in Figures 2.22.
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(a) A section of the singularity loci (b) A section of the singularity loci
(over z and z) for the manipulator and (over y and z) for the manipulator and
with Ky = 1, K = 1,V; = 1(6 = with Ky = 1,Kpp = L,V; = 1(6 =
1,...,4). 1,...,4).

Figure 2.22: Singularity locus and workspace of the four-dof manipulator.

2.2.2.2 Spatial five-degree-of-freedom parallel manipulators with revolute

actuators

I) Algebraic formulation

Since the identical actuated legs of the four-, five- and six-degree-of-freedom mech-
anisms have the same architecture, one can directly use eq.(2.54) for the derivation of

the velocity equations of the mechanism.

Differentiating eq.(2.54) with respect to time, one obtains eqgs.(2.93)—(2.96) with the

same coefficients, except that 7 ranges now from 1 to 5.

One then obtains an equation identical to eq.(2.97) but with

. . . . . . T
po= [p P2 Ps ps ps]

B, = diag[t; b b5 b b]



and

[~ 1.7 T T T T [
11 12 13 14 15 16
T T T T T T

ks, kyy kiy ks kis kg

K, = kgl k§2 k§3 34 k§5 k§6 (2-122)

T r T r T r
k41 k42 k43 k44 k45 k46

| k1 kg2 K5y K5y ks K
where the £7; are defined after eq.(2.98) but should now be taken for i =1,...,5.

Now, in order to include the constraint associated with the special sixth leg eq.(2.64)

is differentiated with respect to time, which leads to
l‘ﬁis + yﬁyﬁ + 262.6 =0 (2123)

Setting ¢ = 6 in eqs.(2.94)—(2.96)—which is justified since the sixth leg is now considered—

and substituting the latter equations in eq.(2.123), one obtains

t=J,% (2.124)
with
x=[i gy 2 ¢ 0]"
and ) -
1 0O 0 0 O
0 1 0 0 0
0 O 1 0 O
J, = (2.125)
0 0 0 1 0
0o 0 0 O 1
L J61 Jea Jés Jea  Jes
and
i = —
61 ./,EGng + y605,¢, + Z6Cz6,¢,
= —Ys
62 x60£¢ + yﬁC&p + ZGCS'zp
i = —
63 ./,EGng + y605,¢, + Z6Cz6,¢,
i = —26Co — YsCpy — %6C2
64 .7/'6CS¢ + yGCSw + Z6CS¢
o —16Cpp — 2/6050 — 2C%
Jes =

o4



Eq.(2.124) represents the kinematic velocity constraints associated with the special

unactuated kinematic chain — the sixth leg — connecting the base to the platform.

Finally, substituting eq.(2.124) into eq.(2.97) written for the five-degree-of-freedom

mechanism one obtains the velocity equations of this mechanism, i.e.,
B.p=Ax (2.126)
where A, is a 5 by 5 matrix which is defined as

A, =K,J,

IT) Vector formulation

Considering the quantities defined in Figure 2.23, one can write the velocity equa-

tions associated with the closed loop OZ-O;P,P(;O, fori=1,...,5, as
wﬂxli1+w,~2><lz-2+w><vi:w6><p6, 121,,5 (2127)
where w;; (i =1,...,5 and j = 1,2) is the angular velocity vector of the jth link of
the ith leg, while 1;; (i =1,...,5) is the position vector from point O; to point O. and
lip (i=1,...,5) is the position vector from point O} to point P;.
Eq.(2.127) can be rewritten as
—l,~1xwilzligxwig—i—vixw—psst, ’L=1,,5 (2128)

Moreover, the cross products appearing in eq.(2.128) can be written in matrix form,
which leads to
—Lile,-,[)i = Ligwig + Vzw — P6w6, 1= 1, ceey 5 (2129)

where vector w;; has been written as
Wwi1 Ipiei, 1= 1,...,5 (2130)

where e; is the unit vector associated with the direction of the axis of the ¢th actuator.

Moreover, the matrices used above are defined as

Li = [1xL, i=1,...5
Lo = [1xlp, i=1,...,5
V, = [1]xvi, i=1,...,5
0 -z w
P = [1]xps=| 2z 0 —uz

Y zi 0
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Figure 2.23: Position and velocity vectors associated with the spatial five-degree-of-

freedom parallel mechanism with revolute actuators.

where l;15, lj1, and [;;, are the components of vector 1;; and l;9;, li2y and l;z, are the

components of vector 1;s.

One can represent vectors Li(7 = 1, ..., 5) and vector pg using spherical coordinates,

as shown in Figure2.21. Hence, one has
wiQZGiwis, izl,...,5

and

ws = Gewes

where G; is defined in eq.(2.113) (now for i=1,...,6) and

&;
Wi = l . ] i=1,....6
Bs

Substituting egs.(2.131) and eq.(2.132) into eq.(2.129), one obtains
—Lﬂeip'i = Tiwis -+ Vzw — SG“’GS; 7, = 1, ey 15)

where
Ti:LiQGia 221,,5

and V; and S; are as previously defined.

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)
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Finally, the velocity equations of the five-degree-of-freedom mechanism with revo-

lute actuators is obtained from eq.(2.134) as
B,,p = J,oW (2.136)

where B, is a 15 X 5 matrix defined as

[ —Lie; 0 0 0 0
0 —Lye 0 0 0
B,,=| 0 0 —Lye; O 0 (2.137)
0 0 0 —Lyiey 0
.0 0 0 0 —Ls1e5 ]

where 0 denotes a 3-dimensional zero column vector, and p is the joint velocity vector

previously defined.

Moreover, vector w is a 15-dimensional vector defined as

T

T
w=[wl, wy wy owi owh W wgl (2.138)

and matrix J,, a 15 x 15 matrix defined as

T, 0 0 0 0 V;, —Sg
0O T, 0 0 0 V;, —S¢
J,=l0 0 T3y 0 0 V; —Sg (2.139)
0 0 0 T, 0 V, —Sg
0 0 0 0 Ts Vs —Sg]

where 0 denotes a 3 X 2 zero matrix.

IIT) Determination of the singularity loci

The determination of the second type of singularity loci consists in finding the roots
of the following equations, i.e.,
det(A,) =0 (2.140)

or

det(J,,) =0 (2.141)

Since matrix J,, is rather sparse, it is therefore easy to reduce the expression of its
determinant to the expression of the determinant of a 5 x 5 matrix. Hence, the use of

the matrix obtained with the vector method will lead to faster algorithms.

det(J,,) = D,det(J) =0 (2.142)
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where 5
D, =[] 15d; (2.143)
i=1
with vector d; defined as
d; =[cose; siney 0]7, i=1,...,6 (2.144)

and where matrix J can be written as

[l x vi)T (ps x 112)Tu 15h]
(Ig X vo)''  (pg X lz9)'u 1Lh
J=1] (3 xv3)" (psxIl3)"u 1Lh (2.145)
(Lo x va)T (pe X ly)Tu 1Lh
[ (Is2 x v5)T (Ps x 152)"u I?Qh_
where
h = up!ds — dspg u (2.146)
with
u=[0 0 1]" (2.147)

From the above equations, it is clear, by inspection, that D, # 0. Therefore,
egs.(2.140) and (2.141) can be reduced to

det(J) =0 (2.148)

where J is a 5 x 5 matrix and hence, the determination of the singularity loci is greatly

simplified.
IV) Example

Two examples are given to illustrate the results. Since the mechanisms have five
degrees of freedom, their workspace is five-dimensional. In order to be able to visualize
the results, three of the Cartesian coordinates are fixed and one then obtains a two-
dimensional section of the workspace associated with the other two coordinates on

which the limits of the workspace and the singularity loci can be plotted.

Using the same parameters as the ones used in the example on the determination of
the workspace of the mechanism, one can obtain the singularity locus over the workspace

in two sections, as represented in Figures 2.24.
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\ _____ [
gt 1
15 . 15
1 0.5 0 0.5 1 15 2 L5 1 0.5 0 0.5 1 L5 2
(a) a section of the workspace (over z (b) a section of the workspace (over y
and z) with K; =1,(i =1,...,6). and z) with K; =1,(i =1,...,6).

Figure 2.24: Singularity locus and workspace of the five-dof manipulator.

2.2.2.3 Spatial six-degree-of-freedom parallel manipulators with revolute

actuators

I) Algebraic formulation

Similarly to the previous cases, differentiating eq.(2.54) with respect to time, one

obtains

lin(Sicosp; — Risinp;)pi = (x; — Tip + lin siny; cos p;)&; + (Yi — Yio — lix cos ; sin p;)y;
—f—(Zi—Zio—lﬂ sinpi)z'i, 1= 1,...,6 (2149)

Substituting eqs.(2.94)—(2.96) into eq.(2.149), one obtains the velocity equations of the

six-degree-of-freedom mechanism with revolute actuators, i.e.,
B,p =K.t (2.150)

where vector t has been defined above and where p=[p; po ps ps ps pe) and

matrices B, and K, can be written as

B, =diag[b] b, 5 b O b7] (2.151)



and

r 1.7 T T T T T
11 12 13 14 15 16

T T T T T T
k21 k22 k23 24 k25 k26
k’l" T k’l" T k.’l" T

31 32 33 34 35 36
K, = (2.152)

T T T T T T

41 42 43 44 45 46

T T T T T T
k51 52 k53 54 k55 56

T T T T T T
k61 k62 k63 k64 k65 k66 -

where the k;; are defined after eq.(2.98) but should now be taken for i =1,...,6.

Since no constraining kinematic chains are introduced in this manipulator, the ve-

locity equations are rather simple.
IT) Vector formulation

Similarly, considering the quantities defined in Figure 2.25, one can write the veloc-

ity equations associated with the closed loop OiO;PiPGOG, fore=1,...,5, as
wﬂ><l,~1+w,-2><li2+w><v,~=w61><161+w62><162, 221,,5 (2153)

where w;; (i =1,...,6 and j = 1,2) is the angular velocity vector of the jth link of
the ith leg, while 1; (i = 1,...,6) is the position vector from point O; to point O; and

lip (i =1,...,6) is the position vector from point O; to point P;.

Eq.(2.149) can be rewritten as
i Xwi — gt Xwgr =g Xwipp +v; Xxw—lgg X wge, 1=1,...,5 (2.154)
The cross products appearing in eq.(2.154) can be written in matrix form
—Ljie;p; — Lgiegps = Lipwio + Viw — Lgowso, i=1,...,5 (2.155)
where vector w;; has been written as
wi =pie, i=1,...,6 (2.156)

where e; is the unit vector associated with the direction of the axis of the ¢th actuator.
Moreover, the matrices used above are defined after eq.(2.112), but now fori =1,...,6,
where l;15, i1, and [;;, are the components of vector 1;; and l;9;, li2y and [z, are the

components of vector l;», and where matrices V; has also been defined after eq.(2.111).
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Figure 2.25: Position and velocity vectors associated with the spatial six-degree-of-

freedom parallel mechanism with revolute actuators.

One can represent vectors l;5(i = 1,. .., 6) and vector pg using spherical coordinates,

as represented in Figure2.21. Hence, one has
wio = Gw;s, 1=1,...,6 (2.157)
where G; was defined in eq.(2.113) and wy, = [&;  Bi]",i=1,...,6.
Substituting egs.(2.156) and eq.(2.157) into eq.(2.155), one obtains
—L;1e;p; — Lgiegps = Tiw;s + Viw — Tewgs, i=1,...,5 (2.158)

where

and V; and S; are as previously defined.

Finally, the velocity equations of the mechanism are obtained from eq.(2.158) as

B,,p = J,, W (2.160)
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where B, is a 15 X 6 matrix defined as

[ —Lie; 0 0 0 0 —Lgieg ]
0 —Loey 0 0 0 —Lg €6
B,, = 0 0 —Lsies 0 0 —Lg1 €6 (2.161)
0 0 0 —Lseq 0 —Ls1€5
. 0 0 0 0 —Lsies —Lgieg |

where 0 denotes a 3-dimensional zero column vector, and p is the joint velocity vector

previously defined.

Moreover, vector w is a 15-dimensional vector defined as

w=lwl, Wl i Wi ol W W] (2.162)
and matrix J,, a 15 X 15 matrix defined as
T, 0 0 0 0 V, —Ts]
T, 0 0 0 V, —-T
0 T; 0 0 V; —Tg (2.163)

0 0 T, 0 V, —T
0 0 0 T Vs, —Tg

(]

$

<

I
© o o o

where 0 denotes a 3 X 2 zero matrix.
IIT) Determination of the singularity loci

Again, the determination of the second type of singularity loci consists in finding

the roots of the following equations, i.e.,
det(A,) =0 (2.164)

or

det(J,,) =0 (2.165)

Matrix J,, is rather sparse and it is therefore easy to reduce the expression of its
determinant to the expression of the determinant of a 5 x 5 matrix. Hence, globally, the
use of the matrices obtained with the vector method will provide simpler expressions

which will therefore lead to faster algorithms.

det(J,,) = D,det(J) =0 (2.166)
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where ]
D, =[] 15d; (2.167)
=1

with vector 1;; defined above, with vector d; defined in eq.(2.144) and where matrix J

can be written as

(1o x vi)T (Lgz x Liz)Tu 157

(lyg x vo)T'  (Lgg X Ipg)Tu 1Lk
J=|(lsxv3)" (Lgzx13)"u 15k (2.168)

(Lig x v)T (Lgo x 1go)Tu 1Lh

| (Is2 x v5)T (L2 x 152)Tu 15N |

where h and u are defined respectively in eqs.(2.146) and (2.147).

From the above equations, it is clear, by inspection, that D, # 0. Therefore,

eqs.(2.164) and (2.165) can be reduced to
det(J) =0 (2.169)

where J is a 5 X 5 matrix and hence, the determination of the singularity loci is greatly

simplified.
IV) Example

Similarly to the other cases, in order to illustrate the results, two examples are
presented below. Since the mechanism has six degrees of freedom, its workspace is
six-dimensional. In order to be able to visualize the results, one has to fix four of
the Cartesian coordinates and then obtain a two-dimensional section of the workspace
associated with the other two coordinates on which the limits of the workspace and the

singularity loci can be plotted.

Using the same parameters as the ones used in the example on the determination of
the workspace of the mechanism, one can obtain the singularity locus over the workspace

in two sections, as represented in Figures 2.26.
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Figure 2.26: Singularity locus and workspace of the six-dof manipulator.

2.3 Kinematic optimization of mechanisms with re-

duced degrees of freedom

In this section, the optimization of planar two-degree-of-freedom as well as spatial four-
and five-degree-of-freedom parallel manipulators is addressed. The objective is to syn-
thesize manipulators in which the uncontrollable dependent Cartesian coordinates will
follow certain trajectories which are functions of the independent Cartesian coordinates
and which are prescribed by design. This may be suitable in certain applications where
the dependent Cartesian coordinates would be required to follow prescribed — and fixed
— trajectories. The dependent Cartesian coordinates are first expressed as functions
of the relative linkage parameter of the manipulator using the kinematic equations.
The objective functions are formed using the least square method. The limits of the
workspace of the manipulators are used as the constraints in the optimization in order
to ensure that all specified trajectory points are in the Cartesian space and located

inside the workspace of the optimized manipulators.
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2.3.1 Planar two-degree-of-freedom manipulator

Referring to Figure 2.1, it is clear that the orientation of the end-effector of the two-
degree-of-freedom planar mechanism is only related to the two links of the first leg.
Hence, in order to simplify the study, it is assumed that the mechanism studied consists
of two moving links and two revolute joints, as illustrated in Figure 2.27, and the lengths
of the two links of the second leg can be arbitrarily chosen to meet the kinematic

requirements of the resulting mechanism.

Two reference coordinate frames are defined. Coordinate frame O —x—y is attached
to the base and its origin O lies at the center of the joint connecting the first moving
link and the base. Coordinate frame O’ — x’ — y’ is fixed to the second moving link
and its origin O’ is coincident with point P where the end-effector of the manipulator
is assumed to be positioned. Point P; denotes the center point of the joint connecting

the two moving links.

Let [; denote the length of the first moving link, (a,b) the coordinates of point Py
in the moving reference frame O' — x’ —y' and (z,y) the coordinates of point P in the

fixed reference frame O — x — y. From the geometry of the manipulator, one can write

o x

Figure 2.27: First leg of the planar two-degree-of-freedom parallel manipulator.

the following vector equation
P =p+Qr (2.170)
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where
r=[a b]" (2.171)

Q is the orientation matrix of the moving frame with respect to the fixed frame, which
is written as

(2.172)

cos¢p —sing
[sinqﬁ cosqﬁ]

where ¢ is the angle between coordinate axes x' and x.

If one chooses any two coordinates of the three Cartesian coordinates z,y and ¢,
for instance x and ¥, as the independent coordinates of the manipulator, the dependent

angle ¢ can be computed from equation (2.170).

From equation (2.170) one can write

licos@ = z+ (acos¢ — bsing) (2.173)
lysin@ = y+ (asin¢ + bcos @) (2.174)

Squaring both sides of equations (2.173) and (2.174) and then adding leads to

Acos¢+ Bsing =C (2.175)
where
A = 2(ax + by) (2.176)
B = 2(ay — bx) (2.177)
C = 2?+y’+a®+b* -1} (2.178)

From equation (2.175) one obtains

, BC + KAVA
sing = B (2.179)
AC + KBVA
cos¢p = YEEZ (2.180)
where
A = A*+B*-C? (2.181)

K = +1
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Variables A and K are two important factors in the optimization of the manipula-
tor. A is the discriminant of equation (2.175). A value of A larger than zero means
that point P(z,y) is located inside the workspace of the manipulator. K is the branch
index of the manipulator, its two values determine the two possible configurations of

the manipulator.

From eq.(2.175), it is clear that when z and y are given, angle ¢ is only related to
linkage parameters /1, a and b. Therefore, these three linkage parameters are chosen as

optimization variables.

Assuming that the two-degree-of-freedom manipulator is used to position n points
of the plane from P(x1,y;) to P(x,,y,) while the orientation of the end-effector of
the manipulator corresponding to these points is required to be as close as possible to

prescribed values noted ¢; to ¢,, one can formulate the optimization problem as follows

Minimize:

F(x) (2.182)

Subject to:
gi(x) >0, i=1,...,n (2.183)

where

x = [u uy us| (2.184)
= [l a b] (2.185)
F(x) = %eTWe (2.186)
gi(x) = A, i=1,...,n (2.187)

where W is a 2n by 2n weighting matrix and e is a 2n dimensional error vector, written

aJS -~ . . - -
sin ¢1 — sin ¢,

oS g1 — €OS By
e= (2.188)

sin ¢, — sin ¢,,
| cos ¢, — oS @, |
where sin¢;, cos¢; and A; (i = 1,2,...,n) are computed according to egs.(2.179),
(2.180) and (2.181) respectively.
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The generalized reduced gradient method is used here [63]. This method is an
extension of the reduced gradient method which is used to solve equality-constrained
optimization problems, where one adds one slack variable to each inequality constraint
thereby transforming the inequality-constrained optimization problem into an equality-

constrained one.

This method is efficient for both objective and constraint functions which are highly
nonlinear. In the method, a search direction is found such that any active constraints
remain precisely active for some small move in this direction. If a move is made,
because of nonlinearity, some currently active constraint does not remain precisely

satisfied, Newton’s method is used to return to the constraint boundary.

An algorithm written in FORTRAN language by Wang and Xie [63] is directly
applied for the optimization. The expressions of the partial derivatives of the objective

and constraint functions are needed. They can be obtained as follows:

Assuming W = [1], [1] denoting a 2n by 2n identity matrix, differentiating equation
(2.186) with respect to x one then has

OF (x) de . r
=(— 2.1
o~ (o) © (2.189)
From equation (2.188) one can obtain
[ cos (;51( LT
— sin gbl( o1)T
de
— = 2.190
ox ( )
oS ¢, ( ‘i )z
| — sin ¢, (3227 |
where %% can be obtained from equation (2.175)
d¢;  0C; aA B : .
= — ; ; — A; ; =1,2, ... 2.191
ox ( ox 8X ¢z —— sin d’z)/(Bz COs ¢z Az S ¢Z)7 ? 74y ey ( 9 )

where 25 24i and 2Bi can be easily obtained from equations (2.176)—(2.178) as

—2uy 0 0
=1 92 = |2z, = | 2y 2.192
ox Y2 Ty o Y ( )
2us 2y; —2x;
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PP Py |P | P | By | P | By | Py | Py

z |15 |18 (21 |24 |27 (3.0 |33]36]39]| 42
y 05 (08 |11 |14 |17 |20 |23 |26|29]| 3.2
¢ | 150 | 140 | 130 | 120 | 110 | 100 | 90 |{ 80 |70 | 60

Table 2.1: Data set for the two-dof parallel manipulator, lengths are in meters and

angles in degrees, K = —1.

The partial derivatives of the constraint functions can be obtained by differentiating
equation (2.181) with respect to x, i.e.,

0g;(X)  0A;
ox  0x = 24;

0A4; 0B; oC;
ox TPy Ty

(2.193)

Prescribing 10 points of the X-Y plane, Py, P, ..., Pjy, as well as a set of orientation
angles corresponding to each of these points and noted ¢, ¢, ..., ¢, it is desired to
find the most suitable three linkage parameters /1, a and b so that when the end-effector
of the manipulator passes through points P; (i = 1,2, ...,10) its orientation angles ¢;
(i =1,2,...,10) are as close as possible to the specified values ¢, (i = 1,2,...,10). An

example data set is given in Table 2.1.

Using the program GRGM (Generalized Reduced Gradient Method) [63] one obtains

the following results for the optimization

lL =3.39, a = —2.09, b =0.004
and

¢ =[153.00 137.32 126.53 117.47 109.11 100.91 9247 83.31 72.58 57.54]
(2.194)

The square of the sum of the errors gives
10 B
err =Y (¢i — ¢;)” = 2.0E — 02 (2.195)
i=1
The corresponding error curve is shown in Figure 2.28. This example illustrates that
when the end-effector of the two-dof manipulator passes through a set of prescribed

points, it is possible that its orientation angles can be close to the desired values by an

optimal choice of the linkage parameters.
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Figure 2.28: Example of optimization synthesis of the two-dof mechanism.

2.3.2 Spatial four-degree-of-freedom manipulator

Similarly, the optimization problem for the four-degree-of-freedom manipulator can be

stated as:

Specifying a set of points P;(z;, i, 2i, ;)i = 1,...,n in the four dimensional space
and the corresponding sets of Euler angles f; and v;, determine a set of optimal pa-
rameters l5, as, b5 and c; of the manipulator, for which, when the manipulator passes
through points P;, the two dependent Euler angles 6; and v; are as close as possible to

their prescribed value 6; and ;.
It can be formulated as
Minimize:
F(x)
subject to:
gi(x)>0, i=1,...,n

where F'(x) is the objective function and g; is the constraint function.

1 1
F(x) = 5elTwlelJrieQTwze2 (2.196)



T
X = [’U,1 Uo Us ’U,4]

= [ls a5 by c5]” (2.197)

where W and Wy are two weighting matrices, and

[ sinf; — sinf; [ sinp; — sin; ]
cos 0, — cos b, cos 11 — cos Y,
e, = . ey = (2.198)
sin @,, — siné,, sin 1, — sin,,
| cosf — cos b, | | cos ¥, — cosp,, |

The constraint function is written as

g =191 92 93 G4 G5 Yeil, t=1,...,n (2.199)
where
qu(x) = Al (2.200)
gi(x) = AL (2.201)
IG+2i(x) =V} (2.202)
1 = 1,..,n
j o= 1,...,4

where g(;12);(x) are the constraints associated with the jth actuated leg while Ay;, Ay
and V; have been defined in eqs.(2.41), (2.48) and (2.57) respectively.

The generalized reduced gradient method is used for the optimization problem.
The expressions of the partial derivatives of the objective and constraint functions are

written as follows
Assuming W; = Wy = [1], with [1] the identity matrix,

oW(x) _ oes de,

ox ( 0x Vet ( 0x )'e (2.203)

Differentiating equations (2.198) with respect to the optimization variables x, one
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then obtains

cos 0 (221)T 7 COS%(%)T ]
— sin 6 (%) — sin ¢y (22)7
Oeq des
der _ oe _ 2.204
ox T0x (2.204)
cos Hn(%ig)T C05¢n(aa%)T
— sin 6, (%) | — sin ¢y, ()7 |

(
where % and 2% (i = 1,2,...,n) can be obtained by differentiating equations (2.42)
and (2.49) respectively, i.e.,

o, ,0Ci,  0A; 0B, . ; P :
811 = ( 8}32 8}?2 cos 1; — 6;2 sint;)/ (B, costp; — Alysinyy), i=1,...,n
(2.205)
a00; ,0b 0A Oty . .
a_x:(a_x_a_x)/(Aag) i=1,...,n (2.206)

and 33432, 63){ and 2 42 can be easily obtained by differentiating equations (2.43)—(2.45)

as

. . Ao
— sin ¢;(sin o + u1 cos o )

. . 6&
oCt, _ —uy Sin ¢; €os a; 5 ;

0
1

’ ox o]’ ox — sin ¢; cos a,gaﬁ
0

o~ (2.207)

—u4 sin ¢@; cos o gfl‘

0

AL, |0 0Bi,
1
0

Differentiating equation (2.35) with respect to x, one has

aa(j; = (8;‘:11 - 8543 cos oy — aale sino;)/ (B, cosa; — Al sinay), i=1,2,..,n
(2.208)
and similarly, by differentiating eqs.(2.36)—(2.38), one then obtains
2uq
a:;jl =0, agjl =0, aacjl - :zzz (2.200)
—2uy

The partial derivatives of the constraint functions can then be obtained as follows

891,- _ BA + 28321 _ 6041
ox 8x ax_ ax
0go; 281412 n 28B}12 B 26042

ox ox ox ox
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and
9g9(j +2)i(x) _ OR; 05, 0T,
=2 2 -2 2.210
ox ox * ox ox ( )
where
OR: _ Oys
ox  Ox
Ok, _ 9
ox  0Ox
OTi _ 2(wi — mio) 5t + 2(4i — Yio) g +2(2i — 2i0) G
0x 20,
where x;,y; and z; are the three components of vector p;, namely
dz;
ox
op; Ay;
o | x (2.211)
9z
ox

The same optimization program GRGM used for the optimization of the two-dof
mechanism is used here. A numerical example illustrating the application of the above

procedure to the four-degree-of-freedom manipulator is now presented.

Given 10 points, P;, Ps, ..., Piy, for which the four independent Cartesian coordi-
nates are prescribed as well as two sets of dependent orientation angles associated to
these points, 01,0, ..., 019 and 1)y, s, ..., 1, find the most suitable four linkage param-
eters [5, as, bs and c; so that when the end-effector of the manipulator passes through
points P; (i = 1,2,...,10) its two sets of dependent orientation angles 61,0, ..., 619

and 1,19, ...,110 are as close as possible to the specified values 61,6,, ...,0;, and

Ela@% "'7@10'

The parameters used in this example are given as
Tor = —1.5, Yo = 1.5, Tog = —3.0, Yoz = 1.5, To3 = —3.0, yo3 = —1.5

ZTog = —1.5, You = —1.5, o5 = 0.0, yo5 = 0.0, 2,; = 0.0(: =1,...,5)
a; = 02, bl = 06, CcC = —04, Q9 = —06, b2 = 06, Cy = —-0.4

a3 = —0.6, b3 = —0.6, C3 = —0.4, a4 = 02, b4 = —0.6, Cy = —0.4

m m _37r _37T
71—4,72—4,73— 4,74— 4

i1 =4.0,lp =406 =1,...,4)
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z; | -145]-14|-135|-1.3|-1.25|-1.2 | -1.15 | -1.1 | -1.05 | -1.0

z; | 0.8 0.8 |08 0.8 | 0.8 0.8 |0.8 0.8 0.8 0.8
®i | 5 3 ) 3 3 ) ) ) 3 )
0; |5 10 | 15 20 |25 30 |35 40 | 45 90
P, | 5 3 ) 3 3 ) ) ) 3 )

Table 2.2: Data set for the 4-dof parallel manipulator, lengths are in meters and angles

in degrees, K1 = —1 and Ky, = 1.

The specified Cartesian poses are represented in Table 2.2.
The results of the optimization are
ls = 2.614, a5 = —1.044, b5 = 0.108, c5 = —0.959
which leads to
0 = [7.676 11.312 15.150 19.221 23.563 28.228 33.284 38.834 45.043 52.211]7
W = [5.806 5.572 5.351 5.145 4.961 4.804 4.683 4.610 4.604 4.696]"
The least square sum of the error gives
err = i[(ei —0:)* + (i — ;)*] = 7.77T4E — 03 (2.212)
i=1
The error curves are shown in Figure 2.29.

It can be seen from the example that by an optimal choice of the parameters of the
special leg, the two dependent Cartesian coordinates assume the desired values when

the independent Cartesian coordinates pass through the prescribed trajectories.

2.3.3 Spatial five-degree-of-freedom manipulators

The optimization problem of the five-degree-of-freedom manipulator can be stated as:

Specifying a set of points Pj(x;, ys, 2, %,6;) @ = 1,...,n in the five-dimensional

space and the corresponding set of Euler angles 1;, find the four optimal parameters
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(a) First dependent Euler angle 6 (b) Second dependent Euler angle v

Figure 2.29: Example of optimal synthesis of the spatial four-dof manipulator.

of the manipulator lg, ag, bg and cg, for which, when the manipulator passes through

points P;, the dependent Euler angle v; is as close as possible to its prescribed value

Yi-
This can be expressed mathematically as

Minimize:

subject to:

gi(x)>0, i=1,2,..,n

where n is the number of prescribed Cartesian points.

1
F(x) = 5eTWe (2.213)
T
X = [z1 Ty T3 4]

= [ls a5 b cs]" (2.214)



where W is a n by n weighting matrix and
[ sint), — sin; |
cos Y1 — cos Y,

e= (2.215)

sin 1, — sin 4,

| cosp — cosp,, |

The constraint function is

g =g 92 3% Gu Gsi Yeil (2.216)
where
qu(x) = A’ (2.217)
gg+i(x) =V} (2.218)
1 = 1,..,n
j o= 1,..5

and where g(;11);(x) are the constraints associated with the jth actuated leg, moreover,

A and V; have been defined in eqs.(2.57) and (2.66) respectively.
Similarly to the previous case, we assume W = [1], with [1] an identity matrix.

One can write

OF (x) Oe

= ()" 2.21
ox (ax) © (2.219)
Differentiating equations (2.215) with respect to x, one then obtains
T cosyp(2)T ]
— sin(Z)"
oe
= = 2.220
ox ( )
cos w(g—’ﬁ)T
| —sinp(Z2)T ]
where % (1=1,2,...,n) can be obtained by differentiating equation (2.65)
O oC*  0A oB' , ;. :
(;i = ( % O cos ; — o sine;)/(B'costp; — A'sinvy), i=1,...,n (2.221)

76



where 8—Ai, 9B' and 22 can be easily obtained from equations (2.66)—(2.68) as
ox ox ox
0
A _ 2(z; cos ¢; cos B; + y; sin ¢; ?os 6; — z;sin6;) (2.222)
ox 2(y; cos ¢; — x; sin ¢;)
0
0
B 2(y; cos ¢; — x; sin @;
a — (yl ¢Z ‘ (2 ¢Z) . (2.223)
ox 2(z; cos ¢; cos B; + y; sin ¢; cos §; — sin 6;)
0
2U1
8CZ —2U2
= (2.224)
0x —2u;
| —2(uy — ; cos ¢; sin B; + y; sin ¢; sin 0; + z; cos 0;

The partial derivatives of the constraint functions can be respectively obtained as fol-

lows

and

where
OR;
ox
OR;
ox
oT;
ox

similarly, where z;, y;

091 0A" 0B’ oC"
ox _28}( +28x _26x

=2 2 -2 2.225
ox ox + ox ox ( )
_ 9y
ox
- Ox
o 2(mi — o) B+ 2(yi — yio) B+ 2(2i — 2i0) 5
215
and z; are the three components of vector p;, i.e.,
dz;
ox
op; .
o = Sui (2.226)
82
ox

Again, the same numerical algorithm is used for the optimization.

Given 10 points Py, P, ..., Py, for which the five independent Cartesian coordinates

are prescribed as well as the dependent angle associated to these points, find the most

7
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PP PP | P (B | P B | Py | Py
z; [-1.0|-1.1|-12|-1.3|-14|-15|-1.6 | -1.7 | -1.8 | -1.9
y; |01 /01 01 |01 {01 |01 |01 |01 [0.1 |01
z [06 |07 |08 |09 |1.0 |11 |12 |13 |14 | 1.5
;|5 |5 |5 |5 |5 |5 |5 |5 |5 5
;|5 |5 |5 |5 |5 |5 |5 |5 |5 5
¢; |55 |50 |45 |40 |35 |30 [25 |20 |15 | 10

Table 2.3: Data set for the 5-dof parallel manipulator, lengths are in meters and angles

in degrees, K; = —1.

suitable four linkage parameters l5, a5, b5 and c5 so that when the end-effector of the
manipulator passes through points P; (i = 1,2, ..., 10) its dependent orientation angles

1,1, ..., 1o are as close as possible to the prescribed values 1, s, ..., V1.

The parameters used in this example are given as

To1 = 2.0, Yo1 = 1.5, To2 = —1.0, yo2 = 1.5, o3 = —2.0, y,3 = 0.0,
Toa = —1.0, You = —1.5, o5 = 2.0, yo5 = —1.95, 26 = 0.0, yo6 = 0.0,
26 =0.0G=1,...,6),

a; =0.8, b =0.6, c; =—04, a, = —0.4, by =0.6, co = —0.4
a3 = —0.8, b3 =0.0, cg = —0.4, ay = —0.4, by = —0.6, ¢, = —0.4,
=3 o= =3y =T, =2,
ln = 4.0, l, =4.0,(i=1,...,5)

The specified Cartesian poses are represented in Table 2.3.

The results of the optimization are

lg = 2.278, ag = 0.285, bg = 0.876, c¢ = —1.854
which leads to

¥ = [55.219 50.131 45.031 39.961 34.930 29.934 24.957 19.980 14.982 9.937]"



with K = —1. The least square sum of the error gives
10 B
err = Y [(¢ — $;)°] = 2.554E — 05 (2.227)
i=1

The error curve is shown in Figure 2.30.
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Figure 2.30: Example of optimal synthesis of spatial five-dof manipulator.

Similarly, one can realize from the example that by an optimal choice of the param-
eters of the special leg, the dependent Cartesian coordinates can be close to the desired
values when the five independent Cartesian coordinates pass through the prescribed

trajectories.

Moreover, it can be noticed from the examples that the results obtained for the
five-degree-of-freedom manipulator are better than those obtained for the four-degree-
of-freedom manipulator. This is because the five-degree-of-freedom manipulator has

more degrees of freedom and it is therefore easier to adapt to the prescribed poses.
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2.4 Conclusion

The kinematic analysis of planar and spatial parallel mechanisms has been addressed
in this chapter. The inverse kinematics of these mechanisms has been solved and their
workspace has been determined using a simple novel algorithm. This general numerical
algorithm can be applied to the determination of the workspace of any type of planar

and spatial parallel mechanism.

The velocity equations of the mechanisms have then been derived using two ap-
proaches, namely, the algebraic and the vector formulation. The latter approach is a
new approach which can lead to simple expressions of the determinants of the Jaco-
bian matrices of the mechanisms. The singularity loci of the mechanisms have been
determined by the two approaches, both approaches leading to identical results. The
algorithm for the determination of the singularity loci using the latter approach is

however, much faster than the former one.

The kinematic optimization of mechanisms with reduced degrees of freedom has
also been discussed. The generalized reduced gradient method has been used for the
optimization and led to a fast converge. The dependent Cartesian coordinates of the
mechanisms can follow desired trajectories as closely as possible when the independent
Cartesian coordinates pass through the prescribed points using the optimization proce-
dure presented in this chapter. This property is important for the practical applications

of mechanisms with reduced degrees of freedom.
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Chapter 3

Dynamic analysis

The dynamic analysis of planar and spatial parallel manipulators is presented in this
chapter. A new approach based on the principle of virtual work is first used to derive
the generalized input forces of the manipulators. This approach is efficient and suit-
able for the control of manipulators. Then, the conventional approach used for dynamic
analysis of parallel mechanisms or manipulators, namely, the Newton—Euler equations,
is also applied to derive the generalized input forces of the manipulators. Since the
constraint forces between the links are computed, this approach leads to a slower al-
gorithm compared to the approach based on the principle of virtual work; however, it
is useful for the simulation and design of the manipulators. Finally, the corresponding
algorithms are compared and numerical examples are given in order to illustrate the

results.
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3.1 Approach using the principle of virtual work

The approach based on the principle of virtual work consists in expressing the inertial
force and moment acting on the links of the manipulator and then considering the ma-
nipulator to be in “static” equilibrium. The virtual displacement of each link caused
by the virtual displacement of each actuated joint is computed. Finally, the principle

of virtual work is applied to obtain the actuator forces or torques.

3.1.1 Planar parallel manipulators with revolute actuators

In chapter 2, the inverse kinematics of the planar two- and three-degree-of-freedom
mechanisms is computed and the orientations of the all moving links of the two mecha-
nisms have been determined. Therefore, the determination of the position and orienta-
tion of the moving links is not mentioned here for reason of simplicity. The procedure
for deriving the generalized forces or torques using this approach, therefore, will consist
of the following steps: velocity analysis, acceleration analysis, computation of the iner-
tial forces and moments, determination of the virtual displacements and determination

of generalized input forces or torques.

3.1.1.1 Two-degree-of-freedom manipulator

I) Velocity analysis

From the two kinematic chains of the mechanism (see Figure 2.13), one can write

wi; Xa +wz Xaz = p (31)
Wo Xay+wyXa, = Pp—wsXas (3.2)
where w; (i = 1,...,4) and a; (i = 1,...,5) are respectively the vector of the angular

velocity and position vector of the 7th moving link, vector p is the given Cartesian

velocity vector of the end-effector, i.e.,

o= (33)

Y
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Eqgs.(3.1) and (3.2) can be rewritten in matrix form as

A17)1 = by
Aoy, = by

where

w1 [ —ll sin 01 —l3 sin (671 . [
m = [ ], A = ], bl:P:[.

w3 | 11 cosb; 3 cos o

Woy [—lysinf, —l4sin oy
n, = ’ A2 =

Wy | I3 cosby l4 cOs ap

b, = p—wsxas=

(@ + W3l5 sin (0%} ]

| — wsls cos ay

where all quantities in the above equations are as defined in Chapter 2.

The solution of egs.(3.4) and (3.5) respectively leads to
mh = Al_lbl
n, = Aj'by

IT) Acceleration analysis

Differentiating eqgs.(3.1) and (3.2), one then obtains

wlxal—i—ngag:el

w2xa2+w4><a4=e2
where p is the given acceleration vector of the end-effector, and

e = ﬁ—wlx(wlxal)—ng(ngag)
ey = 1")—&:3><a5—w3><(w3><a5)

—Wao X ((.UQ X 3.2) — Wy X ((.04 X a4)

Similarly, eqgs.(3.8) and (3.9) can be rewritten as

Aﬂh =€
A2772 =€

83

(3.10)



where

M = [”] L iy = [“’] (3.13)

ws Wy

From egs.(3.11) and (3.12), one can obtain

n, = Al'e (3.14)
Ny, = Aj'e, (3.15)

IIT) Computation of the forces and torques acting on the center of mass of each link

The force acting on the center of mass of each link consists of two parts: the inertial

force and the gravity force. The moment acting on each link is the inertial moment.

In order to compute inertial forces, one must first determine the linear acceleration

of the center of mass of each link.

One can write

a; = wl X Q,‘I‘i + w; X (wZ X Qil‘i), 1= 1, 2 (316)
a; = w; X Qi+ w;x (W x Qljo)
+u'2j X erj + w; X ((.Uj X Q]‘I‘j), j = 3,4 (317)

where Q; and 1; are respectively the orientation matrix of the ¢th link and the position
vector of the length of the link while r; is the position vector from the center of mass of

the 2th link to the center of the revolute joint connecting the current link to the former

link, and
cosq; —Ssino; 0 0
Qi:l ], li:l ], I‘i=l ] (3.18)

sinq;  cosq; l; T
Then, the force and moment acting on the center of mass of each link can be directly

computed as follows

d

where f; and m; denote the inertial force and moment acting on the sth link. Moreover,

I; and w; denote the moment of inertia and gravity vector of the ith link.
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VI) Computation of the virtual displacements of the links

The computation of the virtual displacements of the links is the most important
step for the determination of the generalized input forces. For this mechanism, one

directly uses the velocity equations obtained in Chapter 2. From eq.(2.76) one has
wo = —A" 'B*w; (3.21)

where A* ! is the inverse matrix of matrix A*.

Now, let d6; be the virtual angular displacement of the ith leg corresponding to
angles 0; ( = 1,2) and dw,;2 be the virtual angular displacement corresponding to

angles «; (7 =1,2).

From eq.(3.21) one can obtain

dwt, = —A*'B*owi, i=1,2 (3.22)
where .
Sw l(swé] Swj H Sw7 m (3.23)
W, = o, wW; = , Wi = .
o7 | bwi o B!

Having obtained the virtual angular displacements of each of the links of the ma-
nipulator, the virtual linear displacements of the center of mass of each link can be

computed as follows

6j = 6(4)]' X lej_g + 5(.0]' X erja j = 3,4 (325)

where (¢ = 1,2) and 8,(j = 3,4) are respectively the virtual linear displacement of

the center of mass of the 1,2nd and 3,4th links.
V) Computation of the actuator force/torque

Finally, the principle of virtual work can be applied to compute the actuating

torques

4

Jj=1

where 7; is the actuating force or torque at the ith actuated joint.
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3.1.1.2 Three-degree-of-freedom manipulator

I) velocity analysis

From the three kinematic closed loops of the mechanism (see Figure 2.16), one can

write
wi Xa +wy Xa, = p (326)
Wy X Ay +ws Xas = p + wr X ar (327)
w3z X ag +wg X ag = p + w7 X ag (328)
where w;, 2 = 1,...,6 is the vector of the angular velocity of the ith link while p and

wr are respectively the vectors of the linear and angular velocity of the end-effector,

-,

Rewriting egs.(3.26)—(3.28) in matrix form, one has

ie.,

where

o]
n =

L W3 |

]
n, =

L Ws |

e
ns =

L We |

[—1[; sin 6,
| [y cosfy
[ —I5sin B,
| 1l cos b,
[ —l3sin 03

| l3cos0;

An, =
A2772 =
Azn; =

—l3 sin 1

I3 cos ay

ls cos ag |
—lgsin a3 ]

lg cos ag |

by
b,
bs

- . P
3 blzp: .
i Yy

—l5sin oy ]

) bzzl')—w7><a7=l

; b3=p—w7><a8=[

where all quantities in the above equations are as defined in Chapter 2.

The solution of egs.(3.30)—(3.32) respectively leads to

m = A1_1b1
n, = A2_1b2
ns = A§1b3

(3.29)

(3.30)
(3.31)
(3.32)

T+ w7l7 sin (ﬁ]

Y — wrly cos ¢
T + wrlg sin (15]

Y — wslg cos ¢

(3.33)
(3.34)
(3.35)
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IT) Acceleration analysis

Differentiating eqs.(3.26) to (3.28), one then obtains

L;Jl X a; + d)4 X as =€ (336)
GJQ X as + dJ5 X as = €9 (337)
Cbg X ag + (.;Js X ag = €3 (338)

where p is the given acceleration vector of the end-effector, and

e = ﬁ—wlx(wlxal)—w4x(w4xa4)
€ = f)—i-cb7><a7—w7><(w7><a7)—w2><(ngag)—w5><(w5><a5)
€3 = ﬁ+w7xag—w7x(w7xag)—w3x(w3><a3)—w6><(w6><a6)

Eqgs.(3.36) to (3.38) can be rewritten as

Ay =e (3.39)
Agny =€y (3.40)
Asny =€ (3.41)
where ) ) )
I R
From egs.(3.39) and (3.41), one can finally obtain
7, = Al'e (3.43)
N, = Aj'e; (3.44)
N, = Aj'es (3.45)

IIT) Computation of the forces and torques acting on the center of mass of each link

One can write

a = wz X QZ‘I‘,‘ + w; X (wz X Qil‘i), 1= 1, 2, 3 (346)
a; = (.;Jj X Qilj_g + w; X (w]' X Qilj—3)
+w; X Qirj +w; X (w; X Qirj), j=4,5,6 (3.47)

a; = p+wrxQrr+wrx (wr X Qry) (3.48)



where Q is the orientation matrix of the 7th link, Q; and 1; are respectively the orien-
tation matrix of the sth link and the position vector of the length of the link while r;
is the position vector from the center of mass of ith link to the center of the revolute

joint connecting the current link to the former link, and

[cos¢p —sing cosf); —sinb; _
Q = | . o Qi=| . , =123
|sing cos¢ sinf; cos®b;
[cosq; —sinq; 0
Q = ) ], 1=4,5,06 li:l ], i=1,...,7
|sina; oS ¢ l;
[0
r, = ], Z:L,’?
LT
The force and moment acting on the center of mass of each link can be directly computed
as follows
d
m; = —E(QiIiQ?wi), i=1,...,7 (3.50)

where f; and m; denote the inertial force and moment acting on the :th link and I; is

the inertial matrix of the link.
VI) Computation of the virtual displacements of the links

For this mechanism, one directly uses the velocity equations obtained in Chapter 2.

Form eq.(2.81) one has
Wo = —A*_IB*W[ (351)

where A*~! is the inverse matrix of matrix A*.

Similarly to the previous case, let §6; be the virtual angular displacement of the ith
leg corresponding to angles §; (¢ = 1,2,3) and dw;;3 be the virtual angular displace-
ments of the jth leg corresponding to angles «; (j = 1,2, 3), dw; be the virtual angular
displacement of the end-effector and dx and dy be the virtual linear displacements of

the end-effector along axes x and y.

From eq.(3.51) one can obtain

Swh, = —A*'B*wt, i=1,...,3 (3.52)
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where
owh = [dwi dwi Swi dwi]”
1 0 0
Sw; = |0, owi=|1|, dwi=10
0 0 1

Having obtained the virtual angular displacements of each of the links of the manipula-

tor, the virtual linear displacements of the center of mass of each link can be computed

as follows
6i = 5(4)1 X Qiri, 1=1,2,3 (353)
(Sj = 6(.0]' X lej—3
+ow; x Qir;, j=4,5,6 (3.54)
67 = 5]) + 5(4)7 X QI‘7 (355)

where 6;( = 1,2,3) and §;(j = 4,5, 6) are respectively the virtual linear displacement
of the center of mass of the 1,2,3rd and 4,5,6th link, d7 is the virtual linear displacement
of the center of mass of the 7th link, dp is the vector of virtual displacement of the

end-effector, i.e.,

5p = l&”] (3.56)

VI) Computation of the actuator force/torque

Finally, by application of the principle of virtual work one can obtain the actuating
torques
7 . .
7i = (£0; + m;w;), i=1,2,3

Jj=1

where 7; is the actuating force or torque at the ith actuated joint.

3.1.2 Spatial parallel manipulators with revolute actuators

In this subsection, the computation of the kinematics, velocity and acceleration anal-
yses are first performed. Then, the principle of virtual work is applied to derive the

generalized forces of three types of spatial parallel manipulators. For the spatial four-
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Figure 3.1: Vectors 1;, and 1; represented in spherical coordinates.

and five-degree-of-freedom parallel manipulators, the algorithms for the computation
of the dependent Cartesian coordinates from the independent Cartesian coordinates

presented in Chapter 2 will be used directly and are therefore not repeated here.

3.1.2.1 Four-degree-of-freedom manipulator

I) Inverse kinematics

For the four-dof mechanism, once angles # and 1 have been determined, the six
Cartesian coordinates of the platform are available and one can directly compute the

position of point P;.
One can write
Pi = Qiuliv + Qulis + Pio, 1=1,...,4 (3.57)

where Q;, and Q;; are respectively the rotation matrices describing the orientation of
the upper and lower links of the ith leg with respect to the base coordinate frame.

Moreover, 1;, and 1;; are the vectors from O; to P; and from O; to O; expressed in their
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local frames, respectively, as represented in Figure 3.1. One has,

[cos oy cos3; —sinq; €OSq;sin fF3;
Qi = |singjcosf; cosq; singgsinf; |, i=1,...
— sin §; 0 cos f3;
[COs7y;Ccosp; —sinvy; cos7y;sin p;
Qu = siny;cosp; cos7y; sinysinpg; |, 1=1,...
— sin p; 0 COS p;
[x; 0 0 Tio
Pi = |%|, lu=10 Li=10 |, Pio=|Y%o

L %4 li2

la Zio

91

where angles «;, f;, v; and p; are as defined in Figure 3.1. Equation (3.57) consists of

three scalar equations with three unknowns p;, a; and f;, and can be rewritten as

l;2 cos a; sin 3;
lig sin (073 sin ,6,

li2 cos f3;

= ; — lj €O8y;Sin p; — T,
= ¥y — Ly siny;sin p; — yio

= 2; — lj1cos p; — i

From egs.(3.58)—(3.60), one can obtain

Ricospi—i-Sisinpi:Ti 1,=1,,4

where
Ri = z— 2z
Si = (Yi — Yio) sSiny; + (Ti — Tio) cOS7;
7= @m0+ (= i) + (2 = zi0)” 1 — I
Z 2
Vi = RI4+SZ-T?
= 1,...,4

which leads directly to

. SiTi + KsRi/Vi
sinp; = 1S , 1=1,...,4
RiT; — KisSi/Vi

RS2

COS p;

(3.58)
(3.59)
(3.60)

(3.61)

(3.62)

(3.63)



with K;3 = +1 the branch index of the manipulator associated with the configuration

of the ith leg. Finally, one has

cos B; = (2zi — lipcos p; — zio) [lio

sinf; = y/1—cos?f3;, (0<6;<m)

cos o = (.Tz — lﬂ COS 7; sin Pi — xio)/(liQ sin ﬁz)

sina; = (y; — Lipsinysin p; — yio) /(Lo sin ;)

3.64
3.65

(3.64)
(3.65)
(3.66)
(3.67)

3.67

and the three variables p;, «; and (; allow one to completely determine the position

and orientation of the two links in the sth leg.

IT) Velocity analysis

The linear and angular velocities of all moving links will be computed from the

given independent, Cartesian velocities of the platform z, ¥, 2 and w,, where the angular

velocity of the platform is defined as w = [wy, wy, w,]|” -

First, the two dependent components of the angular velocity, w, and w,, need to be

determined using a special kinematic chain.

One can write the linear velocity of point Pj as

Ps =D +w x Qps

where
lscecos v x Wy as
ps=| 0 |, p=|y|, w=|u |, P;=|0b
—lsasin o z W, Cs
Equation (3.68) can be rewritten in matrix form as
An=>b
where
lscosa ¢y —bs ! x
A= 0 0 as |, m= wy |, b= Y+ Cywy
—[5sin o —c’5 0 W, Z— b;ww

and [as, bs, c5]T = Qps and eq.(3.70) is easily solved for vector 7.

(3.68)

(3.69)

(3.70)

(3.71)
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Having obtained the six Cartesian velocity components &, 7, 2, w,,w, and w,, the
linear velocity of the center of joint P, connecting each leg to the platform can be
computed as follows

Pi=p+wxQp, i=1,...,4 (3.72)

Moreover, p; can be expressed using the angular velocities of the ith leg, i.e.,
Pi = Wiy X Qiulin + wi X Quly, 1=1,...,4 (3.73)

where w;, and w;; are the angular velocities of upper and lower links of the ith leg, i.e.,

j:i _Bz' sin Q; _pz’ sin Yi
Pi= %], W= ﬁz cosqy |, wi= | P;jcosv; (3-74)

Equation (3.73) can be rewritten in matrix form as

Cidir=pi, i=1,...,4 (3.75)
where
l;icosy;cosp; —lipsinagsin 3; 1o cos oy cos (3;
Cir, = | —=lasiny;cosp; —lpcosa;sinf; —lipsinq;cos f; (3.76)
—l;1 sin p; 0 —l;9 8in (3;
Xie = [ o BT

Solving eq.(3.75), one readily obtains p;, ¢; and ;. Once these three quantities are

known, the velocities of the links are easily determined.
IIT) Acceleration analysis

The linear and angular accelerations of each of the moving bodies will now be

determined from the given Cartesian accelerations of the platform, i.e., #, 4, Z and w,.

First, the two dependent acceleration components w, and w, must be determined.This

can be achieved by using the kinematic geometry of the fifth leg.

Differentiating eq.(3.68) with respect to time, one obtains the expression of the

linear acceleration of point P5 as follows:

Ps =P +w x Qps +w x (w x Qpy) (3.77)
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Where .. - 2 . .. .
lscecos o — lsae” sin o z Wy
Ps = 0 , P=0], w=|uw (3.78)
—lsévsin o — l562 cos o Z W,

Since the velocity analysis has already been performed, eq.(3.77) consists of three scalar
equations which contain only three unknowns: &,w, and w,. Therefore, it is easy to

solve for these unknowns.

Equation (3.77) is rewritten in matrix form as

An=e (3.79)
Where .. . . .
1o & + l5 sin ad® + a,
n=|dy|, e=| i+cws+ay (3.80)
W, % + 5 cos i + a,

where matrix A has been previously defined and where [a, a, a,]T = w X (w x QP).

Equation (3.79) is readily solved for 7, which leads to the desired acceleration
components. All the Cartesian accelerations of the platform are then known, and the

linear and angular accelerations of each of the leg bodies can then be determined.

The linear and angular accelerations of the two links of each of the legs can be
obtained from the linear accelerations of points P; which have been computed from the

six Cartesian acceleration components.

Differentiating eq.(3.73) with respect to time, one obtains

Pi = Wiy X Qiuliy + Wiy X (Win X Qinlin)
Fwi X Quly + wi X (W x Quly), i=1,...,4 (3.81)
where
T; — 5, sin a; — ¢&; ﬂ, CoS o — p; Sin ;
pi=|8i|, @iw=| Bicosa; —&fisine; |, wy=| p;cos (3.82)
Z Q; 0

Equation (3.81) can then be rewritten in matrix form as

Ciodir=si, i=1,...,4 (3.83)
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where C;, is given in eq.(3.76) and where

Mo =15 & B (3.84)
S =[5. s, 5. (3.85)
where
sz = la(—(dyu; cos fisin ;) 4 cos oy (—a2 — 2 cos o) sin f;

— (32 cos a; sin o2 sin 3;) — p2ly cos 7; sin p;
Sy = Iy (diﬂi cos a; cos 3; — ﬂf cos a? sin q; sin (3;
+sin oy (—a2 — 32 sin o?) sin B;) — p2l, sin -y, sin p;

Sz = _(5352(30851')—@11005@

The solution of eq.(3.83) for A;, will then allow the determination of the linear and

angular accelerations of the moving bodies of each of the legs.

VI) Computation of the inertial forces and torques acting on the center of mass of

each link

In order to compute inertial forces, one must first determine the linear acceleration

of the center of mass of each link.

One can write

ay = Dit+ Wiy X Quuliy + Wiy, X (Wiy, X QiyTiy), 1=1,...,4 (3.86)
a; = wix Qury +wy x (wy x Qury), t=1,...,4 (3.87)

where a;, and a; are the linear accelerations of the center of mass of the upper and
lower links of the ith leg, vectors r;, and r; are the position vectors of the center of
mass of the upper and lower link of the ¢th leg and are expressed in the leg’s reference

frame, while w;, and w;; are the weight vectors, and

0 0 0 0
=101, rg=|0], wiu= 0 . Wy = 0 (3.88)
Tiu Tl —Miug —mug

where g is the gravitational acceleration.



The linear acceleration of the center of mass of the 5th leg and the platform can be

computed as follows

az; = ws X Q5I‘5 + wsy X (Ld5 X Q5I‘5) (389)

a, = P+wxQr,+wx (wxQry) (3.90)

where a5 is the linear acceleration of the center of mass of the 5th leg, Qs is the
orientation matrix of coordinate frame O — z5y525 with respect to the fixed coordinate
frame O — zyz, ws is the angular velocity of the 5th leg, ws is its angular acceleration,

r;5 is the vector connecting point O to the center of mass of the 5th leg noted Cs, i.e.,

cosae 0 sino 0 0 0
Q5 = 0 1 0 , Wy = Q , dJ5 = | , Iy = 0 (391)
—sina 0 cosa 0 0 Ty

and a, is the linear acceleration of the platform, and where r, is the vector connecting

point O to the center of mass of the platform, namely, r,=[T, Yp zp]T.

Then, the force and moment acting on the center of mass of each link can be directly

computed as follows

fil = —mMyQay -+ Wi, 3 = 1, . ,4 (393)
d
m;, = _E(QiuIiuQZ;wiu)a i=1,...,4 (3-94)
d .
m; = _a(QZlIZle;le)) 1 = ]_, ceay 4 (395)

where f;,, m;,, f; and m;; denote the force acting on the upper link, the moment acting
on the upper link, the force acting on the lower link and the moment acting on the
lower link of the ¢th leg, I;, and I, are respectively the inertia tensor of the upper and

lower links with respect to their center of mass.

Finally, one has

f5 = —Mmsas + W5 (396)
f, = —-mpa,+w, (3.97)
d

d
m, = - (QLQ"w,) (3.99)
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Figure 3.2: Body forces acting on the links of the manipulator with revolute actuators.

where f5 and m; denote the force and moment acting on 5th leg while f, and m, denote
the force and moment acting on the platform, Is and I, are the inertia tensor of the

5th leg and the platform with respect to their center of mass.

The forces and moments acting on the center of mass of each link of this type of

manipulator are represented schematically in Figure 3.2.
V) Computation of the virtual displacements of the links

The virtual linear displacements of the center of mass and the virtual angular dis-
placements of each link will be obtained from the given joint virtual displacements of the
manipulator. This is the most important step for the determination of the generalized

input forces by this approach.
From the kinematic geometry of the 5th leg, one can write

i+ = 1} (3.100)
ys = 0 (3.101)

Differentiating eqs.(3.100) and (3.101), one obtains

335.%"54‘252'5 =0 (3102)
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ys = 0

(3.103)

Letting ps = [45 95 #5] and substituting eq.(3.68) into eqs.(3.102) and (3.103), one

obtains
t=J.% or 0t=J.dx (3.104)
where 0t = [0z dy 6z Odw, dw, Ow,]",and
1 0 0 0 ]
ox 0 1 0 0
oy 0 0 1 0
0x = , J.= (3.105)
0z 0 0 0 1
5w —Isy _b;375 —25 b265’z5+b’525
z c’5w5faI5Z5 c'5:c5fa'5z5 c’5w5fa,5z‘5 c;w57a’525
0 —1 0 Cs i
Differentiating eq.(3.61), one obtains
li1(Si cos p; — R; sin p;)d p; (x; — @io — Lz siny; cos p;)0;
+(yi — Yio + l;1 COS y; Sin pi)éyi
+(Zz — zz’o+li1 sinpi)&'i, 1= 1,...,4 (3106)
Substituting eq.(3.72) into eq.(3.106), one obtains
B.ip = K,it (3.107)
where dp = [6p1 6p; 6ps Ops]’, and
B, = diag[by by b3 b4]
li2g l12y lia, (blllmz - 0111121,) (01111295 - allluz) (a"lllZy - bllllzz)
K. — l9og 122y lgo, (bIQZQZz - C;l22y) (012522;5 - a’2l22z) (a;l22y - 512522;.:)
' l394 l32y l32, (bl3132z - 02353214) (Clglsm - a’?,l32z) (al?,l32y - b;,l:m)
l42m l42y l422 (bill42z - Cill42y) (021542z - a'ill422) (a'ill42y - b;l42m)
where
b; = la(Sicosp; — R;sinp;), i=1,...,4
liog = Tj— Tjp— lysiny;cosp;, 21=1,...,4
lisy = Yi— Yo+ lsncosysinp;, 1=1,...,4
ligz = zi—zio—i-lﬂsinpi, Z=1,,4
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Substituting eq.(3.104) into eq.(3.107) one finally obtains
B.dp = A,0x

where
A, =K,J,

From eq.(3.108), one can obtain

ox' = A'B,dp’, i=1,...,4

From eqgs.(3.70) and (3.75), one can obtain
on'=A"1b', i=1,...,4

and
i (v—lgi ..
oA, =Cjo0p;, 4,7=1,...,4

r

where Cj’r1 is the inverse of matrix C;, which was previously obtained, and
6N, =[dp; daf O8], 4,j=1,...,4
and finally, the linear virtual displacements are given as

8, = Ows' xr1h+ 0w’ x (r; —15) + 6w;’ X Qirju, 4,j=1,...,4
o= 0w x Qury, dj=1,...,4
6;—’ = 5W5iXQ5I'5, 7,:1,,4
8, = op'++0w' xQr, i=1,...,4
where all quantities are as previously defined.
IV) Computation of the actuator force/torque
The principle of virtual work can then be applied and leads to
i = 505 + mydwl + fp(5; + m, 0w’

4
+ Y [fju8), + 0% + mybwl, + mydwl], i=1,...,4
7j=1

where 7; is the actuating force or torque at the ith actuated joint.

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)
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3.1.2.2 Five-degree-of-freedom manipulator

I) Inverse kinematics

Since the computation of the dependent Cartesian coordinate v from the specified
independent Cartesian coordinates z, y, z, ¢, # has been completed in Chapter 2, the
only task related to the inverse kinematics which must still be reformed is to obtain
the position and orientation of the links of the manipulator from the known pose of
the platform. However, this procedure is exactly identical to what has been done in
the computation of the inverse kinematics of the spatial four-dof parallel manipulator
since the architecture of the actuated legs is the same for the two types of mechanisms.

Hence, it is not repeated here.
IT) Velocity analysis

In this section, the linear and angular velocities of all moving links will be computed
from the given independent Cartesian velocities of the platform z, ¢, 2, w, and w,, where

the angular velocity of the platform is defined as w = [w,, wy, w,]".

First, the dependent component of the angular velocity, w,, needs to be determined

using the special kinematic chain.

One can write the linear velocities of point Py as

Ps =P+ w x Qpy (3.114)
where
i 56(66 cos (3¢ coS ag — (g Sin G sin ag)
[')6 = 16 (ﬂs COS ,66 sin Qg — lﬁd@ sin ﬁﬁ COS 046)

3 —lgf sin B
[ T W ag

b = yl, Ps = |Ys |, w = wy ) Ps = b6
| 2 Z6 Wy Ce

Equation (3.114) can be rewritten in matrix form

An=bhb (3.115)
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101

where
_ ! . . . ;
bg  —lgc sin o sin Fg lg B¢ cOS g cOS (g
! . . > .
A = | by Ilgacosagsin fs —lg B Sin avg cos G
| 0 0 lsﬂs sin ,Bs(sin Qg — COS 016)
— !
W, —CeWy
. !
n = |a|, b= CeWq
hd ! 7
| B6 agwy — bgws

and [ag, b, c5] = Qpg and eq.(3.115) is easily solved for vector 7.

Having obtained the six Cartesian velocity components #, 9, 2, wg, w, and w,, the
linear velocities of the center of joints P; connecting each leg to the platform can be
computed as follows

Pi=p+wxQp,, i=1,...,5 (3.116)

The rest of the procedure is to determine the velocities of the other bodies from
the linear velocity of points P;. This is identical to what was presented in the previous

subsection on the velocity analysis of the spatial four-dof parallel mechanism.
III) Acceleration analysis

The linear and angular accelerations of each of the moving bodies will now be
determined from the given Cartesian accelerations of the platform, i.e., Z, 4, 2, w, and
Wy.

First, the dependent acceleration component w, must be determined. This can be

achieved by using the kinematic geometry of the special leg.

Differentiating eq.(3.114) with respect to time and letting ¢ = 6, one obtains the

expression of the linear acceleration of point Py as follows:

Ps =P +w x QPs +w X (w x QPy) (3.117)
where
Te T Wy
Pe=|Us|, P=|0|, w=|w (3.118)
26 z w,
where

I = lﬁ(ﬁﬁ cos B cOS g — (g Sin B Sin aig — ﬂg sin (g cos o
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—éz% sin (g cos ag — dﬁﬁﬁ cos (g sin aig — daﬁﬁ cos [ sin ag)
e = lg (36 cos [ sin ag g sin Gg cos aig — ﬂg sin (g sin ag
—o'zg sin [ sin ag + dgﬁﬁ cos (s cos ag + dot B g cos B cos o)

% = —lg(fssin B + B2 cos Bs)

Since the velocity analysis has already been performed, eq.(3.117) consists of three
scalar equations which contain only three unknowns: ¢&,w, and w,. Therefore, it is

easy to solve for these unknowns.

Equation (3.117) is rewritten in matrix form as

Afn=e (3.119)
) . s T T
where n =[ds (s w,| ande=|e, e, e,| ,and
e, = T+ l6(—,3§ sin B cos aig — 3 sin B cos g

— g 35 cos B sin ag — cvg g oS (g sin ag) + ag
e, = Y+ lg(—ﬂg sin B¢ sin ci — ¢ sin B sin ag
4+ 56 cos [3 cos o + dot B0t cOs [ €OS o) + ay

e, = 32— ls(ﬂ'g cos ) + a,
and matrix A was previously defined and where [a, a, a,]" = w x (w x QPj).

Equation (3.119) is readily solved for 7, which leads to the desired acceleration
components. All the Cartesian accelerations of the platform are then known, and the
linear and angular accelerations of each of the leg bodies of the two types of manipu-

lators can then be determined.

The rest of the procedure is to obtain the linear and angular accelerations of the
two links of each of the legs from the linear accelerations of points P; and can be found

in the acceleration analysis of the spatial four-dof parallel mechanism.

VI) Computation of the inertial forces and torques acting on the center of mass of

each link

Because of the similarity of the architectures of the five-dof and four-dof mecha-

nisms, only the formulas for the computation of the inertial forces and torques of the



special 6th leg are different and the others can be found in the previous subsection on

the four-dof mechanism.

The linear acceleration of the center of mass of the 6th leg and the platform can be

computed as follows

g = (.ZJ(; X Q6r6 + wg X (w6 X Q6r6) (3120)
a, = P+wxQr,+wx (wxQr,) (3.121)

where ag and a, are respectively the linear accelerations of the center of mass of the
6th leg and the platform, and where wg is the angular velocity of the 6th leg, wg is
its angular acceleration and where rg is the vector connecting point O to the center of

mass of the 6th leg noted Cg, and where

[cosagcos Bg —sinag oS g sin Fg 0
Qs = |sinagcosflg cosag sinagsinfFg |, rg= |0 (3.122)
— sin (g 0 cos (g Tg
[— B6 sin o — B(; sin g — 560'46 COS (g
wg = Bscosag |, we= | [Bscosas— Beivsin ag (3.123)
L O g

The force and moment acting on the center of mass of the link of the 6th leg can

be directly computed as follows

f6 = —m6a6+w6 (3124)
f, = —mpa,+w, (3.125)
d
d
m, = —a(QIpQTwp) (3.127)

where fs and mg denote the force and moment acting on the 6th leg while f, and m,,
denote the force and moment acting on the platform, Is and I, are the inertia tensors

of the 6th leg and the platform with respect to their center of mass.

The forces and moments acting on the center of mass of each link of this type of

manipulator are represented in Figure 3.3.
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Figure 3.3: Body forces acting on the links of the manipulator with revolute actuators.

V) Computation of the virtual displacements of the links

In this section, the virtual linear displacement of the center of mass and the virtual
angular displacement of each link are obtained from the given joint virtual displacement
of the manipulator. It is the crucial step for determining the generalized input force by

this approach.

From the kinematic geometry of the 6th leg, one can write
Tgtyst+z = I (3.128)
Differentiating eq.(3.128), one has
Tele + YelUs + 2626 = O (3.129)
Letting ps = [@s s 2] and substituting eq.(3.114) into egs.(3.129), one obtains

t=J.%x, or &t=J.ix (3.130)
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where 6t is as previous defined, and

) ) 1 0 0 0 0
ox
0 1 0 0 0
oy
0 0 1 0 0
x= |4z, J, = (3.131)
0 0 0 1 0
Owy
0 0 0 0 1
L 6wy 4 Z6 Y6 26 b’6z6—|—c;y6 c;zﬁ—f—a;zﬁ
- bgTetagye  bgTetagys  bgTetagye  bgTetagys  bymetagye

Differentiating eq.(3.61), one obtains

lin(Sicos pi — Risinp;)dp; = (@ — Tio — lix siny; cos p;)d;
+(Yi — Yio + li cos y;sin p;) 6y
+(ZZ — zio+li1 sinpi)ézi, 1= 1,...,5 (3132)

Substituting eq.(3.72) into eq.(3.132), one obtains
B.ép = K, it (3.133)
where

Br = d1ag[b1 b2 b3 b4 b5]

— ! ! !
liog l12y lia, bllIQz - C1ll2y l12z - a1l12z 1l12y — b, llQ;c

7 ! !
l9og l22y lgo, 62l22z - Cgl22y 122z - 02122;5 2l22y — b, l22$

i !
laog l42y lao, b4l422 - 045423, l42:v - a4l422 4l42y —b, l42z

( ) (¢ ) (@ )]
( ) (e ) (a )
K, = l324 l32y l32, (535322:—02),532;«;) (0353235—&353%) (asl32y_b3l32w)
( ) (. ) (a )
( ) ) (a )]

7 !
_l52w l52y ls2, 55152;: - C5l52y C5l52z - 065552z 5l52y - b5l52;c

where
bi = 1;1(Sicos p; — R;sin p;)
lisz = % — Ty — i1 8iny; o8 p;
lioy = Yi — Yio + li1 cos y;sin p;
line = 2z — Zio + L1 sin p;

i = 1,...,5
Substituting eq.(3.130) into eq.(3.133) one finally obtains

B,dp = A,0x (3.134)
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where
A, =K,J, (3.135)

Similarly, one can obtain
ox' = A7'B,6p’ (3.136)

where 6x* and dp’ are as previously defined.

Then, one can obtain

on' = A'6b’ (3.137)
and
SN, =Cj;lép), j=1,...,5 (3.138)
where
SN, =[6p0 6ai 8], j=1,...,5 (3.139)

and finally, the linear virtual displacements are given as

6;u = 5w6i X I'é +(5wz X (rj - r6) +5w]Z X erju7 7’:] = ]-: .- 'a5

i
4l

(5% = (5w6ixQ6r6, 1=1,...,5

= 5(4)jiXQjI‘j1, i,jzl,...,5

8, = op'++0w' xQr,, i=1,...,5
where all quantities are as as previously defined.
IV) Computation of the actuator force/torque
The principle of virtual work can then be applied and leads to
T = fﬁdé + mgdw}, + f,,&; + mpdwi
+ i[fjudglu +£,0), + mywl, + mydwt], i=1,...,5
j=1

where 7; is the actuating force or torque at the ith actuated joint.

3.1.2.3 Six-degree-of-freedom manipulator

Since the architectures of the six- and five-degree-of-freedom manipulators are very
similar, the procedure for the computation of the inverse kinematics, the velocity anal-

ysis, the acceleration analysis and the computation of the inertial forces or moments



for the six-degree-of-freedom manipulator can be directly obtained from the analysis

of the five-degree-of-freedom manipulator. Therefore, for the 6-dof manipulator it is

only needed to describe the final two steps, namely, the computation of the virtual

displacements of the links and the determination of the generalized forces/torques.

V) Computation of the virtual displacements of the links

The virtual linear displacement of the center of mass and the virtual angular dis-

placement of each link are computed from the given joint virtual displacement of the

manipulator.
Differentiating eq.(3.61), one obtains
lir(Sicos p; — Risinp;)dp; = (23 — Tio — i1 siny; cos p;)0z;

+(yz~ — Yio + l;1 COS y; Sin pi)éyi

+(Zz — zio+li1 sinpi)ézi, 1= 1,

Substituting eq.(3.72) into eq.(3.140), one obtains
B.ip=A,0x
where

0x = [dz Jdy 0z dw, dwy, ow,]
B, = diag[by by b3 by b5 bg]

- ! ! ! !
log ll2y li2, b1l12z - 01l12y Clll2m - a1l122
! ! ! !
l2og l22y lg2, b2l22z - 02l22y 021229; - a2l22z

! !
03132z - a'3l32z

( )
( )
( )
(021142;5 - a21142z)
( )
( )

! !
I35 l32y l32, b3l32z_c3l32y

! !
l520 lszy lso, b5552z—05l52y

( )
( )
( )
ls24 l42y lao, (bill42z - 0215427;)
( ) C:L’)ZSQm - CL’5l52z
( ) Clslsm - a’6l62z

1] !
| l6ox l62y le2s b6l62z_06l62y

where

bz' = lzl(SZ COS p; — Rz sin pz)

lisg. = i — Tio — 1 siny; cos p;
lisy = ¥i— Yio + lin cos y;sin p;
li?z = Z;— Zjp + lz’l sin Pi

i = 1,...,6

(0115123, - bllllzm) 1
(aglazy — bylasa)
(asls2y — balsaz)
(azlazy — bylaos)
(a5ls2y — bslsar)
( )

7 7
%162y - b6162x

.6 (3.140)

(3.141)
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Then, one can obtain
§x' = A 'B,ép’ (3.142)

where dx’ and dp’ are as previously defined.

Then, one can also obtain

én' = A7'ob (3.143)
and
SN, =C,loph, j=1,...,6 (3.144)
where
SN, =[6pt d6a} 6Bi], j=1,...,6 (3.145)

and finally, the linear virtual displacements are given as

6;u = 5wjli X lelé'l + (Sw]'ui X qurju, ’L,_] = 1, ceey 6

1
gl

5;, = 0p'++6w' xQr,, i=1,...,6

= dwj' X Qurj, 4,j7=1,...,6

where all the quantities are as previously defined.
IV) Computation of the actuator force/torque
The principle of virtual work can then be applied and leads to
n = 1§ 6i + mpéwi

—I-Z[f 8y + £10% + my, 0w, + mydw')], i=1,...,6

where 7; is the actuating force or torque at the sth actuated joint.

3.2 Newton-Euler formulation

In order to verify the results obtained using the approach presented in the previous
section, a second approach based on the Newton—Euler formulation is now developed.
Each link of the manipulator is considered individually and constraint forces between
the links are computed. Although this approach leads to a slower computational algo-

rithm than the approach based on the principle of virtual work, the internal constraint
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forces between the links are computed here, which may be useful for design and simula-
tion of a mechanism or manipulator. Therefore, this approach is suitable for the design
of the mechanism. This approach has been used by other authors for the dynamic

analysis of 6-dof parallel mechanisms (see for instance [14] and [22]).

3.2.1 Planar parallel manipulators with revolute actuators

Since the application of the Newton-Euler formulas to solve the dynamic problem of
planar mechanisms is rather straightforward, the detailed procedure for the dynamic
analysis of planar two- and three-degree-of-freedom manipulators is not given here.
However, in order to verify the results obtained with the approach based on the principle
of virtual work, two computation programs corresponding to the two approaches have
been written for the two types of planar parallel mechanisms. Finally, an example
is given for each manipulator and it can be verified from the examples that the two

approaches lead to identical results.

3.2.1.1 Two-degree-of-freedom manipulator

An example for the planar two-degree-of-freedom manipulator with revolute actuators is
now given to illustrate the results. It is assumed that the end-effector of the manipulator
follows a simple trajectory involving vertical motion along the direction of the y axis.
The trajectory is described in detail below. The force and torque needed to produce
the specified motion are obtained by the approach based on the principle of virtual
work and the Newton-Euler formulation. The two approaches lead to identical results

and the approach based on the principle of virtual work leads to a faster algorithm.

The parameters used in this example are
To1 = 00, Yo1 = 00, Too = 20, Yo2 = 0.0

[, =08,0b=1.0,l3=15,1,=038,15 =0.6
T = 03, T9g = 04, Trs = 075, Ty = 0.4

my = 01, Mo = 01, ms = 10, my = 0.1
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0 0 0 0
IL=LL=I,=|0 0.1/16 , Is=1|0 0.06 O
0 0 0 0.06
The specified trajectory is
x=17 y=10+0.2sin3t, (3.146)
with K; = —1, Ky = 1, the masses are given in tons, the lengths in meters and the

angles in radians.

The generalized input forces obtained for the two actuated joints are represented in

Figure 3.4.

Tl(kN)

wt(rad)

Tl(kN)

wt(rad)

(a) Torque at the actuated joint 1.

(b) Torque at the actuated joint 2.

Figure 3.4: Generalized actuator force in the planar two-dof mechanism

3.2.1.2 Three-degree-of-freedom manipulator

Similarly, an example for the planar three-degree-of-freedom manipulator with revolute

actuators is now given to illustrate the results. It is assumed that the end-effector of the

manipulator follows a simple trajectory involving vertical motion along the direction

of the y axis with the orientation angle ¢ fixed. The trajectory is described in detail

below. The force and torque needed to produce the specified motion are obtained by

the two approaches.



The parameters used in this example are
Tor = 0.0, Yo1 = 0.0, 250 = 1.0, 902 = 0.0, 250 = 2.4, 92 = 0.0

lil == 12, lzu - ]_5 (7, == ]_, 2,3), l3 == 07, l4 - ].6
Ti = 03, Tiu = 0.4 (’L = 1,2,3), Ty = 075, Ty = 0.4

mg; = 01, My, = 0.1 (Z = 1, 2,3), msg = 10, my = 0.1

0 0 0 0 0 0
I,=I,=|0 01/16 0 |, i=1,23 L,=|0 006 0
0 0 0.1/16 0 0 0.06

The specified trajectory is

™

r=12, y=15+02sin3¢, ¢ = 5

(3.147)

with K = —1, Ky = 1, K3 = 1, the masses are given in tons, the lengths in meters

and the angles in radians.

The generalized input forces obtained for the three actuated joints are represented

in Figures 3.5 and 3.6.

Tl(kN) TQ(kN)

wt(rad)

wt(rad)

(a) Torque at the actuated joint 1. (b) Torque at the actuated joint 2.

Figure 3.5: Generalized force in the planar three-dof mechanism at the actuated joints

1 and 2.
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T3(/€N)

wt(rad)

Figure 3.6: Generalized force in the planar three-dof mechanism at the actuated joint
3.

3.2.2 Spatial parallel manipulators with revolute actuators

As mentioned in the introduction and in the previous subsection, the dynamic analysis
of spatial parallel manipulators using the Newton-Euler formulation has been studied
by many authors, for example, the dynamic analysis of spatial six-degree-of-freedom
parallel manipulators using the latter approach [10] and [14]. Therefore, similarly
to the planar parallel manipulators, the procedure for the dynamic analysis of the
spatial six-degree-of-freedom parallel manipulator using the Newton-Euler formulation
is not discussed here and only an example is given to verify the results obtained with
the approach based on the principle of virtual work. However, for the spatial parallel
manipulators with reduced degree of freedom, namely, the spatial four- and five-degree-
of-freedom parallel manipulators, since their architectures differ from the spatial six-
degree-of-freedom parallel manipulator, the procedures for the dynamic analysis using

the Newton-Euler formulation is different and will be described below.

3.2.2.1 Four-degree-of-freedom manipulator

The constraint forces between the 5th leg and the platform and the associated coordi-

nate frame are represented in Figure 3.7. Here it is assumed that g5 and f5 are normal
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Figure 3.7: The constraint forces between the fifth leg and the platform.

to and along the direction of the 5th leg O P5, namely

g5z 0
g5 = g5y y f5 = 0 (3148)
0 5

Moreover, the linear acceleration of the center of mass of the 5th leg can be obtained

as follows
ay = dJ5 X Q5I‘5 + ws X (w5 X Q5I'5) (3149)

where Qj5, ws, ws and r5 are as previously defined.

Considering axis y, one obtains one element g5, of the force g5 by the application

of the Euler equation around this axis. This Euler equation can be written as

d
—Qs(gs + f5) X 15] + w5 X Qsrs = msas X Qsrs + a(QslstT‘%) (3.150)

where 15 = [0, 0, /5]T is the vector connecting point O to Ps and ws = [0, 0, —msg]7 is
the weight of the 5th leg, where g is the gravitational acceleration and Iy is the inertia

tensor of the 5th leg with respect to its center of mass.

Substituting eq.(3.91) into eq.(3.150) and extracting the second component, one

then obtains

95z = [msgrssina — (Isy + msr3)dl/ls (3.151)
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Figure 3.8: The constraint forces on the platform.

where I, is the moment of the inertia of the 5th leg about the y axis with respect to

its center of mass.

It is then assumed that forces g;(i = 1,2,3,4)—their determination will be dis-
cussed below—and g5, are known, and therefore forces f;(: = 1,...,5) and gs, can be
determined by the application of the Newton—Euler equations to the platform of the
manipulator in the coordinate system of the platform. Figure 3.8 shows the platform
of the manipulator and the forces acting on it. Forces gz, ¢;y (i = 1,...,4) and gs, are
obtained from the ith (i = 1,...,4) and 5th leg respectively as will be shown below.
The remaining unknown action forces are only six elements, i.e., f; (i = 1,...,5) and
gsy- Hence, these unknown forces can be obtained by the application of Newton—Euler

equations to the platform of the manipulator, i.e.,

4
Qs(gs+ 1)+ Qi D _(f+8) = mpay (3.152)

i=1
4

7 ! d
Qs(gs +15) x Qp; + [Qi Y _(fi+2)] xQp;, = a(QIpQTw) (3.153)

i=1

where a, is the acceleration of point O" and where it is assumed that the center of mass

of the platform lies in O" and I, is the inertia tensor of the platform body expressed in
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the local frame, and

0 T
f;=101, ay = |y (3.154)
fi z

withi=1,...,5.

Equations (3.152) and (3.153) consist of six scalar equations and six unknowns,
which can be written as
d; = C,f (3.155)

where

f =i fo fs fo f5 g5]"

T
df = [dfw dfy dfz Az dmy dmz]
i c}l 0}2 0}3 0}4 0}5 0}6 1
C?cl c?? 0%3 0?4 cff’ 0%6

ci}l C;Q C§3 ci}4 C§5 CZ}(S

S Sy e e e
c?l 0?2 0?03 0?4 05}5 CE}G

C?cl 6?2 6?3 6?4 0?5 C?_S |

where the elements of vector d; and matrix C; are obtained from egs.(3.152) and
(3.153). Equation (3.155) is readily solved for vector f. The determination of the forces
gi(i = 1,...,4) mentioned above is now discussed. Moreover, the detailed expressions

associated with the elements of the matrix C; and vector d; are given in Appendix D.

Figure 3.9 represents the forces acting on the two links of each leg. First, considering
the upper link, by the application of the Euler equation with respect to point O;, one

can obtain force g;. One has
—Qiul(gi + i) X L] — (Miu@iu — Win) X Qiuliy = iy +myy, i=1,...,4 (3.156)

where g; is a force vector normal to the axis of the second moving link and a;, is the
linear acceleration of the center of mass of the upper link of the ith leg. They are

expressed in the fixed coordinate system. Vectors r;, and w;, have been previously

defined, and
8= |09wy|, =10 (3.157)

0 fi



and

ay = Di+ Wi X (Quulin) + Wiy X (Wiy, X (QiwTin))

a; = w; Xry+w; X (w; xry)
Fiug
fi, = mpa X Qi(Pi - riu) = Fiuy
Fiu.
Fiz
fi = maay x Qiry = | Fyy
Fa.
My
m;, = %(lengme) = Miuy
My,
My,
m; = %(Qillingwil) = Mily
M,

where m;, and m; are the masses of the upper and lower links of the ¢th leg, while I,

and I;; are their inertia tensors.

Taking the first two components of eq.(3.156) and solving for the two unknowns g,

and g;,, one obtains

Giz = [_Mzuz - T'LU(E’L&Z Ccos ﬂz - Euz sin ﬂz)]/lﬂ (3158)
giy = [_Mzuy - Tzu(F‘zuz COs ﬁz - (Euz - mzug) Sin ﬁz)]/lzZ (3159)

Substituting egs.(3.158) and (3.159) into equation (3.155), one obtains the forces f.

In order to compute the generalized input forces (here the ith generalized input
force is the torque 7; exerted around the revolute joint connecting the leg to the base of
the manipulator), one must first find the constraint forces in the joint connecting the
two links of the leg. This can be achieved by applying Newton’s equation to the upper
link, i.e.,

where d; is the constraint force between the two links of the ith leg.
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/ \ Yi

Figure 3.9: The forces acting on the two links of the ith leg for the manipulator with

revolute actuators.

From eq.(3.160), one obtains
iz — Fiug 08 @ €08 f; + Fiyy sin oy — (Fiy; — M g) cos ; sin B
d; = | giy — Fiuycos o — Fiyy cos fB;sina; — (Fy, — miyg) sin o sin f; (3.161)
fi = (Fiuz — miug) cos B; + Fiyg sin §;
where Fiyz, Fiuy, Fiuz, Miyg, Miyy and M, are previously defined.

Considering axis y;;, the application of Euler’s equation relative to this axis on the

lower link, one finally obtains the input torque as
d .
7 = [Quudi X Quly — Wi X Qury +myay + a(QuIingwu)] - Ji (3.162)

where j; is the unit vector associated with the direction of the axis of the 7th actuated

revolute joint.

An example for the four-degree-of-freedom manipulator with revolute actuators is
now given to illustrate the results. It is assumed that the end-effector of the manipu-
lator follows a simple trajectory involving vertical motion along the direction of the z
axis with the other three Cartesian coordinates fixed. The trajectory is described in
detail below. The force and torque needed to produce the specified motion are obtained
using the procedures presented above. The two approaches lead to identical results and

the approach based on the principle of virtual work leads to a faster algorithm.
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The parameters used in this example are
Lol = —15, Yo1 = 15, Too = —1.5,y02 = 15, To3 = —]_5, Yo3 — —1.5

Tog = —1.5, You = —1.5, 25 = 0.0, yo5 = 0.0, 2o = 0.0(z = 1,...,5)
a1 =0.2, by =0.6, c; = —0.4, ay = —0.6, by = 0.6, co = —0.4
a3 = —0.6, b3 = —0.6, c3 = —0.4, a4 = 0.2, by = —0.6, ¢, = —0.4
as = 0.6, bs = 0.0, c5 = 0.0, Is = 1.5, L = 1.5, lp = 2.5(i = 1,...,4)
Miy =my = 0.1, 1, =12, 73 = 0.7, (1=1,2,3,4), r,=0

T's = 05, my = ].5, ms = 01, K1 = K2 =1

s 3 5% s
%:Z’%:Z’%’:Z’%:Z
0.1/16 0 0 008 O 0
L,=1,=15= 0 0.1/16 0 , L= 0 0.08 0
0 0 0.1/16 0 0 0.08

The specified trajectory is
rxr=-15 y=0, 2=104+02sin3t, ¢ =0.01 (3.163)
with K1 =1, Ky =1 and K;3 = —1, (i = 1,2,3,4), the masses are given in tons, the
lengths in meters and the angles in radians.

The generalized input forces obtained for the four actuated joints are represented

in Figure 3.10.

3.2.2.2 Five-degree-of-freedom manipulator

Similarly, the constraint forces between the 6th leg of this manipulator and the platform
as well as the associated coordinate frames are represented in Figure 3.11. Here it is

assumed that gg and fz are normal to and along the direction of the 6th leg O Py, namely

ez 0
8 = |Yey |, fo=|0 (3.164)
0 e



T1 (k' N ) T Q(kN )
wt(rad) wt(rad)
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(c) Torque at the actuated (d) Torque at the actuated
joint 3. joint 4.

Figure 3.10: Generalized force for the spatial four-dof mechanism at the actuated joints
1 to 4.

Moreover, the linear acceleration of the center of mass of the 6th leg can be obtained
as follows

g = ‘l.JG X Q6r6 + wg X (w(,- X Q6r6) (3165)
where all the matrices and vectors are as previously defined.

Considering point O, one obtains two elements gs, and ge, of the action force g by
the application of the Euler equation relative to this point. This Euler equation can be

written as

d
—Qslgs + f6) x Ig] + wg x Qorg = meag X Qers + &(QsIGng(s) (3.166)
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Figure 3.11: The action forces of 6th leg.

where 1g = [0, 0, ls]* is the vector connecting point O to Ps and wg = [0, 0, mgg|’ is
the weight of the 6th leg, where g is the gravitational acceleration and Ig is the inertia

tensor of the 6th leg with respect to its center of mass.

Substituting egs.(3.122) and (3.123) into eq.(3.166) and solving the equations, one

then obtains gs, and ge,.

Similarly, it is then assumed that forces g;(i = 1,...,5)—their determination will
be discussed below—are known, and then forces f;(i = 1,...,6) can be determined by
the application of the Newton—Euler equations to the platform of the manipulator in

the coordinate system of the platform.

Figure 3.12 shows the platform of the manipulator and the forces acting on it.
Forces gi, and g, (¢ = 1,...,5) are obtained from the ith ( = 1,...,5) leg as will
be shown below. The remaining unknown action forces are only six elements, i.e.,
fi(t =1,...,6). Hence, these unknown forces can be obtained by the application of

Newton—Euler equations to the platform of the manipulator, i.e.,

5

Qofs + Q; Y (£ +8) = mpay (3.167)
=1
5
Qsfs x Qpg + [Qi }_(fi +&:)] x Qp; = %(QIPQ%) (3.168)

=1
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Figure 3.12: The action forces of the platform.

where a,, is the acceleration of point O' and where it is assumed that the mass center
of the platform lies in O" and I, is the inertia tensor of the platform body expressed in

the local frame, and

£=10|, ay=|i|, @w=|d (3.169)
fi < wz

withi=1,...,6.

Equations (3.167) and (3.168) consist of six scalar equations and six unknowns,

which can be written as
dy = Cyf (3.170)

where

f=1(f fo fs fo 5 fs]"
d; = [dfw dyy dpz dpg dmy dmZ]T
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where the elements of vector d; and matrix C; are obtained from eqgs.(3.167) and
(3.168). Equation (3.170) is readily solved for vector f. The determination of the
forces g;(i = 1,...,5) mentioned above is completed using the same procedure as in

the case of the four-dof manipulator. This procedure is therefore not repeated here.

The rest of the procedure is to compute the generalized actuating forces. It is

identical to the procedure in the spatial four-dof parallel mechanism.

Therefore, the expression for the computation of the generalized forces of the mech-

anism can be written as

d . .
7 = [Quiudi X Qily — Wy X Qury +myay + a(QuIingwu)] Ji, 1=1,...,5 (3.171)

An example for the five-degree-of-freedom manipulator with revolute actuators is
given to illustrate the results. It is assumed that the end-effector of the manipulator
follows a simple trajectory involving a vertical motion along the direction of the z axis
with the other four Cartesian fixed coordinates. The trajectory is described in detail
below. The force and torque needed to produces the specified motion are obtained by

the two approaches.

The parameters used in this example are given as
To1 = —2.120, yo1 = 1.374, 2450 = —2.380, Yoo = 1.224, x,3 = —2.380, y,3 = —1.224

Tot = —2.120, Yo = —1.374, 2,5 = 0.0, yo5 = 0.15
Zo = 0.0, yos = —0.15, 2,; =0.0(i =1,...,6)
a1 = 0.170, by = 0.595, ¢; = —0.4, az = —0.6, by = 0.15, c; = —0.4
a3 = —0.6, by = —0.15, c3 = —0.4, ay = 0.170, by = —0.595, ¢4 = —0.4

ay = 0430, b5 = —0445, Cy; = —04, g = 0430, b5 = 0445, Ceg = —0.4
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lﬁ = 15, lm = 45, lil = 45(’L = 1, .. ,5)
Miy =my =01, 75, =22,r3=12,(1=1,...,5), r,=0

7”6:0.5, mp:1.5, m6:O.1, K:—l, Kﬂ:—l, (7,21,,5)

0.1/16 0 0 008 0 0
0 0  0.1/16 0 0 0.08

The specified trajectory is

x=-15 y=0, z=10+02sin0.5t, ¢=00, 0=0.0 (3.172)

The resulting generalized input forces for five actuated joints are represented in
Figures 3.13 and 3.14.

3.2.2.3 Six-degree-of-freedom manipulator

Since the Newton-Euler formulation has been applied to the six-dof manipulator by
other authors, no derivation is presented here. An example is simply given to illustrate
the results. In this example , it is assumed that the end-effector of the manipula-
tor follows a simple trajectory involving a vertical motion along the direction of the
z axis with the other five Cartesian fixed coordinates. The trajectory is described in
detail below. The discussed above torques needed to produce the specified motion are

obtained by the two approaches.

The parameters used in this example are given as
Tor = —2.120, yor = 1.374, o = —2.380, ypp = 1.224, T3 = —2.380, yp3 = —1.224

Tos = —2.120, you = —1.374, z,5 = 0.0, y,5 = 0.15
Tog = 0.0, yos = —0.15, 2,, =0.0(i =1,...,6)
a; = 0.170, by = 0.595, ¢; = —0.4, ay = —0.6, by = 0.15, ¢, = —0.4
az = —0.6, by = —0.15, c3 = —0.4, ay = 0.170, by = —0.595, ¢, = —0.4
as = 0.430, bs = —0.445, c5 = —0.4, ag = 0.430, bg = 0.445, c¢ = —0.4

lﬁ = 15, lm = 45, lil = 45(’L = 1, .. ,5)
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Figure 3.13: Generalized force for the spatial five-dof mechanism at the actuated joints
1 to 4.

Miy =my =01, 75, =22, 13 =12, (i=1,...,5), r,=0

7'6:().5, mp=1.5, m6=0.1, K:—l, Kﬂ:—]_, (221,,5)

0.1/16 0 0 008 0 0
0 0 0.1/16 0 0 0.08

The specified trajectory is

r=-15, y=0, z=10+0.2sin0.5¢

$=00, 0=00, ¥=0.0



75(kN)

- wt(rad)

Figure 3.14: Generalized force for the spatial five-dof mechanism at the actuated joint
5.

The resulting generalized input forces for the six actuated joints are represented in
Figures 3.15 and 3.16.

3.3 Conclusion

The dynamic analysis of planar and spatial parallel manipulators has been addressed
in this chapter. The analysis of the position, velocity and acceleration of these manipu-
lators has been performed. Two different methods for the derivation of the generalized
input forces have been presented and each method has its own advantages. Finally, ex-
amples have been given for each manipulator in order to illustrate the results. Parallel
manipulators are of interest for many applications in robotics and in flight simulation.
The dynamic analysis is an important issue for the design and control of the manipu-

lators and can be efficiently handled with the procedures described in this chapter.
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Figure 3.15: Generalized force for the spatial six-dof mechanism at the actuated joints
1 to 4.



Figure 3.16: Generalized force for the spatial six-dof mechanism at the actuated joints

5 and 6.
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(a) Torque at the actuated

joint 5.

(b) Torque at the actuated

joint 6.
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Chapter 4

Static balancing

The static balancing of planar and spatial parallel mechanisms or manipulators with
revolute actuators is studied in this chapter. Static balancing is an important issue in
the design of parallel manipulators and mechanisms. Indeed, if a mechanism is stati-
cally balanced, its actuators will not contribute to supporting the weight of the links
in any configuration. Since parallel mechanisms are often used in applications in which
large loads are involved, static balancing can lead to significant improvements in the
efficiency of the mechanisms. Two static balancing methods, namely, using counter-
weights and using springs, are used here. The first method leads to mechanisms with a
stationary global center of mass while the second approach leads to mechanisms whose
total potential energy (including the elastic potential energy stored in the springs as
well as the gravitational potential energy) is constant. The position vector of the global
center of mass and the total potential energy of the manipulator are first expressed as

functions of the position and orientation of the platform as well as the joint coordinates.
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Then, the kinematic constraint equations of the mechanism are introduced in order to
eliminate some of the dependent variables from the expressions. Finally, conditions for
static balancing are derived from the resulting expressions and examples are given in

order to illustrate the design methodologies.

4.1 Balancing with counterweights

In this section, the conditions for the static balancing of the mechanisms with coun-
terweights are derived. This is accomplished by specifying that the global center of
mass of the mechanism be fixed. This property is useful for applications in which the
manipulator or mechanism is required to be statically balanced for all directions. In
other words, the resulting manipulator would be statically balanced for any direction
of the gravity vector, which is a desirable property for portable systems which may be

mounted in different orientations.

4.1.1 Planar parallel manipulators with revolute actuators
4.1.1.1 Two-degree-of-freedom manipulator

This mechanism is represented in Figure 4.1. The black dots represent the center of
mass of the links while m;, I;, r; and v¢; (i = 1,...,4) are respectively the mass, the
length, the distance from the joint to the center of mass and the angle between the link
and the line connecting the joint and the center of mass of the 7th link. Moreover, it is

assumed that the direction of the gravity is along the negative direction of the y axis.

The expression of the global center of mass of the mechanism can be written as
4
i=1
where M and r are the total mass and the vector of the global center of mass, while r;

is the vector of the center of mass of the ith link.

Vectors r; can be expressed as functions of the orientation angles of the links, i.e.,
lrl cos (6, +w1)] lll cos 01 + 79 cos (ay + 1)
r = ) =

4.2
1 sin (61 + 1) l1sin @) + rosin (o + 1) 42)
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Figure 4.1: Planar two-degree-of-freedom mechanism.

ry = |"I'4 COS ((92 + ’QZ)4) + xp (43)

ll4 cos By + 73 cos (a + 3) + xO]
r = J .
’ r4sin (0 + 14) + yo

B Iy sin 6y + 73 sin (g + 1P3) + Yo

where xy and 7, are the position coordinates of point O.

The substitution of egs.(4.2) and (4.3) into eq.(4.1) leads to
Ty
Mr = l ] (4.4)
Ty

where

ry = (mqr1cosy + maly) cos @y — myry sin ¢ sin 6,

(myry cos g + mgly) cos Oy — myry sin 1)y sin 6,

MaTo COS Wy COS (v — MipT9 SiN 1y Sin oy

M3T3 COS 3 COS (g — MgT3 Sin Y3 sin ag + (Mg + my) T (4.5)
Ty = (mircosty + maly)sin@; — myry sin i cos b,

(myry cos g + mgly) sin Oy — myry sin 1y cos b,

MoTy COS WYy SIN (v — MaTo SiN 1y COS (g

m3T3 COS 3 Sin g — Mm3r3 sin 3 cos ag + (Mg + my) Yo (4.6)

From the closed loop of the mechanism O0,030,0;, one can obtain the following

constraint equations

lycost +1lacosa; = g+ l3cosay+ 1y cosby (4.7)

ll sin 91 + lg sin a1 = Yo + l3 sin 9 + l4 sin (92 (48)
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Eliminating cos s and sinay in eq.(4.4) by substitution of eqs.(4.7) and (4.8) into
eqs.(4.5) and (4.6), one has

ry = Ajcosf; + Bysin#, + A, cosfy + Bysin b,
+A3 cos a1 + Bg sin o + Cx (49)
ry = Apsinfy + Bycosfy + Aysinby + By cos b,

+Assina; + Bscosa; + G, (4.10)
where

A = myricosy + ﬁ—;mgT’g coS Y3 + moly (4.11)
B = myrisiniy; + ;—;mgrg, sin 13 (4.12)
Ay = muricosihy — %mgr;; cos Y3 + mgly (4.13)
By = myrysint, — ﬁ—img’f'g sin 13 (4.14)
Az = mgrycosty + j—zmgT3 cos 3 + mgly (4.15)
Bz = mgrysinyy + ;—zmg,rg sin 13 (4.16)

and C, and C, are constants which are independent from the joint variables, i.e.,

T .

Cy = —msl—?’(ﬂ?o €08 Y3 + Yo siny3) + (ms + my)zo
3
T3

Cy= _m3l_(y0 cos 13 + xg sin ) + (mz + ma)yo
3

(4.17)

In order for the position vector of the global center of mass of the mechanism to be
constant, the coefficients of the variables 6,0, and a; in the above expressions must
vanish. Therefore, the conditions for the static balancing of the two-degree-of-freedom
manipulator should be

A, =0, B;=0, i=1,23 (4.18)

An example is now given in order to illustrate the application of the balancing

conditions derived above to this type of mechanism.

For the two-dof mechanism, let
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Figure 4.2: Two-degree-of-freedom balanced mechanism with counterweights.

m2:m3:1, lzzl(lzl,,ﬁl)

Yo=0,¢3=m, 12 =73=05
T = 15, Y1 = 0
where the masses are given in kilograms and the lengths in meters.

From equations (4.18) one obtains

my =1(kg), my =3 (kg), 11 =12 =05, =9y =7

The balanced mechanism is represented schematically in Figure 4.2 where the size
of the black dots is roughly proportional to the mass of the links. The center of mass
of this mechanism will remain fixed for any configuration and hence, the actuators will
never contribute to supporting the weight of the links. This mechanism is gravity-

compensated for any orientation and magnitude of the gravity vector.
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Figure 4.3: Planar three-degree-of-freedom mechanism.
4.1.1.2 Three-degree-of-freedom manipulator

This mechanism is represented in Figure 4.3. Similarly, the black dots represent the
center of mass of the links while m;;, l;;, r;; and ¢;; (i =1,2,3 j = 1,2) are respec-
tively the mass, the length, the distance from the joint to the center of mass and the
angle between the link and the line connecting the joint and the center of mass of the

jth link of the ith leg.

The expression of the global center of mass of the mechanism can be written as

3
Mr = mar; + Z(mﬂrﬂ + MiaTio) (4.19)

i=1
where m;;, m;o , r;; and r; are the mass and the position vector of the center of mass
of the two links of the ith leg, m3 and r3 are the mass and the position vector of the
center of mass of the end-effector and M and r are the total mass and the position

vector of the global center of mass.

Vectors r; can be expressed as functions of the orientation angles of the links, i.e.,

(731 cos (0; + i) + o

rno= | (6: + ) OZ], i=1,23 (4.20)
| 71 sin (6; + ¥3) + Yo

[1;1 cos0; + 1 cos (o + ;) + To;

r, = 2l . [ 12 . ( ) %) OZ]’ 121,2’3 (421)
_lil Sln9i+TiQSln(Ofi+1/Ji)+y0i

(111 cos 01 + l19 cos ay + 13 cos (¢ + 13) + in]

. . . (4.22)
L 111 Sin 01 —+ llg S1n & —+ T3 S1n ((ZS —+ wg) + Yoi

rs =

where xg; and yo; with ¢ = 2,3 are the position coordinates of joint O;.
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Substituting egs.(4.20)—(4.22) into eq.(4.19) leads to

Ty
Mr = [ ] (4.23)
Ty
where
Ty = [m117'11 COS 1/111 + (m12 + mg)ln] COS 01 + (m117'11 sin ’(/)11) sin 01

+(m21r21 COS wQI -+ m12l21) COS 92 -+ (m21r21 sin 1[121) sin 02
+(mg1731 COS '(/131 + m32l31) COS 93 + (m31r31 sin 1,[731) sin 03
+(myaT12 €08 Yo + Maliz) cos ag + (Myarie Sin ) sin g

+(MaaTag COS 19g) €COS (g + (MaaTa2 SiN o) Sin arg

(
(
(
(

+(ma3arss oS P32) cos az + (M32rs2 Sin ¥30) sin ag + C; (4.24)

Ty = (mu’rn sin 17/)11) sin 01 -+ [m117'11 COS ’([)11 + (m12 + mg)ln] COS 01

_|_

Ma17T21 SN a1 ) Sin By + (Ma1791 COS Y1 + Myalar) cos by
+(mg1731 8in 137 ) sin O3 + (mg1 731 COS P31 + Mgalsr) cos b3
sin o1 + (m127“12 COS ¢12 + m3l12) COS (/1

(
(
+(m1gri2sin ¥y
+(Maggrag SN 19g) Sin (g + (MigaTa2 COS o) COS (g
(

)
)
)
+(mgorse sin 1se) sin ag + (M32rse cOs Ps2) cos ag + Cy (4.25)

where C; and C, are constant terms.

From the geometric relations of the mechanism (from the closed loops), one can

obtain the following kinematic constraint equations

ZTor + l11cos B + liacosag +13co8¢p = zgg + log cos by + lag cOS g (4.26)
Yor + i1 sinf + ligsinay +l3singd = 1ypo + 31 5in Oy + loy sin vy (4.27)
Zo1 + 11 cos 0y + lipcosay +14cos¢p = xo3 + I31 cos s + l30 cos ag (4.28)
Yo1 + L1 8in by + ligsinay +lysing = yoz + l308in 03 + I35 sin a3 (4.29)

Eliminating cos g, sin ag, cos az and sin ag in eq.(4.23) by substitution of eqgs.(4.26)—
(4.29) into eqs.(4.24) and (4.25), one has
ry = Ajcosf, + Bysinf; + Ay cosfy + Bysinfy + Ascosfs + Bssinfs
+Ascosa; + Bysinag + Ascos ¢ + Bssin ¢ + C; (4.30)
ry = Ajsin®; + Bjcosf + Aysinfy + By cos by + Az sin 03 + Bs cos 03
+Assinaq + Bycosay + Assin ¢ + By cos ¢ + C’; (4.31)
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where
A; = marigcos Py + (Mg + ms)li
11 I
+l—m227“ 22 COS Pp + l—m32T32 COS P37
22 32
B — . I . I .
1 = murisiny;g + l—m227"22 sin Y9g + l—m327“32 Sin Y30
22 32
A, = I I
2 = Mg1T21 COSYa1 + Maglyy — l—m227“22 oS a9
22
B, — . la1 .
2 = Mg T218in Yy — 1, a2l Sin o2
22
A — l l31
3 = Mm31731 COS P31 + Maglsy — 7 Ma2Ts2 COS V32
32
B. — . l31 .
3 = 31731 5N 1Y3 — 1 MaeT2 Sin P30
32
A, = I l1a l12
4 = Mi2eT192COS ¢12 + m3lio + l—m32r32 COs w32 + l—mQQT‘QQ COS w22
32 22
_ . lio . lio .
By, = miariosing + l—m327‘32 sin 139 + l—m227“22 sin 199
32 22
A5 = L g
5 = Mgr3cos s + T 2732 oS P3o + 1, ma2T2 COS Y22
32 22
: l4 . l3 .
B5 = Mmg3r3sin ¢73 -+ l—m32r32 Sin 1/)32 + l—mQQTQQ Sin wgg
32 22

7 7 . .
and where C;, and C,, are constant terms which can be written as

1 Yor Y
C.',c = (m21m22 - _).T()l + (m31m32 — —)x02 _ ﬂ _ E
l22 l32 122 l32

1 1 T T
Cy = (m21m22 - _)y01 + (m31m32 — —)y02 _ zo1 202
l22 l32 lzz 132

(4.32)
(4.33)
(4.34)
(4.35)
(4.36)
(4.37)
(4.38)
(4.39)
(4.40)

(4.41)

Similarly to the previous case, in order for the position vector of the global center of

mass of the mechanism be constant, the coefficients of variables 6, 65,03, ¢ and «; in

the above expressions must vanish. Therefore, the conditions for the static balancing

of the three-degree-of-freedom mechanism should be

A;=0, B;=0, i=1,....5

An example is now given to illustrate the results derived above.

For the three-dof mechanism, let

m3=1, m11=m12=1(z=2,3)

(4.42)
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Figure 4.4: Three-degree-of-freedom balanced mechanism with counterweights.

l3=0.6,1,=12, 1l =1l =1(i=1,2,3)
Tor =Too =131 =732 = 0.5, 73 = 0.6, Y90 = 130 =0
xo = 0,202 = 1.5, To3 = 3, Yo = Yo2 = Yo3 = 0
where the masses are given in kilograms and the lengths in meters.

From equations (4.42) one obtains

my; = 5 (kg), myp = 3 (kg), r11 =112 =0.5
Y=Y =vn =Y =m Y3 =0

The balanced mechanism is represented schematically in Figure 4.4.

4.1.2 Spatial parallel manipulators with revolute actuators

The conditions for the static balancing of spatial parallel mechanisms will now be

derived using counterweights.

Static balancing using counterweights consists in ensuring that the global center
of mass of the mechanism remains fixed for any configuration of the mechanism. In
other words, the resulting manipulator would be statically balanced for any direction of
the gravity vector — and hence the weight of the mechanism does not have any effect
on the actuators —, which is a desirable property for portable systems which may be

mounted in different orientations.
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Figure 4.5: Geometric representation of the spatial four-degree-of-freedom system with

revolute actuators.

4.1.2.1 Four-degree-of-freedom manipulator

The spatial four-dof parallel mechanism is represented in Figure 4.5. A reference coor-

dinate frame attached to each link must first be defined.

The coordinate frame of the base, designated as the O — x,y, z frame is fixed to
the base with its Z-axis pointing vertically upward. Similarly, the moving coordinate

frame O' — ',y , 2 is attached to the platform, as represented in Figure 4.5.

The Cartesian coordinates of the platform are given by the position of point O" with
respect to the fixed frame, noted p = [z, ¥, 2|7 and the orientation of the platform (the
orientation of frame O' — x'y'z’ with respect to the fixed frame), represented by matrix

Q, which can be written as
q11 12 413

Q= |[¢q1 g2 ¢ (4-43)

31 Q432 Q33
where the entries can be expressed as functions of Euler angles, quadratic invariants,

linear invariants or any other representation.

Finally, the coordinates of point P; (Figure 4.5) relative to the moving coordinate

frame of the platform are noted (a;, b;, ¢;) with i =1,...,5.

One can write
pi=ps+Q(p;,—ps), i=1,...,4 (4.44)
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Figure 4.6: Geometry of the fifth leg.

where p;(i = 1,...,4) is the position vector of point P; expressed in the fixed coordinate

frame, p;- is the position vector of point P; expressed in the moving coordinate frame,

and
Z; a;
pi=|vl|, P;=|bi (4.45)
Zi C;

Vector pjs is the position vector of point P5 expressed in the fixed coordinate frame, as
represented in Figure 4.6 and can be expressed as
l5 sin o

ps = 0 (4.46)

5 cos a

If it is assumed that the center of mass of the 5th leg is located on the line connecting
point O and Ps, one can compute the position vector of the center of mass of the 5th

leg, as represented in Figure 4.6, i.e.,

lse
rs = p;,(%) (4.47)

where rj is the position vector of the center of mass of the 5th leg and [5 is the length

of the leg and I5. is the distance from O to Cs.

The two links of the ¢th leg of the mechanism are represented schematically in

Figure 4.7. A reference frame noted O;; — x;,¥;, 2; is attached to the first link of the
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leg. Point O;; is located at the center of the first revolute joint. The coordinates of
point O;; expressed in the base coordinate frame are (s, Yio, 2i0), Where ¢ = 1,... 4.
Moreover, the unit vectors defined in the direction of axes z;, y; and z; are noted x;1, y;1

and z;;, respectively.

Vector z;; is defined along the axis directed from point O;; toward point O;s while
vector X;; is defined along the direction of the first revolute joint axis. Finally, vector
y;1 is defined as

Z;1 X X1

yil =1 4 (4.48)

:|Zi1><Xz'1|’ Y
Also, points C;; and Cj, denote respectively the center of mass of the lower and upper

link of each leg.

Let 6; be the joint variable associated with the first revolute joint of the ith leg
and v; be the angle between the positive direction of the x axis of the base coordinate
frame and the coordinate axis x;;, where it is assumed that vector x;; is contained in
the zy plane of the fixed reference frame (Figure 4.7). One can write the rotation
matrix giving the orientation of frame O;; — x;, y;, z; with respect to the reference frame

attached to the base as

cosy; —siny;cosf;  sin~y;sinb;
Qi = |sinvy; cosvy;cosf; —cosysinf; |, i=1,...,4 (4.49)
0 sin 6; cos b;

Moreover, it is assumed that the center of mass of the second link of the ith leg lies on

line O, P;, as represented in Figure 4.7. One can then write
Pi1 =T+ Quly, i=1,...,4 (4.50)

where p;; and r;, are respectively the position vectors of points O;2 and O;; expressed in
the base coordinate frame, as represented in Figure 4.7, while 1;; is the vector pointing

from O;; to O;» and expressed in the local coordinate frame, and

Tio Tl 0
Tio= |Yio |, Pu=|val|l, lu=]0], i¢=1,...,4 (4-51)
Zio Zil Liy

where [; is the distance from O;; to O;s.
Eq.(4.50) can be written in component form as

i1 = acio—i-lilsin’yisinﬁi, Z=1,,4 (452)
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Figure 4.7: Geometry of the ith leg.

Yii = Yio — ljpcosvy;sinf;, 1=1,...,4 (4.53)
Zi1 = Zz‘o—|—li1COS€z’, 221,,4 (454)

Then, one can compute the position vector of the center of mass of the second link of

the ith leg from the position vectors of points O; and P, as

lic .
P __(pz_pzl)a Zzl,...,4 (455)

i
liu

Tiy

where r;, is the position vector of the center of mass of the upper link of the ith leg
and where [;, and [;. are respectively the distance from O;; to P; and from O;; to
Ciu. Moreover, position vector p; can be expressed as a function of the position and

orientation of the platform, i.e.,

pi=p+Qp;,, i=1,...,4 (4.56)
where
z a;
p=1|yl, p;-: b |, 1=1,...,4 (4.57)
z C;

With all the above definition, the global center of mass of the manipulator can be

written as .

MI' = mprp + msrs + Z(milril + mmriu) (458)
i=1
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where M is the total mass of all moving links of the mechanism, m,, ms, m;, and m;
are respectively the masses of the platform, of the special 5th leg, of the upper link and
lower link of the ith leg, and

4
i=1
while r, and ry; are respectively the position vectors of the center of mass of the platform

and of the lower links of the ith leg, namely
r, = p+Qc, (4.60)
ry = T+ Qilcil; 1= 1, ey 4 (461)
where ¢, and c;; are the position vectors of the center of mass of the platform and the

lower link of the ith leg expressed in the local reference frame, and whose components

are given as

.’L'p Tie
Cp =|Yp | Ciit = | Yie | 7= 1, ceey 4 (462)
Zp Zic

Substituting eqs.(4.47), (4.55), (4.60) and (4.61) into eq.(4.58), one then obtains

rw
Mr=|r, (4.63)

Tz

where
4
Te = Z(Dz sin 7y; sin 6; — D; 4 siny; cos 6;)
i=1

+Dygq11 + Dioqi2 + Di1¢is + Digsin o + Dy, (4.64)
Ty = i(DiH cos 7y; cos B; — D; cos 7; sin 6;)

i=1

+Dgq11 + Dioqia + Di1qis + Dy, (4.65)
r, = i(Di cos; + D; 4 sin 6;)

i=1

+Dyq11 + Dioqiz + D1igqiz + Digcosa+ Dy, (4.66)

where D,,, D,, and D,, are constant quantities, and

il .
Di = milzic+rlicmiu, 1= 1,...,4
10
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Dits = myYi, 1=1,...,4

: lzu - lic
Dy = my(z,—as)+ I Miu(a; — a5)
i=1 mw
. lzu - lic
Dy = my(yp —bs) + ) — My (b — as)
=1 w
! lzu - lic
Dll = mp(zp — 65) -+ Z l miu(ci — CL5)
i=1 mw

4
w lic
D12 = [l5cm5 + l5 (mp + Z

i=1 lzu

It is clear that when the coefficients of the joint and Cartesian variables in the expres-
sions of r4, , and 7, vanish, the global center of mass of the manipulator will be fixed.

Hence, one obtains the conditions for static balancing as follows

Di =0, i=1,...,12 (4.67)

An example is now given in order to illustrate the application of the balancing

conditions, derived above, to this type of mechanism.

For the 4-dof manipulator with revolute actuators studied here, let

my =10, my =m4, =013 =1,...,4)

ay = —0.5, ;b0 = —=0.5,¢; = —0.3, ap = 0.5, ,bp = —0.5, co = —0.3
a3 = 0.5, b3 = 0.5, cg = —0.3, ay = —0.5, by = 0.5, ¢4, = —0.3
a5 =0,bs =0, cs =0, ls = 1.0, l;, = 0.5
liw=11=051l;=1pu=103G=1,...,4)
Tio = —1.5, y1o = —1.5, 210 = 0, 9o = 1.5, 2o = —1.5, 29, = 0
T30 = 1.5, 3o = 1.5, 230 = 0, Tao = —1.5, Yso = 1.5, 240 = 0

T i 3T 5%

%:_Z’%:Z’%’:Z’%:Z

where the masses are given in kilograms and the lengths in meters.

From equations (4.67) one obtains

yic=0, 2202—05(7,:1,,4)
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Figure 4.8: Four-degree-of-freedom balanced mechanism with revolute actuators using

counterweights.

Figure 4.9: Geometric representation of the spatial five-degree-of-freedom mechanism

with revolute actuated joints.
Tz, =0,y, =0, 2z, =12 (cm), lsc = —50 (cm), ms = 24 (kg)

The balanced mechanism is represented schematically in Figure 4.8.

4.1.2.2 Five-degree-of-freedom manipulator

The spatial five-dof parallel mechanism is represented schematically in Figure 4.9.

For this mechanism, the coordinate frames attached to the two links of the identical
actuated legs and to the platform are the same as the ones defined in the case of spatial

four-dof parallel mechanism. Hence, one can write
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Figure 4.10: Geometry of the sixth leg.

pi=p+Qp,, i=1,...,6 (4.68)
where p; and p; (i = 1,...,6) are the position vector of point P; expressed in the fixed

coordinate frame and the moving coordinate frame respectively, and

T Z; a;
< Ci

One can compute the position vector of the center of mass of the 6th leg, namely,

the position vector of point Cg, as represented in Figure 4.10.

loe
rg = pﬁ(%) (4.70)

where rg is the position vector of the center of mass of the 6th leg.

Similarly to the previous case, the position vector of the center of mass of the second
link of the ith leg can be determined from the position vectors of points O, and P; as

lic

pi— —(Pi—pa), i=1,...,5 (4.71)

iy = Pi
lz’u
where r;,, l;, and ;. are as previously defined.

Then, the global center of mass of the manipulator can be expressed as

5
Mr = mpYy -+ mglg + Z(milril + mmriu) (472)
=1
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where M is the total mass of all moving links of the mechanism, m,, ms, m;, and m;
are respectively the masses of the platform, of the special sixth leg, of the upper link
and lower link of the #th leg, and

5
M =mp,+mg + > (Mg + miy) (4.73)
i=1

while r, and r;; are respectively the position vectors of the center of mass of the platform

and of the lower links of the ¢th leg, namely
r, = p+Qc, (4.74)
ry = T+ Qilcil; 7 = 1, cee 6 (475)
where ¢, and c;; are the position vectors of the center of mass of the platform and the

first link of the ith leg expressed in the local reference frame, and whose components

are given as

'Z.p Tic
Cr= 1Y |5 Cia=|Yic]|,> 1=1,...,6 (4.76)
Zp Zic

Substituting eqs.(4.70) (4.71), (4.74) and (4.75) into eq.(4.72), one then obtains

T.TC
Mr = |r, (4.77)
T,
where
5
ry = Y _(Djsiny;sinb; — D; 5siny; cos ;)
=1
+D112 + Diggin + Disqia + Dyagis (4.78)

(Dj14 cosy; cosb; — D; cos y; sin 6;)

ﬁ
<

I
M%

=1

+D11y + Diggor + Disgoo + Diagos (4.79)

r, =

”M’P

(D cosB; + D; 4sin6;)

+D11y + D12g31 + Di3qs2 + Di4gss (4.80)

where D,,, D,, and D,, are constant quantities, and

il .
D, = myzi.+ rlicmiu, 1=1,...,5
U
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Diys = myYie, t=1,...,5
l 5 l;
Dy = my+met+ Y mi(l— )
l6 i=1 lzu

lic
Dy, = myx, + m6a6 + meaz -7 =)
mu
l;
Dis = myy, + m6b6 + me (1—-2)
=1 ZW
l;
Dy = myz, + mecg— + mecZ (1--2)
l6 i=1 lzu
Similarly, when the coefficients of the variables such as D;(i = 1,...,12) vanish,

the global center of mass of the manipulator will be fixed. Thereby, one obtains the

conditions for static balancing as follows

D, =0, i=1,...,14 (4.81)

An example is now given in order to illustrate the application of the balancing

conditions derived above to this type of mechanism.

For the 5-dof manipulator with revolute actuators, let

mp=10, lm:lzlzl(lzl,,(s)

a; = —0.5, ,by = —0.5, ¢y = —0.3, aa = 0.5, ,by = —0.5, co = —0.3
az = 0.5, b3 = 0.5, cg = —0.3, ay = —0.5, by = 0.5, ¢4, = —0.3
a5 =0.5,b5 =0, c5 =—0.3, a6 =0, bg =0, cg = —0.3
Tio = —1.5, y1o = —1.5, 21 = 0, 9o = 1.5, 2o = —1.5, 29, = 0
30 = 1.0, Y30 = 1.5, 23, = 0, Tyo = —1.5, Yso = 1.5, 240 =10
50 = 1.9, Yso =0, 250 = 0, Zeo = 0, Y60 = 0, 260 =0

o o _37r T o
M= ,72—4,73—4,74— 775—4

4 4
Yic = 0, 2;¢ = —0.5, 2, =0
where the masses are given in kilograms and the lengths in meters.

From equations (4.81) one obtains



Figure 4.11: Five-degree-of-freedom balanced mechanism with revolute actuators using

counterweights.

my, = 4 (kg), my = 13 (kg) (i=1,...,6)
yp =0, 2, = 30 (cm)

The balanced mechanism is represented schematically in Figure 4.11.

4.1.2.3 Six-degree-of-freedom manipulator

The spatial six-dof parallel mechanism is represented schematically in Figure 4.12.

The coordinate frame attached to the platform and the two links of the actuated

leg are the same as the ones defined for the spatial four-dof parallel mechanism.

With all the definitions of the vectors given for the case of the spatial four-dof

parallel mechanism, one has

l; :
riu:pi_lﬁ(pi_pil)a 1=1,...,6 (4.82)
u
where r;, is the position vector of the center of mass of the upper link of the ith leg.

and where [;,, [;. are as previously defined.
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Figure 4.12: Spatial six-degree-of-freedom parallel mechanism with revolute actuators.

Then, the global center of mass of the mechanism, noted r can be written as

6
Mr =myr, + Z(milril + MiuTin) (4.83)

i=1
where M is the total mass of all moving links of the mechanism, m,, m;, and m; are
respectively the masses of the platform, the upper link and lower link of the ith leg,
and 6

M =my+ > (my + miy) (4.84)

i=1
while r, and r;; are respectively the position vectors of the center of mass of the platform

of the mechanism and of the center of mass of the lower link of the ith leg, namely

5 = ptQe, (4.85)
iy = T+ Qucy, t=1,...,6 (4.86)

where ¢, and c;; are the position vectors of the center of mass of the platform and of

the lower links expressed in the local reference frame, and whose components are given

as
Tp Tic
= 1|Y%|: Ci= Y|, 2=1,...,6 (4.87)
ZP Zic

Substituting egs.(4.82), (4.85) and (4.86) into eq.(4.83), one then obtains

Ty
Mr=|r, (4.88)

Ty
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where

Ty = i(DZ sin Yi sin 91 — Di—|—6 sin 7Yi COS 91)

i=1

Z—i-Dlg,:E + D14gir + Disqiz + Digqiz + Dy, (4.89)
ry = i(DHG cos y; cos 0; — D; cos 7y, sin ;)

=1

Z+D13?J + D14go1 + Disqog + Diggas + Dy, (4.90)
r, = Xﬁj(Di cosB; + D; ¢sinb;)

i=1

+Di3z + Diaqsi + Disqse + Disqas + Do, (4.91)

where D,,, Dy, and D,, are constant coefficients, and where

i

D; = myze + rlicmiua 1=1,...,6
mu
Dive = myYie, 1=1,...,6
6
L
D13 = my + me(l - lﬁ)
i=1 U
6 l
D = myzy + > miua;(l —-2)
i=1 liu
6 lic
D15 = MypYp + mebz(l - l_)
i=1 nu
6 l
Dy = myz, + meci(l - E)
i=1 liu

If the coefficients of the joint and Cartesian variables in eqs.(4.89)-(4.91) vanish, the
global center of mass of the manipulator will be fixed. Therefore, one obtains the

conditions for static balancing as follows
D, =0, i=1,...,16 (4.92)

An example is now given in order to illustrate the application of the balancing

conditions to the type of mechanism described above. For this mechanism, let

mp=12, lm:lllzl(?,:]_,,G)

a1 = —0.5, by = —0.5, ¢, = —0.3, as = 0.5, , by = —0.5, ¢y = —0.3

ag = 05, bg = 05, C3 = —0.3, Ay = —0.5, b4 = 05, cy = —0.3
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Figure 4.13: Complete balancing using counterweights.

as = 0.5, b5 = 0.0, cg = —0.3, ag = —0.5, bg = 0.0, cg = —0.3
Tio = —1.5, Y10 = —1.5, 210 =0, T9o = 1.5, Y9 = —1.5, 29, =0
T30 = 1.5, 3o = 1.5, 230 = 0, T4o = —1.5, Yso = 1.5, 240 = 0
Tso = 1.5, Yso = 0, 25 = 0, o = —1.5, Ygo = 0, 260 =0

T T 51 3T or T

’Yl:ga72:—6a73:F;’Mzga%zga%’zg

Yic = 0; Zic = -0.5
where the masses are given in kilograms and the lengths in meters.

From eqs.(4.92), one obtains

2. = —0.5, miy, = 4 (kg), my =13 (kg) (i = 1,...,6)
Ty = 0 (m), Yp = 0, Zp = 0.3 (m)

The balanced manipulator is represented schematically in Figure 4.13.

As can be realized from the figure, large counterweights are necessary to balance

the mechanism.
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4.2 Balancing with springs

In this section, the planar and spatial parallel mechanisms or manipulators will be
statically balanced using springs. Static balancing using springs consists in ensuring
that the total potential energy of the mechanism is kept constant, which means that
the weight of the mechanism does not have any effect on the actuators. Moreover, using
this approach, the weight of the whole mechanism can be balanced with a much smaller
total mass than when using counterweights. This approach may be more appropriate
for applications in which large counterweights would be impractical. However, it should
be noted that the mechanisms obtained with this approach will be balanced for only

one direction and magnitude of the gravity vector.

4.2.1 Planar parallel manipulators with revolute actuators

In order to use springs to balance the manipulator, a special architecture (similar to
what was used in [54]) is proposed for the legs. As represented in Figure 4.14, a
parallelogram four-bar linkage is used instead of the first link of the ith leg. This
enables the attachment of a spring to the upper link of the leg and to a support
which is maintained vertically. A spring is also attached to the parallelogram. The
upper link of the leg is then mounted on a revolute joint with a horizontal axis. The
new architecture is kinematically equivalent to the previous one. However, the new
architecture now allows the use of springs for the static balancing of the mechanism.
Moreover, it is pointed out that the global center of mass of the parallelogram and the

center of mass of the replaced first link of the ith leg can be handled similarly.

4.2.1.1 Two-degree-of-freedom manipulator
The expression of the total potential energy of the mechanism can then be written as
V=V,+V; (4.93)

where V,, and V, are respectively the the gravitational potential energy of the mech-

anism and the elastic potential energy stored in the springs. Theses quantities can be
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Figure 4.14: Geometry and kinematic architecture of the ith leg.

written, for this mechanism as

Vw = 149 (4.94)
2
1
V, = Zi(kuefﬁkiue?u) (4.95)
=1

where r, is defined in eq.(4.6), g is the gravitational acceleration, k;; is the stiffness of
the lower spring of the ith leg, e; is the length of the lower spring of the ith leg, k;, is
the stiffness of the upper spring of the ith leg and e;, is its length. It is assumed here
that the undeformed length of the spring is equal to zero in order to obtain complete
balancing [54]. As shown in [54], this condition can easily be met in a practical design

using, for instance, cables and pulleys.

Using the law of cosines, the effective length of the springs can be written as

€1 = \/h’le -+ d?l — thldil sin 0,~, = 1, 2 (496)

e = B+ — 2hadysineg, i=1,2 (4.97)
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where h;; and d;; are the distances from the revolute joint located at O;; to the attach-
ment points of the lower spring (Figure 4.14) while h;, and d;, are the same distances

for the upper spring.

Moreover, from eq.(4.8) one can obtain

1
sin qy = l—(ll sinf + lpsinay — lysin By — yp) (4.98)
3

Substituting eqs.(4.96)—(4.98) into eqs.(4.94) and (4.95) and then substituting the

latter equations into eq.(4.93), one obtains

V = (Alg — 2kllh1ld1l — 2k2uh2ud2u) sin 01 + Blg COS 01
(Agg — 2k21h21d21 -+ 2k2uh2ud2u) sin 02 -+ ng COS 02
(Agg - 2k1uh1ud1u — nguhzudgu) sin oy + ng cos o + DC (499)

From eq.(4.99) one can finally obtain the conditions for the static balancing of the

manipulator with springs as follows

Ayg — 2kyhydy — 2kguhoydsy = 0 (4.100)
B =0 (4.101)
Aog — 2kaihodoy + 2kayhoyde, = 0 (4.102)
B, = 0 (4.103)
Asg — 2kiyhiydiy — 2koyhoyde, = 0 (4.104)
B; = 0 (4.105)

where A; and B; (i = 1,2, 3) have been defined in eqs.(4.11)—(4.16).

An example is now given in order to illustrate the application of the balancing

conditions derived above.

For the two-dof mechanism, let

hll:hgl:hlu:hgu:0.5, 7'1205(’1,21,,4)
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Figure 4.15: Planar two-degree-of-freedom balanced mechanism with springs.

xr1 = 15, U1 =0

where the masses are given in kilograms and the lengths in meters.

From eqs.(4.100)—(4.105), one obtains

dll == dgl == 05

kll = klu = 29N/m, k‘gl = 21N/m, k‘gu = 10N/m,

The balanced mechanism is represented schematically in Figure 4.15.

4.2.1.2 Three-degree-of-freedom manipulator

Similarly, the expression of the total potential energy of the planar three-degree-of-

freedom manipulator can also be written as
V=V,+V; (4.106)

where V,, and V; are respectively the gravitational potential energy of the mechanism
and the elastic potential energy stored in the springs. These quantities can be written,
for this mechanism as
Vw = 1yg (4.107)
3

1
Vs = g (kaeq + kivey,) (4.108)

=1
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where r, is defined in eq.(4.25).

Using the law of cosines, the length of the springs can be written as

€1 = \/h2 + d?l — Zhildil sin (91', 1= 1, 2, 3 (4109)
e = \hE +d% — 2hadisineg, i=1,2,3 (4.110)

where h;; and d;; are the distances from the revolute joint located at O;; to the attach-
ment points of the lower spring (Figure 4.14) while h;, and d;, are the same distances

for the upper spring.

Moreover, from eqs.(4.27) and (4.29) one has

1

sinoy = ;i —(l11sin 6y + Iz sin oy + I3sin ¢ — 31 sin O — yo1) (4.111)
22
1

sinqy = l —(l11sin 6y + lipsin q + l4sin ¢ — I31 sin O3 — yg2) (4.112)
32

Substituting egs.(4.109)—(4.112) into eqs.(4.107) and (4.108) and then substituting

the latter equations into eq.(4.106), one can obtain

V = (A1 — 2l€11h1ld1l — 2;11 hgudgu ;11 hgudgu) sin 91 + Bl COS 91
32
l31
(A2 - nglhzldy + 2[ h2ud2u) sin 02 + 32 COS 02
22
(Ag — 2k31h31d31 + 2?3—1h3ud3u) sin 93 + B3 COS 03
32
l12 l12 .
(A4 — leuhludlu - 2[—h2ud2u — 2l—h3ud3u) sin o + B4 COS (1
22 32
(A5 ;3 hQudQU — 2;4 hgudgu) sin ¢ + B5 COS ¢ + D (4113)
32

From eq.(4.113) one can finally obtain the conditions for the static balancing of the

manipulator with springs as follows

Alg—2kllhudu—2§2 kauhoudzy — §;1k3uh3ud3u = 0 (4.114)
B, = 0 (4.115)

Agg—Qlehﬂdgl+2§Z’—lk2uh2ud2u =0 (4.116)

B, = 0 (4.117)

A3g—2k3lh31d3l+2§ ksuhsuds, = 0O (4.118)
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By = 0 (4.119)
A l12 l1o B

4g_2k1uh1ud1u_QZ_kZuhZudQU_zl_k3uh3ud3u =0 (4.120)

22 32
B, = 0 (4.121)

l l
A5g——3k2uh2ud2u—2—4k3uh3ud3u = 0 (4122)

loo l3o
B = 0 (4.123)

Similarly to the previous case, an example is now given to illustrate the results

derived above.

For the three-dof mechanism, let

my=mj=mp=100=1,2,3)
hit = hiy = 0.5 (1 =1,2,3),dyy = d3y, = 0.5
I3=06, 14 =12 l1=1ly=1(G=1,2,3)
rii =T =0.5,13=0.6, Yy = =0(:=1,2,3)
zo1 = 1.9, Too = 3, Yo1 = Yo2 =0
where the masses are given in kilograms and the lengths in meters.

From eqs.(4.114)—(4.123) one obtains
kiw = 10N/m, ki = 50N/m (i = 1,2, 3)

The balanced mechanism is represented schematically in Figure 4.16.

4.2.2 Spatial parallel manipulators with revolute actuators
4.2.2.1 Four-degree-of-freedom manipulator

Similarly to what was obtained for the planar manipulators, the expression of the total

potential energy of this spatial manipulator can be written as

V=V,+V, (4.124)



Figure 4.17: Architecture and geometry of the ith leg.

where V,, and V are respectively the the gravitational potential energy of the mani-
pulator and the elastic potential energy stored in the springs. These quantities can be

expressed as

Vw = 7.9 (4.125)
1 5

s = Eijeg (4.126)
j=1

where r, is defined in eq.(4.66) k; is the stiffness of the jth spring, e; is its length and

other quantities are as previously defined.

For this type of manipulator, a spring can be used in each revolute joint connecting

the ith leg to the base of the manipulator, where ¢ = 1,...,5. This is represented
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in Figure 4.17 where the geometric parameters are defined. Therefore, the potential

energy stored in the spring attached to the ith leg can be written as

V= %kief (4.127)
where, from the law of cosines
e = /B + & — 2hyd;cosb;, i=1,...,4 (4.128)
and
es = \/h2 + d& — 2hsds cos (4.129)

Substituting egs.(4.125) and (4.126) into eq.(4.124) leads to

4
V = > [(D; — 2k;hid;) cos b; + Djyq cosb;) + Doqui + Diogia + Diigis
=1
1 2 2 1 2 2 2
+(D1a = 2kshsds) cos o + Sk(h” + &) + 5 > ki(hi +d7) + D,, (4.130)

i=1
From eq.(4.130) one can finally obtain the conditions for the static balancing of the

manipulator when springs are used as follows

Dia = 0, i=1,...,4 (4.132)
D12 - 2k5h5d5 == 0 (4133)
where coefficients D;,7 = 1,...,12 are the ones used in eq.(4.67).

An example is now given in order to illustrate the application of the balancing

conditions derived above to this type of mechanism with springs.

For the 4-dof manipulator with revolute actuators, let

my =10, my = 0.15, my =m;, =0.1(i =1,...,4)
a; = —0.5, ,bl = —0.5, C1 = —0.3, o = 05, ,bg = —0.5, co =—0.3
az = 0.9, b3 = 0.5, cg = —0.3, ay = —0.5, by = 0.5, ¢4, = —0.3

a5:0, b5:0, 05:0, l5:1.0, lw:05(’l:1,,4)

158



159

Figure 4.18: Four-degree-of-freedom balanced mechanism with revolute actuators using
springs.
liw=1i =051l =1y =102, =053G=1,...,4)
lse =0.5, msg=1,h; =0.5,d; =0.5, (i=1,...,4)
T1o = —1.5, Y10 = —1.5, 210 =0, To, = 1.5, Yo, = —1.5, 29, =0
T30 = 1.5, Y30 = 1.5, 23, = 0, T4 = —1.5, Y40 = 1.5, 240 =10

T T 3T 5%

%:_Z’%:Z’%’:I’%:I

where the masses are given in kilograms and the lengths in meters.

From equations (4.131)—(4.133) one obtains

Yie =0, k; = 0.02kg/cm(i =1,...,4)

Z,=0,9,=0, 2, =12cm

ks = 0.23 ton/cm

The balanced mechanism is represented schematically in Figure 4.18.

4.2.2.2 Five-degree-of-freedom manipulator

Similarly to the previous case, the expression of the total potential energy of the ma-
nipulator can be written as

V=V,+V, (4.134)



where V,, and V; are respectively the gravitational potential energy of the manipulator

and the elastic potential energy stored in the springs, which can be expressed as
Vo = 1,9 (4.135)

6
Ve = =) kel (4.136)
j=1

N =

where r, is defined in eq.(4.80) and other quantities are as previously defined. As in
the previous case, a spring is attached to each of the links mounted on the base, as

illustrated in Figure 4.17.

From the law of cosines, one still has

ei:\/h22+dz2—2hidicosﬁ, 1=1,...,5 (4.137)

and

eg = \/h% + d% — 2hgdg cos o (4.138)

Substituting egs.(4.135) and (4.136) into eq.(4.134) leads to

5
V = > (D; — 2k;h;d;) cos0; + D; 5 cos b;)

i=1
hed
+(D11 - 2](76%)2
6
hed
+(D12 — Zkeae—? 6)6131
6
hed
+(D13 — 2kgbg ?6 6)(]32
hed
+ (D14 — 2kgcs ? 6)Q33
6
| PN 2, 2
+§k(h6 +dg) + 2 > ki(hi +d7) + Dy, (4.139)

i=1
From eq.(4.139) one can finally obtain the conditions for the static balancing of the

manipulator when springs are used as follows

Diys = 0, i=1,...,5 (4.141)
heds

le

hed
D12—2k6a6% =0 (4.143)

6
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hed,
Dys — 2k6b6% =0 (4.144)
6
hed
D14 — 2k606 (Z 6 =0 (4145)
6
where coefficients D;, i = 1,...,14 are the ones used in eq.(4.81).

An example is now given in order to illustrate the application of the balancing

conditions derived above to this type of mechanism with springs.

For the 5-dof manipulator with revolute actuators, let

my, =10, mg=1, my=myu =1(=1,...,5)

ap = —0.5, ,by = —0.5, ¢y = —0.3, a; = 0.5, ,by = —0.5, co = —0.3
az = 0.5, b3 = 0.5, c3 =—0.3, ay, = —0.5, by = 0.5, ¢4, = —0.3
a5 =0.5,b5; =0,¢c5 =—0.3,a6 =0, b6 =0, c =0, lg = 1.0, h¢ = 0.5, dg = 0.5
li=1liw=102=1lic=050=1,...,5)
lse =0.5, ms =1, h; =0.5,d; =0.5, (i=1,...,5)
T, = —1.9, Y10, = — 1.9, 21, =0, 29, = 1.5, 49, = —1.95, 29, =0
T3o = 1.5, y3p = 1.5, 23, =0, T4p = —1.5, Yso = 1.5, 240 =10
Tso = 1.9, Y50 = 0, 250 = 0, To = 0, Y60 = 0, 260 =0
T s 3T om
%:_Z’%:Z’%’:Z’M:Z

where the masses are given in kilograms and the lengths in meters.

From equations (4.140)—(4.145) one obtains

Yie=0,k;=2N/cm(i=1,...,5)

T, =2.5(cm), y, =0, z, = 33cm

ks = 26 N/cm

The balanced mechanism is represented schematically in Figure 4.19.
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Figure 4.19: Five-degree-of-freedom balanced mechanism with revolute actuators using

springs.

Figure 4.20: Geometry and kinematic architecture of the ith leg.



4.2.2.3 Six-degree-of-freedom manipulator

In order to use springs to balance the manipulator, a special architecture of the leg
similar to what was used in the case of static balancing of planar parallel mechanism
using springs (Figure 4.14) is proposed for the legs. As represented in Figure 4.20, a
parallelogram four-bar linkage is used instead of the first link of the ¢th leg. The upper
link of the leg is then mounted on a revolute joint with a horizontal axis which is in
turn mounted on a revolute joint with a vertical axis. The latter two joint form a Hooke

joint. This new architecture is equivalent to the original one.

Using the new architecture of the leg, the expression of the total potential energy

of the mechanism can then be written as
V=V,+V, (4.146)

where V,, and V, are respectively the gravitational potential energy and the elastic

potential energy stored in the springs. Theses quantities can be written, for this mech-

anism as
Ve = 1,9+ D, (4.147)
6
1
o= 25 (kuei + kuer,) (4.148)

=1

Il

where 7, is defined in eq.(4.91) and D, is a constant which arises from the distance
d;, which increases the gravitational potential energy. This constant can be written
as D, = mygd; + 30, (m;gd;). Again, g is the gravitational acceleration, k; is the
stiffness of the lower spring of the ith leg, e; is the length of the lower spring of the
1th leg, k;, is the stiffness of the upper spring of the ith leg and e;, is its length. It is
also assumed here that the undeformed length of the springs is equal to zero in order

to obtain complete balancing [54].

Using the law of cosines, the length of the springs can be written as

€1 = \/h’22l + dfl - 2hfildil COos 01" 1= 1a HR 6 (4149)
Ciy = \/h2 +d12u_2hwdw COSﬂZ', i = 1""’6 (4150)

mu

where h; and d;; are the distances from the revolute joint located at O;; to the attach-

ment points of the lower spring (Figure 4.20) while h;, and d;, are the same distances
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for the upper spring. cos 3; can be expressed as a function of angle 6; as well as the

position and orientation of the platform, i.e.,

2 — %1

cos f3; = (4.151)

lz’u
and where z; and z;; are respectively the third components of the position vectors p;

and Pi1-

Substituting eqs.(4.147), (4.148) and (4.149)—(4.151) into eq.(4.146), one then ob-

tains

6
li .
V = Y [(Dig — 2kihady — Qkiuhiudiu—l) cos 0; + D; g sin 0;]

164

=1 U
6 kzuhzudzu 6 kzuhzudzu 6 kzuhzudzu
+(D13g —2) li) + (D1ag —2) li) 314+ (D1sg —2) 3 )32
=1 U i=1 U i=1 u
6 kzuhzudzu 2 . 2 2
+(D1gg — 2 Z T q33 + = Z[k,l h3 + d2) + ki (h3, + d5y)]
w i=1
6
_ Z Qk“‘h”d” + D,,g + D, (4.152)

zu

From eq.(4.152) one can finally obtain the conditions for the static balancing of the

manipulator with springs as follows

l; .
D;g — 2kyhad; — Q#kiuhiudiu =0, 2=1,...,6 (4.153)
Diygg = 0, i=1,...,6 (4.154)
6 kzuhzudzu
Dizg—2) —— =0 (4.155)
=1 wu
S kiyhiydiy
Dug—2) 17 =0 (4.156)
=1 u
kzuhzudzu
D59 — 2 Z —— =0 (4.157)
=1 mu
iwhiudin
Digg — 2 Z % =0 (4.158)
=1 u

where coefficients D; are the ones used in eq.(4.81).

An example is now given in order to illustrate the application of the balancing

conditions to this type of mechanism.

For the 6-dof manipulator with revolute actuators presented above, let
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my = 12, My, = My = 10, lz’l = lw = 10(l = 1, Ce ,6)

ap = —0.5, ,by = —0.5, ¢ = —0.3, a; = 0.5, ,by = —0.5, co = —0.3
ag = 0.5, b3 = 0.5, c3 = —0.3, ay = —0.5, by = 0.5, ¢4 = —0.3
as =1.0,b5 =0, c5s = —0.3, ag = —1.0, bg = 0, cg = —0.3
hiy = hiy = 0.5, dy = dp, = 0.5, 2;e = L, =05(i=1,...,6)
Tio = —1.5, Y10 = —1.5, 21, = 0, Top = 1.5, y9o = —1.5, 29, =0
T3o = 1.5, Y3o = 1.5, 23, =0, T4 = —1.5, Y40 = 1.5, 240 =10
Tso = 1.9, Yso = 0, 250 = 0, Tgo = —1.9, Ygo = 0, 260 = 0

T T 5T 3T O T

’Yl:ga72:_8773:F:74:F7’75:F776:F

yw=0(2= 1,,5)zw=lw=05m(z=1,,6)
where the masses are given in kilograms and the lengths in meters.

From eqs.(4.153)—(4.158) one obtains

Yee — 0, kw = 300N/m, kil = 620N/m(2 = 1,,6)
z, = 0(m), y, = 0, 2, = 0.45 (m)

The balanced mechanism is represented schematically in Figure 4.21. Since each
leg of the mechanism has an identical architecture, only one leg is represented in the

figure.

As can be clearly seen from the figure, the use of springs has allowed one to eliminate
the counterweights. However, the resulting mechanism will be statically balanced if and
only if the gravity vector is aligned with the negative direction of the z axis of the fixed

reference frame and if its magnitude is maintained.

An alternative achitecture is now introduced for this type of manipulator. In the
new architecture, each of the legs is mounted on a passive revolute joint having a vertical
axis of rotation, as shown in Figure 4.22. The leg itself is a planar mechanism with a

parallelogram ABC D, a distal link C'P; and a spherical joint at point P;. Additionally,
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Figure 4.21: Balanced mechanism with springs.

a second parallelogram mechanism BEF'C is introduced in the leg, as represented in
Figure 4.22. The second parallelogram mechanism is used to actuate the link CP
thereby improving the mechanical advantage. Link BE is the actuated link. although

this achitecture is more complex than the previous one, it may have design advantages.

The potential energy of the springs used in the manipulator can be written as

1
Vo =2 5 (kaey + kiver,) (4.159)
i=1
where
it = \/h’z?l +djy — 2hydy sin ¢ (4.160)
e = B+, — 2hidiysin b, (4.161)

where ¢; and 6; are respectively the angles between links BC' and BF and the coordinate

axis x;.
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Figure 4.22: Alternative architecture of leg for the 6-dof parallel mechanism with rev-

olute actuators.

The gravitational potential energy of the manipulator can be expressed as
Vi = mug(lysing; + Ly sin by + (2, — a1)gs1 + (Yp — b1)gs2 + (2p — C1)gs3)
6
+ Y [magrysin ¢; + my1gri sinb; + mi, g(Ly sin ¢; + 4, Sin 6;)
i=1

+migg(w;1 sin 6; + 740 sin ¢;)] (4.162)

where w;; and w;o are respectively the lengths of links BE and EF', m;; and my, are
their corresponding masses, and r;; and 7;, are the distances of the centers of mass Cj;

and Cjy of the two links to points B and E.

Since the manipulator consists of five independent kinematic closed loops, one can

write
210+ lysin gy + iy sin@; = zjp + Ly sin @; + Ly sin0; + (a1 — a;)gs:
+(b1 — bi)gs2 + (c1 — ci)gzs, =2,...,6(4.163)
From eq.(4.163) one has

1 ) ) .
sing; = l_(zlo + lysin @y + by sin 6y — zj, — liy sin 6;
il
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—(a1 — Gi)q31 - (bl — bi)Q32 - (01 - Ci)q;;g), 1= 2, ceey 6 (4164)

Substituting eq.(4.164) into eqs.(4.159) and (4.162), one then obtains the total potential

energy of this type of manipulator as

6
V= Vw + V; = Z Dz sin 01 + D7 sin ¢1 + D8Q31 + Dg(]32 + D10q33 (4165)

=2

where

Dy = mpgliy + wiimiag + m1ugriu + liug Z M
i=2
LI |
_kludluhlu - llu Z rkilhildil

i=2 Viu

1
+liug Z E(milril + MigTio + MyTy)
i—o Ug

D; = mugriy + mpgwi — My gliy — kiyhiydiy
L .
+ﬁ(kilhildil — MugTy — M gra — MiggTi2), (=2,...,6
7

6
D; = mpglll+lllgzmzu lllz kzlhzldzl

i=1 zl

6
1

+lug E l—(mz‘ﬂ“il + mi1rin + MiaTi2)
=1 Yl

6
Qy;
Dy = myg(zp—ar1) + l_lkilhildil

=2 lal

1
—g Z a4 mzu l mlezl + mi1Ti + mZZTZQ)]
2l
D9 = mpg(yp b ) + ] kzlhzldzl

1
—g Z blz[mzu (mzlrzl + m;1Ti + szTZQ)]
l

DIO = mpg(zp +Z llz kzlhzldzl
— Ui

1
—g Z Ci; [mzu l (mzlrzl + m;1ms1 + 7"127'12)]

and where a1; = a1 — Ay, bh' = b1 — bi, Ci; = C1 — C;.

Similarly to the previous cases, if the coefficients of the configuration variables in

eq.(4.165), i.e., D;(i = 1,...,10) vanish, the total potential energy will be constant.



Therefore, the conditions for the static balancing for this type of manipulator are

D, =0, i=1,...,10 (4.166)

An example is now given in order to illustrate the application of the balancing

conditions to this type of mechanism.

For the alternative 6-dof manipulator presented above, let

my = 12, My, = My = 10, m;1 = 02, m;o = 10, Wi = 02(’1, = 1, .. ,6)

a1 = —05, 7bl = —05, cL = —037 ay = 05’ ,b2 = —05, co = —0.3
ag = 05, bg = 05, C3 = —0.3, Ay = —0.5, b4 = 05, cy = —0.3
a5 = 10, b5 = 0, Cy = —0.3, ag = —1.0, b6 = 0, Ceg = —-0.3
hil = hzu = 05, dil = dlu = 05(2 = 1, ceey 6)
T1o = —]_5, Yo = —15, 210 = 07 Top = ]_5’ Y20 = —]_57 290 = 0
T30 = 15, Y30 = 15, 230 — 0, T4 = —1.5, Ya0 = 15, Z4o = 0

Tso = 157 Yso = 07 250 = 07 Teo = _1-5: Y6o = 07 260 = 0

T i Y
71:6772:_6773:F
3 or Vs
74:F,V5ZE,%:F

where the masses are given in kilograms and the lengths in meters.

From eqs.(4.166) one obtains

Ty =T =0.5m, ry =0.0lm(i=1,...,6)
lil = W;o = 10m, lﬂ = 02m(2 = 1, .. ,6)
ki = 140.8N/m, ky = 160.8 N/m (i =1,...,6)
Tp,=0m, y, =0, 2,=03m
The balanced mechanism is represented schematically in Figure 4.23. Similarily to

the previous case, since each leg of the mechanism has an identical architecture, only

one leg is represented in the figure.
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Figure 4.23: Balanced mechanism with springs.

4.3 Conclusion

The static balancing of planar and spatial parallel mechanisms or manipulators has
been addressed in this chapter. Two static balancing approaches, namely, with coun-
terweights and with springs, have been introduced. The expressions of the position
vector of the global center of mass and of the potential energy of the mechanism have
been derived. The kinematic constraint equations of the mechanism have then been
used to eliminate some dependent variables from these expressions. The sets of equa-
tions of static balancing have finally been obtained from the resulting expressions.

Examples have also been given in order to illustrate the results.

It has been shown that the planar and spatial parallel mechanisms presented in
the chapter can be statically balanced by the two approaches discussed above. Each
approach is suitable to different applications. The static balancing of planar and spatial
parallel mechanisms is of great interest, especially in applications where the moving

masses are large since it leads to a substantial reduction of the actuator torques. The
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conditions derived here can be used directly to design balanced systems.



Conclusion

The kinematic analysis, dynamic analysis and static balancing of planar two- and three-
degree-of-freedom as well as spatial four-, five- and six-degree-of-freedom parallel mech-

anisms or manipulators have been addressed in the thesis.

After having described the architecture of each of the mechanisms, the inverse kine-
matics has been computed for each of them and a new general algorithm for the de-
termination of the boundary of the workspace of parallel mechanisms or manipulators
has been proposed. This algorithm has then been used to obtain the workspace of
the planar and spatial mechanisms studied in the thesis. It has been shown that this
algorithm is general and can be applied to any type of parallel mechanism or manip-
ulator. The velocity equations of the mechanisms have then been derived using two
approaches, namely, the algebraic formulation and the vector formulation. The latter is
a new approach which provides an equation of the velocity relations between the joint
velocities and the angular velocities of the moving links of the mechanism. The velocity
equations obtained using the two approaches have been used for the determination of
the singularity loci and the velocity equation obtained using the new approach leads to

a faster computational algorithm for the determination of the singularity loci.

The kinematic optimization of planar and spatial parallel mechanisms or manip-
ulators with reduced degrees of freedom has also been discussed in this thesis. The

Generalized Reduced Gradient method of optimization has been used and led to a fast
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converging algorithm. The optimum design of the parallel mechanisms is useful for
their applications where the dependent Cartesian coordinates are required to follow

some prescribed trajectories as closely as possible.

The dynamic analysis of planar and spatial parallel mechanisms or manipulators
has been addressed in this thesis. To this end, the analysis of the position, velocity
and acceleration of these manipulators has been performed. Two different methods for
the derivation of the generalized input forces have been presented. The first approach
is a new approach based on the principle of virtual work. It has been verified that
this approach is efficient and leads to a faster algorithm for the determination of the
generalized input forces, which is useful for the control of a manipulator. The second
approach has been used for the dynamic analysis of parallel mechanisms or manipulators
by several researchers. It is suitable for the purpose of the design and simulation of
a manipulator. It has been used here mainly to verify the results obtained with the
new approach. Finally, examples have been given in order to illustrate the results. The
dynamic analysis is an important issue for the design and control of the manipulators

and can be efficiently handled with the procedures described in this thesis.

The static balancing of planar and spatial parallel mechanisms has also been ad-
dressed in this thesis. Two static balancing approaches, namely, with counterweights
and with springs have been used. To this end, the expressions of the position vectors
of the global center of mass and the potential energy of the mechanisms have been
derived. The sets of equations of static balancing have finally been obtained from these
expressions. Examples have been given in order to illustrate the results. The examples
are provided for illustrative purposes only. Indeed, it is clear, from the equations, that
infinitely many statically balanced mechanisms exist, for each of the architectures stud-
ied here. Moreover, it is also found, by inspection of the equations, that balancing is
always possible for any given value of the geometric parameters. This is an interesting
result since it allows the kinematic design of a mechanism to be completed using any

criterion and the balancing to be performed a posteriori.

It has been clearly shown that the types of planar and spatial parallel mechanisms
studied here can be statically balanced using either one of the two approaches pre-
sented in this paper. Each approach has its own advantages and is suitable to different

applications. In all cases, the mechanisms obtained are perfectly balanced, i.e., no
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torque is required at the actuators to maintain the mechanism in static equilibrium for
any configuration. Static balancing of parallel mechanisms is of great interest and can
be used in the design of mechanisms for robotics, flight simulators and several other

applications involving large loads or the simulation of free-floating conditions.

In the kinematic and dynamic analysis of mechanisms, although several types of
spatial parallel mechanisms with specified architectures have been studied here, the
structure for these mechanisms is not unique. There exist other structure arrangements
for these mechanisms, for instance, exchanging the Hooke joint connecting the moving
links and the revolute joint attached to the base of the 7th leg. The algorithms presented
in the thesis for the determination of the workspace and singularity loci as well as
for the derivation of the generalized actuator forces can be applied to other spatial
parallel mechanisms with different structures. Moreover, if the deformations of the
links are considered, considering the links of the mechanisms as flexible bodies, the

results obtained from the kinematic and dynamic analysis should be more accurate.

The static balancing of the parallel mechanisms or manipulators using counter-
weights and springs have been presented in this thesis. However, how to build the prac-
tical balanced system, especially, the arrangement of the counterweights and springs,
will be worth further studying. It would also be useful for some applications to consider

the dynamic balancing of parallel mechanisms.
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Appendix A

Polynomial formulation of the
singularity loci of planar parallel

manipulator

As explained in Chapter 2, egs.(2.78) and (2.85) are the expressions describing the sin-
gularity loci of the two- and three-degree-of-freedom manipulators, respectively. Since
these expressions contain some square roots—when they are expressed as functions of
the Cartesian coordinates— it is difficult to extract from them the information about
the characteristics of the singularity locus. In this appendix, the polynomial expres-
sions of the singularity loci of the manipulators will be found. Polynomial expressions
are useful since they can provide some insight into the locus and they may lead to

alternative numerical solutions.
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A.1 Two-degree-of-freedom manipulator

Solving eq.(2.1) (with ¢ = 1) and (2.78) for cos @; and sin 7, one obtains

C1 COS g
cosq; = - (A.1)
a1 €os g + by sin ap
. ¢ Sin ay
sinoy = (A.2)

a1 cos ag + by sin a
Substituting eqs.(A.1) and (A.2) into sin? a; + cos? a; = 1 then leads to the following
relation
a1 cos oy + by sin oy = Scy (A.3)
where S = £1 denotes the type of singularity. When S = —1, links /3 and [4 are aligned
whereas when S = +1, they are folded.

Then, letting ¢ = 2 in eq.(2.1), the substitution of egs. (A.1) and (A.2) into eq.(2.1)
leads to

(9 COS iy + by Sin (g = ¢y (A.4)

From eqs.(A.3) and (A.4), one obtains

SCle - 02b1
= — == A.
COS vy P —— (A.5)
) coa1 + Sciao
= - ——° A.
sin P S——— (A.6)

By squaring both sides of eqs.(A.5) and (A.6) and adding, one then obtains the poly-
nomial expression of the singularity loci of this manipulator, which can be written
as

(SCle — 02b1)2 + (Cgal -+ 50102)2 — (a1b2 — agbl)2 =0 (A7)

The latter expression, eq.(A.7) is a polynomial of degree 6 in x and y where mixed
terms are present. The curves representing the singularity loci in the Cartesian space
are therefore of degree 6. The detailed expression is rather complex and is not given

here because of space limitation but it can be obtained from the author upon request.

A.2 Three-degree-of-freedom manipulator

Similarly, for the three-degree-of-freedom manipulator, one can rewrite eq.(2.85) as

aogCos g + bysinay =0 (A.8)
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where

ay = lysin¢sinaycosag — 14 cos ¢ sin ap sin as
—+13 cos ¢ sin ap sin aig — I3 sin ¢ cos ap sin a3
by = l4c0spcosaysinag — lysin ¢ cos oy cos ag

+13 sin ¢ cos ap cos a3 — I3 cos ¢ sin ay cos a3
Letting 7 = 1, eq.(2.14) can be rewritten as
a1 Cos a1 + b1 sin o1 =C (Ag)

Solving egs.(A.8) and (A.9) for cos a; and sin i and then substituting the results into

equation sin? oy + cos? a; = 1, one obtains an equation involving only a» and oz, i.e.,
(a1by — brag)® — (a2 +b3) =0 (A.10)
Eq.(A.10) can be rewritten as
Clp cos® ag + Cls coS (g sin g + Clgo sin? iy = 0 (A.11)
where coefficients C.o, C.s and Cyo are functions of cos as and sin as.
Letting ¢ = 2 in eq.(2.14), one obtains the second equation involving aw, i.e.,

(g COS (ig + by Sin vy = ¢y (A.12)

Eliminating sin s from eqgs.(A.11) and (A.12), one then obtains

D cos? a3 + Dy cosas + Dy =0 (A.13)
Fycos® a3+ Eycosas + Ey =0 (A.14)

where

(c3Cs2) /b5
D1 = (bQCQCCS — 2@202052)/[)3
(

Dy, = a%ng + b30c2 - a'2b2065)/bg
EO = C% — bg
E1 = —2a9cy

E2 = a%-l—bg



Using the resultant [33] on eqs.(A.13) and (A.14) to eliminate «y, one obtains

C.y cos® az + Clasr c0s® a3 sin ag + Clgo cOS? i Sin? aig
+C143 cos oz sin® a3 + Cyg sin® a3 = 0 (A.15)
where coefficients Cy, C,351, Craso, Ce153 and Cyy are functions of z, y and ¢.

Similarily, letting ¢ = 3 in eq.(2.14) one obtains the equation involving as, i.e.,
a3 COS (g + b3 sin g = C3 (A16)
Eliminating sin a3 from eqs.(A.15) and (A.16) then leads to

Fycostas + Fycos® ag + Fycos?as + Fycosas + Fy =0 (A.17)
Gy cos? ag + Grcosas + Gy =0 (A.18)

where

Fo = (Cu)/8,

Fy = —(4ascsCs4)/b;

Fy = (b3c2Croso + 6a3ciC,4) /b3

Fy = (b3c3C36 — 4a2c3s0yy — 2a3bscsClaygy) /by

Fy = (a5Cs + b5Ce + b5C03 — asbiCessr + a3b3Ceasz) /b

GO = Cg - bg
G1 = —2a303
GQ = ag + bg

Using the resultant once again on eqs.(A.17) and (A.18), one obtains the expression
describing the singularity locus of this manipulator. The expression is a polynomial
in x and y in which the highest degree of y is 64 while the highest degree of x is 48.
Therefore, the curves representing the singularity loci in the Cartesian space are of a
very high degree. This result is in contrast with the results obtained in [47] for manipu-
lators with prismatic actuators, which lead to quadratic singularity loci. Moreover, the
reason for the difference in degree between x and y is the assumption on the geometry

(fixed pivots are assumed to be aligned on the z axis).
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Appendix B

General expressions of det(A*) for

planar parallel manipulators

For the two-degree-of-freedom manipulator, one has

l3l4
det(A*) = b — arb
B [ R R

+((1,1(1,2 + ble)CQKl\/a
(a1as + 5152)C1K2\/5>2
+(agb; — Gle)K1K2\/a\/g)

For the three-degree-of-freedom manipulator, one has

det(A*) = N(D0+D1\/E+D2 0o + Ds 53+D4\/a\/$
D\ for\f5s + Dofonyfos + D/ o)
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where

187

3
(af + b?) (a3 + b3) (a3 + b3)
(crcacs(((a1bs — asby)bals + (agby — aiby)bsly) cos ¢

+((asby — aibs)asls + (a1by — aghy)asly) sin @)
(cacs(((bibs — aras)bols + (bibe + araz)bsly) cos ¢
+((a1a3 — bibs)agls — (biby + aiaz)asly) sin @) K,
(cre3(((arbs — asby)asgls — (aras + biby)bsly) cos ¢
+((a1b3 — asby)byls + (aras — biby)asly) sin ¢) Ko
(crca(((aras + bib3)bals + (agby — arbo)asly) cos @
+(—(a1a3 + bibs)ayls + (agbi — a1bo)bsly) sin @) K
(c3((=(aras + bib3)asls + (aghi — a1by)bsly) cos ¢
+(—(ara3 + bib3)bal3z + (arbs — asby)asly) sin ) K1 Ko
(c2(((a1bs — azby)bals + (araz + biby)asly) cos ¢
+((a1b3 — asby)agls + (ayag + biby)bsly) sin ¢) K1 K3
(c1(((aras + bibs)agls — (aray + biby)asly) cos ¢
+((a1as + b1b3)bols — (a1a2 + b1by)bsly) sin @) Ko K5
(((a1bs — agby)asls + (asby — a1be)asly) cos ¢

+((a1bs — azby)bals + (agby — a1be)bsly) sin @) K1 Ko K3



Appendix C

Simplification of Jacobian matrix

The original Jacobian matrix of the four-degree-of-freedom manipulator can be written

as
S 0 0 0 V; C
] 0 S 0 0 Vy, C
v =
0 0 S3 0 V3 C
o 0 0 S, Vg C
and its determinant can actually be written as
l12y l12,c1 0 0 0 0 0 0 0 —V1 Viy V52
—l12 l19281 0 0 0 0 0 0 V1y 0 —V1g 0
0 scq 0 0 0 0 0 0 —Viy Vig 0 — V5
0 0 looy loo,co 0 0 0 0 0 —vo, vay V52
0 0 —loog loo,s2 0 0 0 0 Vo, 0 — Vo 0
det(Tro) = 0 0 0 sco 0 0 0 0 —vay Vo 0 — V52
0 0 0 0 I32y lgozc3 0 0 0 —v3, v3y V5
0 0 0 0 —l32, 132283 0 0 V32 0 — V3 0
0 0 0 0 0 sc3 0 0 —V3y V3z 0 —Vsg
0 0 0 0 0 0 laoy ly-cq 0 —V4z Vay V5z
0 0 0 0 0 0 —lgogy l42,34 V4y 0 —V4g 0
0 0 0 0 0 0 0 scq —V4y Vag 0 — V52




where SC; = —(lizysi + ligxci), (Z = 1, ceey 4), and
s; = sin(qy)
¢; = cos(ay)

i=1,2,3,4

(i) multipling the first row of this matrix by l15,/l12, and adding to the second row,
one obtains (it is assumed that 19, # 0 and lyo, # 0)

l12y l12,c€1 0 0 0 0 0 0 0 —V1 Viy V52
S 0 0 0 0 0 wi THEl2 oy g, pl2e g, gl2e
0 scy 0 0 0 0 0 0 —v1y Vig 0 —V5g
0 0 looy log,Co 0 0 0 0 0 —Vo, Vay V52
0 0 —loogz log,s9 0 0 0 0 vz 0 —vag 0
0 0 0 sco 0 0 0 0 —vay Vg 0 — Vg
0 0 0 0 l32y lgoxc3 0 0 0 —v3, V3y U5z
0 0 0 0 —132, 132,83 0 0 V3, 0 —v3p 0
0 0 0 0 0 sc3 0 0 —v3y V3g 0 —V5g
0 0 0 0 0 0 laoy lgorca 0 — V4, Vay V52
0 0 0 0 0 0 —lgoz l49,84 Vaz 0 —V4g 0
0 0 0 0 0 0 0 scq —V4y Vag 0 — V52

(ii) multipling the second row of this matrix by l19,/l12, and adding to the third

row leads to (it is assumed that l19, # 0)

l12y l19-€1 0 0 0 0 0 0 0 —V1 V1y V52
Lo L1 I12 L1
0 —sc1 112; 0 0 0 0 0 0 V1 —v1, 112; —V1g + Viy 112: V52 112:
0 0 0 0 0 0 0 0 J11 j12 j13 J14
T122 T122 T122 T122
0 0 looy lagzCo 0 0 0 0 —Vg Vay V52
0 0 —looy loo,89 0 0 0 0 Vo, 0 — V9 0
0 0 0 sco 0 0 0 0 —vay Vg 0 —VUsz
0 0 0 0 132y lzazc3 0 0 0 —v3y V3y V52
0 0 0 0 —l32, 1322383 0 0 V32 0 —v3g 0
0 0 0 0 0 sc3 0 0 —v3y V3g 0 — V5
0 0 0 0 0 0 laoy lao,ca 0 — V4 Vay V52
0 0 0 0 0 0 —lg2z lao,s4 Vaz 0 —Vag 0
0 0 0 0 0 0 0 sca —V4y Vag 0 —VUsz
where
Jun = Ulzllzy - vlyl122
Ji2 = Vighio, — vilio;
iz = Ulyl12z - Ulzl12y
Jia = Uszliog — Useliz,

(iii) multipling the first column of this matrix by l15,¢1 /112, and adding to the second
column and then factoring l;5, from the first column, ({19551 + li25¢1)(l122/li2y) from

the second column and 1/ly5, from the third row of the matrix, one finally obtains
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(e e R e = A = I = = = = = R

where

Using similar operations in the other rows and columns and then exchanging some

rows of the matrix, one can obtain

det(J,)

where l;; # 0,13, # 0 and I, # 0(i = 1,2, 3, 4).

which can be written in another form

(=Nl =Rl - - =

Dy

0
0
0
looy
—logg
0

o O © O O O

O O O O O O O oo o o o =~

0
0
0

l22,c2
I22, 82

o O O O O O o o o o == o

sca

o O O O O O

o O O O O O o o o = O O

o O © © o

0
l32y
—l322
0

0
0
0

S O O O O O O o = O o o

o O O © ©

0

l32zc3
132283

O O O o o o o = o O O O

scg
0
0
0

o O © O O o o o

0

laoy
—l420

0

©C O ©C O O o o o

0

lanzcq
142254
scq

0
Viz
J11

0
V2z

—vay

0
V3z

gy

0
V4z

—v4y

_'U}z
_ 12z
V1z Tioy

J12
—v2z

vag

—V3z

V3z
—Vaz

Vaz

Do1 = ligys1 + li2z1

o O O ©o o o = o o o o o

o O O O O = O oo o o o o©

o O O O H O O O o o o o

0

V1z

0

V2z

0
V32
0
U4z
Jn
Jo1
Js1

Ja1

—V1z

—V1z

Loy
l12y

—UV22

l224
22l22y

—V3;

l32
2 l32y

— U4y

lazg
% lagy

J12
Ja2
Js2

Jaz

E D
0o J

det (Jp) = DO

Viy U5z
—V1z +V1y ;13; 052223
J13 Jia
v2y U5z
—v2g 0
0 —V5z
V3y U5z
—v3g 0
0 —V5g
V4y V52
—V4g 0
0 — V52

V1y

—Vig + Ulyﬁ;;:
Vay

—U2g + Vay gz:
1)39

—V3z + U3y ég;:
U4y

—V4q + ’U4y;i—§:
J13
Jo3
J33
Ja3

Usz

li2e
5z T2y

Usz

l22g
5z122y

Usz

320
2 l32y

Usz

lazg
% lagy

j14
j24
Jsa

Jaa
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where E is the 8 by 8 identity matrix, O the 4 by 8 zero matrix, D the 8 by 4 matrix

and J the reduced 4 by 4 matrix.

D() =
and

Dy; =
ji =
Jio =
Jiz =

Jia =

Finally, one obtains

det(J,)

D01D02D03D04

liysi + liwci

Uizliy - Uiyliz
Uz’mliz - Uz’zliz
Uiylim - vimliy
v5zliw - U5wliz

1,2,3,4

= Dodet(-])
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Appendix D

Expressions associated with the
elements of the matrix C, and

vector d f

The detailed expressions of the elements of C; and d; can be written as:

C}cl = (@31 COS (¥1 COS ﬂl — (32 sin a1 + Q33 COS (1 sin ﬂl

6}2 = (@31 COS Qrg €OS B9 — 32 Sin (g + 33 COS Qg Sin By
13 _ . .

¢;” = (q31c0s3Cos 3 — g2 Sin a3 + ¢33 cos a3 sin 3

0}4 = (31 COS (x4 COS 34 — (30 SN vy + @33 COS (g Sin (34
5 _

= 03
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q21

32 COS 1 + @31 €COS (31 8in a1 + @33 Sin oy sin G;

(32 COS Qg + 31 COS (B2 Sin (g + @33 Sin iy sin o

@32 COS (3 + @31 COS ﬁg sin a3 + Q33 sin Q3 sin ﬁg

Q32 COS (4 —+ @g31 COS ﬂ4 SiIl Oy -+ q33 sin (67} SiIl 54

g32

q22

33 €08 B1 — g31 8in By

33 €OS B3 — q31 8in (3,

q33 €OS (33 — g31 Sin (3

33 cOs B4 — g31 8in 34

gs3

g23

912(g11 €Os a1 cos B — qi2 Sin ay + 13 €OS g sin Fy)
+914(g21 cos g cos By — goo sin @ + g3 cos oy sin 3y
~+ gz (g11 €OS Qg cOS By — @12 Sin g + @13 COS (rg Sin Py
+ oy (o1 COS (g €OS o — @2 SIN (g + o3 COS Qi sin By
+g3$
~+03y (g1 €OS (3 €OS B3 — g2 SIN (3 + o3 COS a3 sin f3

)
)
)
(11 COS (r3 COS B3 — q12 8in a3 + ¢13 cos a sin (B3)
)
+942(q11 €Os g cos By — qi2sin ay + 13 cos ay sin fy)

)

(
(
(
(
(
(

+ 94y (go1 COS (g COS By — G0 SN 0ty + G5 COS g Sin By) + G5:q11

glx(qu cos oy + @d11 COS ﬂl sin o + q13 sin (6] sin ﬂl)
+914(ga2 cOS 1 + ¢o1 €08 By sin @y + go3 sin ¢y sin 3y
4 g9, (q12 COS (g + @11 COS (B Sin vy + 13 Sin g sin Py

+ G2y (q22 COS a2 + g21 COS B2 SIn (g + Go3 Sin v Sin fy

~+03y (g2 €OS a3 + o1 €Os (3 sin a3 + go3 sin vz sin B3

)
)
)
+932(q12 cOs a3 + q11 cos f3 sin ag + ¢13 sin g sin f3)
)
+942(q12 cOS g + 11 cOs fBy sin oy + g3 Sin ay sin fy)

)

(
(
(
(
(
(

+ g4y (@22 cOS Qg + o1 COS By Sin aug + Go3 Sin vy sin By) + gs55q12
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dg,

194

G12:(q13 cos By — qu1 8in 1 + giy(gos oS B1 — ¢o1 sin fBy)

+924(q13 €0s B2 — q11 5in B2) + Gay(qas cos Bz — go1 sin )
+932(q13 cos B5 — qu1 8in f3) + g34(gas cos B3 — o1 sin fs)
+942(¢13 €08 B1 — qu15i0 B1) + Gay (o3 €OS Ba — @1 8in Ba) + g52¢13



