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Résumé

L'architecture mécanique, l'actionnement, la détection directe ou indirecte des e�orts ainsi que

la conception de contrôleurs en impédance ou en admittance sont les aspects fondamentaux

et importants à considérer pour le développement d'un robot permettant une interaction

physique humain-robot (IPHR) sécuritaire. Cette thèse est consacrée au développement de

nouvelles architectures de robots pour l'IPHR qui ont une structure simple, peu ou pas de

singularités, qui sont légers et à faible impédance mécanique.

Un nouveau robot parallèle hybride cinématiquement redondant (RPHCR) sans singularité

dans l'espace de travail et ayant une faible inertie mobile est d'abord proposé. Le concept

de la redondance cinématique des membrures et l'agencement d'assemblage de la plate-forme

mobile de ce robot sont ensuite généralisés et développés en une méthodologie pour la syn-

thèse de nouveaux RPHCRs. Plusieurs exemples d'architectures sont présentés et une solution

analytique du problème géométrique inverse est obtenue.

Le problème géométrique direct des RPHCRs doit être résolu a�n de déterminer la position et

l'orientation de la plate-forme mobile pour des coordonnées articulaires données. Di�érentes

approches pour résoudre le problème géométrique direct sont alors proposées. Il est montré

que le problème géométrique direct des RPHCRs proposés dans la thèse est beaucoup plus

simple que celui associé aux robots non redondants ou à de nombreux autres robots parallèles

cinématiquement redondants. L'agrandissement de l'espace de travail et l'optimisation des

trajectoires articulaires des RPHCRs sont réalisés en déterminant les valeurs optimales des

coordonnées redondantes.

En�n, la redondance est en outre utilisée pour opérer un préhenseur monté sur la plateforme

mobile à partir des actionneurs �xés à la base du robot ou près de celle-ci. Un contrôleur com-

biné en position et force de préhension est proposé pour le contrôle de la force de préhension.
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Abstract

Robot architecture, actuation, indirect/direct force sensing, and impedance/admittance con-

troller design are the fundamental and important aspects to be considered in order to achieve

safe physical human-robot interaction (pHRI). This thesis is devoted to the development

of novel robot architectures for pHRI that have a simple structure, few or no singularities,

lightweight, and low-impedance.

A novel kinematically redundant hybrid parallel robot (KRHPR) that is singularity-free through-

out the workspace and has low moving inertia is �rstly proposed. The concept of the redundant

links and moving platform assembly arrangement of this robot is further generalised and de-

veloped into a methodology for the synthesis of novel KRHPRs. Several example architectures

are presented and an analytical inverse kinematic solution is derived.

The forward kinematics of the KRHPRs must be solved to determine the position and orien-

tation of the moving platform for given joint coordinates. Di�erent approaches for solving the

forward kinematic problem are then proposed. It is shown that the forward kinematics of the

KRHPRs proposed in the thesis is much simpler than that of their non-redundant counterparts

or that of many other kinematically redundant parallel robots. Workspace enlargement and

joint trajectory optimisation of the KRHPRs are pursued by determining the optimal values

of the redundant coordinates.

Finally, the redundancy is further utilised to operate a gripper on the moving platform from

the base actuators. A combined position and grasping force controller is proposed for the

control of the grasping force.
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Introduction

Robots that physically interact with humans are making their way into people's daily lives.

It is anticipated that many applications will arise in the future like in manufacturing, in

healthcare, in the care for the elderly and in robotics in the home.

One of the key requirements of physical human-robot interaction (pHRI) is to keep the human

user safe. To achieve this, the controller of interaction should be designed carefully. In turn, the

performance of the controller highly depends on whether the robot's structure is compact (e.g.,

low inertia) and easy to model. Robots that are currently used as pHRI interfaces are mainly

serial manipulators (Loughlin et al., 2007; Ajoudani et al., 2018). However, in most cases,

such robots have relatively large inertia due to the moving motors (see Fig. 0.1). In (Rooks,

2006), although some of the motors of the whole arm manipulator (WAM) are mounted in the

base and at shoulder height to achieve low inertia, additional cable transmission is required,

which leads to mechanical complexity (see Fig. 0.21).

Figure 0.1 � The DLR lightweight robot arm (Loughlin et al., 2007).

1http://www.me.unm.edu/~starr/research/WAM_UsersGuide_AE-00.pdf

1



Figure 0.2 � The WAM arm.

Figure 0.3 � The 3-dof positioning parallel robot for pHRI (Duchaine and Gosselin, 2008).

Many parallel robots are excellent candidates for pHRI applications. The parallel structure,

in which the moving platform is connected to the base through several legs, allows to arrange

the actuators to the joints on or close to the base, thereby ensuring low inertia of the moving

part. For example, a 3-degree-of-freedom (3-dof) positioning parallel robot is implemented in

validating a new variable admittance control scheme that guarantees the stability of the robot

during pHRI (Duchaine and Gosselin, 2008, 2009) (see Fig. 0.3). A variant of this 3-dof parallel

robot is used as the interface of pHRI in a macro-mini system, where the mini high-bandwidth

low-impedance passive mechanism (the 3-dof parallel robot) is exploited to e�ortlessly and

intuitively control a low-bandwidth high-impedance active macro gantry manipulator (Badeau

et al., 2018) (see Fig. 0.4).

Nevertheless, the above mentioned parallel robots have only three translational degrees of

freedom. In many cases, the rotational degrees of freedom are also required to complete

2



Figure 0.4 � A mini low-impedance passive (LIP) 3-dof positioning parallel robot is mounted
on the end-e�ector of a macro high-impedance active (HIA) gantry manipulator for pHRI
(Badeau et al., 2018).

more complex tasks. A possible approach for producing the rotational degrees of freedom

is to mount a 3-dof serial wrist with intersecting axes on the moving platform of a 3-dof

translational parallel robot (Tobergte et al., 2011) (see Fig. 0.52). But motors far away from

the base of the parallel robot are required to drive the serial wrist, thereby increasing the

inertia of the moving part. A straightforward way to overcome these problems is to use 6-dof

parallel robots. However, the orientational workspace of such robots is limited to relatively

small rotations due to the type II (or parallel) singularities (Gosselin and Angeles, 1990). In

order to avoid the type II singular con�gurations, researchers have proposed to use actuation

(Saa� et al., 2015) or kinematic redundancy (Wang and Gosselin, 2004; Ebrahimi et al., 2007;

Kong et al., 2013; Gosselin et al., 2016; Schreiber and Gosselin, 2018). In this thesis, we are

particularly interested in and devoted to developing robots using the latter kind of redundancy,

because antagonistic forces could be generated in a redundantly actuated robot.

In Chapter 1, a novel 3-[R(RR-RRR)SR] (6 + 3)-dof spatial kinematically redundant hybrid

parallel robot (KRHPR) with revolute actuators is proposed for low-impedance pHRI, where

R and R denote respectively actuated and passive revolute joints, S denotes a passive spher-

ical joint. Each leg of the KRHPR consists of an actuated 3-dof positioning linkage and a

spherical-revolute kinematically redundant link. The kinematic model is developed based on

the constraint conditions of the robot. It is shown that the type II singularities can be com-

pletely avoided, thereby yielding a very large translational and orientational workspace, which

is visualised through the workspace analysis. The proposed analytical inverse kinematic solu-

tion is implemented in avoiding the singularities and a workspace analysis is performed. An

example is given to demonstrate the excellent rotational ability of the robot, in which a novel

Jacobian is developed for the dexterity analysis of the robot.

In Chapter 2, inspired by the structure of the spherical-revolute kinematically redundant

2https://forcedimension.com/products/sigma
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Figure 0.5 � The sigma.7 haptic device from Force Dimension.

link, we propose two di�erent types of redundant links and three di�erent platform assembly

arrangements. Based on this, an approach is developed to synthesize three-legged planar

(3+n)- and spatial (6+n)-dof KRHPRs with very simple � or vanishing � type II singularity

conditions. Here n denotes the number of redundancies. Similarly to the 3-[R(RR-RRR)SR]

architecture, the inverse kinematic problem of the KRHPRs proposed in this chapter can

be solved analytically. Examples of several synthesized KRHPRs are enumerated and the

velocity equations of these architectures are derived. Di�erent types of platform arrangements

are proposed.

Chapter 3 is devoted to the forward kinematic analysis of the spatial (6 + 3)-dof KRHPRs

proposed in Chapter 2. The control of the robot during pHRI requires the solution of the

forward kinematic problem using the actuator encoder data as inputs. Seven di�erent ap-

proaches of solving the forward kinematic problem of a spatial 3-RRRSR KRHPR with a

given platform assembly arrangement based on di�erent numbers of extra encoders are devel-

oped. It is revealed that �ve of these methods can produce a unique solution analytically or

numerically. An example is given to validate the feasibility of these approaches. One of the

provided approaches is applied to the real-time control of a prototype of the robot. All of

the seven approaches can be applied to the others KRHPRs proposed in Chapter 2 with the

�rst platform assembly arrangement, while the forward kinematic problem of the proposed

KRHPRs with the other two platform assembly arrangements proposed in Chapter 2 can be

solved using �ve of the seven approaches.

The analytical inverse kinematic solution of the KRHPRs makes it possible to control the

redundant coordinates actively, which can be exploited to optimise the workspace and joint

trajectory. A case study using the 3-RRRSR (6 + 3)-dof KRHPR is pursued in Chapter 4.

4



This KRHPR can produce the same workspace as the 3-[R(RR-RRR)SR] architecture if they

have equivalent dimensions. Some portions of the translational and orientational workspaces

are evaluated, in which the enlargement of the workspace is visualised by comparing to those

of the 3-[R(RR-RRR)SR] architecture provided in Chapter 1. An approach is developed to

determine the optimal actuated joint and redundant coordinates so that a performance index

can be minimised approximately when the robot is following a prescribed Cartesian trajectory.

As an extra bene�t of the proposed KRHPRs, the redundancy of the robots can be further ex-

ploited to operate a gripper from the base motors, similarly to what was proposed in (Gosselin

et al., 2015) for a planar 4-dof kinematically redundant parallel robot with PRR legs, where

P denotes a actuated prismatic joint. These robots are also considered to be non-redundant

if every redundant dof is taken as an additional Cartesian coordinate. Furthermore, if the

object grasped by the robot gripper is rigid, the kinematic redundancy vanishes and the type

of redundancy of these robots � in addition to the two types mentioned above � can be re-

garded as redundantly actuated because the number of actuators is larger than the number of

independent Cartesian coordinates. Three di�erent static models of the robots can be estab-

lished with respect to each of the types of redundancy. The feasibility of these static models

for performing grasping force control is analysed in Chapter 5 based on two proposed archi-

tectures. It is shown that only one of the static models is reasonable for this purpose, which

is veri�ed by an experiment using a combined position and grasping force control scheme.

Finally, conclusion and future research are addressed.

5



Chapter 1

A Novel Low-Impedance (6+3)-dof

Spatial KRHPR for Physical

Human-Robot Interaction

1.1 Introduction

Applications of six-degree-of-freedom (6-dof) spatial parallel mechanisms (SPMs) can be found

in many areas such as robotics, motion simulators and high-precision positioning devices due

to their properties of high payload capability and positioning accuracy. However, the per-

formances of such mechanisms are limited by singularities within their workspace, especially

parallel (type II) singularities (Gosselin and Angeles, 1990; Zlatanov et al., 1995, 2002; Conconi

and Carricato, 2009).

Numerous research initiatives regarding the singularity analysis of SPMs have been reported

(see for instance (St-Onge and Gosselin, 2000; Kong and Gosselin, 2001, 2002; Ebert-Upho�

et al., 2002; Angeles et al., 2003; Yu et al., 2012)). Among other proposed techniques, the use

of Grassmann's line geometry (GLG) (Merlet, 1989; Monsarrat and Gosselin, 2001; Tale Ma-

souleh and Gosselin, 2009) and Grassmann-Cayley Algebra (Ben-Horin and Shoham, 2006a,b,

2009; Kanaan et al., 2009; Caro et al., 2010; Amine et al., 2012) are very useful because they

provide geometric insight and they do not require the explicit computation of the determinant

of the Jacobian matrix. GLG is used in this work.

Although the approaches of singularity analysis mentioned above are helpful for trajectory

planning, the workspace of parallel mechanisms is nevertheless limited by such singularities.

As a means of alleviating these shortcomings, the use of redundancy was proposed by some

researchers. Pierrot (Pierrot, 2002) distinguishes three types of redundancies, namely: kine-

matic, actuation and measurement redundancy. When the mobility of at least one of the legs

is greater than the required dof, the mechanism is said to be kinematically redundant. This
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can be used for singularity avoidance and workspace enlargement (Wang and Gosselin, 2004;

Kotlarski et al., 2011; Gosselin et al., 2015; Gosselin and Schreiber, 2016). If extra legs are

added to the mechanism or if some of the passive joints are actuated, the mechanism is said

to be redundantly actuated (Luces et al., 2017). Such type of redundancy may help to avoid

singularities and increase sti�ness (Zhao and Gao, 2009). However, redundantly actuated

mechanisms may also generate internal forces, which lead to control and calibration complex-

ities (Cheng et al., 2003; il Jeong et al., 2004). Measurement redundancy can be achieved by

using more sensors than the number of actuated joints and is introduced to improve the accu-

racy of the mechanism and to simplify the solution of the direct kinematic problem(Marquet

et al., 2002). However, it does not help to avoid singularities. It can therefore be argued

that kinematic redundancy is a very attractive way to avoid singularities. A detailed analysis

of SPMs with several di�erent kinematically redundant legs can be found in (Gosselin and

Schreiber, 2018).

Kinematic redundancy has been applied to some recently proposed new architectures (see,

for instance, (Gosselin et al., 2015) and (Gosselin and Schreiber, 2016)), where the authors

focused on the enlargement of the orientational workspace, which is an important bene�t of

using kinematic redundancy. In (Gosselin et al., 2015), the kinematic redundancy is achieved

by an additional revolute-revolute redundant link connecting a pair of legs to the platform of

a 3-dof planar mechanism. With such an arrangement, the robot can avoid all singularities

throughout the workspace, which makes it possible to produce an unlimited rotational motion

of the platform. In (Gosselin and Schreiber, 2016), some legs of a conventional 6-dof spatial

Gough-Stewart platform are replaced by redundant legs consisting of a revolute-spherical re-

dundant link connecting a pair of legs to the platform while preserving the tension-compression

loading of the legs. It is shown that by introducing at least three redundant legs, any Cartesian

posture of the platform can be reached with a non-singular con�guration of the mechanism,

thereby the orientational workspace of the composed (6+3)-dof kinematically redundant robot

is considerably extended compared to that of the conventional Gough-Stewart platform. In

(Schreiber and Gosselin, 2019), the redundancy resolution of the robot proposed in (Gosselin

and Schreiber, 2016) is presented. Algorithms are developed in order to resolve the redun-

dancy while avoiding singularities. Although the e�ectiveness of the numerical algorithms is

successfully demonstrated, the singularity avoidance cannot be expressed in closed-form and

included as such in the solution of the inverse kinematic problem.

In this chapter, we propose a three-legged revolute joint actuated (6+3)-dof kinematically

redundant hybrid parallel robot (KRHPR) that can be regarded as the redundant counterpart

of the 3-[R(RR-RRR)S] platform studied in (Monsarrat and Gosselin, 2001) and (Monsarrat

and Gosselin, 2003). Using only three legs can help to avoid leg interferences and interferences

with the environment, which is an important feature in the context of physical human-robot

interaction. The mechanism is driven by nine motors: three per leg. Each of the legs is
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then connected to the moving platform via a redundant link. The axes of the revolute joints

connecting the redundant links to the platform are parallel. Using this arrangement, it is

shown that type II singularities can be completely avoided. Moreover, the singularity analysis

� which is readily conducted using GLG � yields very simple conditions. Consequently, a

closed-form solution of the inverse kinematics, including the avoidance of singularities, can

be obtained without having to resort to numerical algorithms, which greatly simpli�es the

trajectory planning of the robot.

This chapter is structured as follows. A description of the architecture of the proposed robot

is given in Section 1.2, followed by the development of the kinematic model in Section 1.3.

Then, GLG is applied in Section 1.4 to analyse the type II singular conditions of the robot.

It is shown that type II singularities are easily avoidable without requiring special trajectory

planning. Sections 1.5 and 1.6 respectively address the inverse kinematics and the forward

kinematics of the robot. Then, in Section 1.7, it is shown that the proposed robot has a

very large singularity-exempt rotational and translational range of motion. In Section 1.8,

the excellent rotation behaviour of the robot is demonstrated through an example trajectory.

Finally, conclusions are drawn in Section 1.9.

1.2 Robot Architecture

The architecture of the proposed robot consists of a moving platform connected to the base

by three identical kinematically redundant R(RR-RRR)SR legs. A CAD model of the robot

is shown in Fig. 1.1, while a prototype is shown in Fig. 1.2. Here, R stands for an actuated

revolute joint, R stands for a passive revolute joint and S stands for a passive spherical joint.

In each of the legs, a �rst actuated revolute joint is mounted at the base. Then, two actuated

revolute joints with collinear axes are mounted on the �rst moving link and are used to actuate

two bars of a planar 5-bar linkage (see Fig. 1.3). The combination of these three actuated

joints is used to position the spherical joint of the ith leg (point Si) in space, as illustrated in

Fig. 1.3. The spherical joint at point Si is then connected to a link that is in turn connected

to the moving platform using a revolute joint. In the �nal design, this redundant SR link is

replaced by a parallelogram (see Fig. 1.1). A direct drive transmission is exploited to ensure

the robot is backdrivable, which makes the physical human-robot interaction (pHRI) e�ortless

and safe.

A description of the geometric parameters used to model the kinematics of the robot is given

in Fig. 1.3. In the model, lij , (i = 1, 2, 3; j = 1, . . . , 7) denotes the length of the jth link of

the ith leg. The axes of all the joints in the planar 5-bar linkage are parallel to each other

and perpendicular to the axis of the �rst joint of the leg. Also, the axis of the revolute joint

attached to the platform is perpendicular to the plane of the platform, formed by the three

attachment points of the legs. The actuated joints i2 and i3 at the base of the planar 5-bar
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Figure 1.1 � CAD model of the 3-[R(RR-RRR)SR] architecture (Wen et al., 2019).

Figure 1.2 � Prototype of the 3-[R(RR-RRR)SR] architecture.

linkage are associated with unit vectors ei2 and ei3. In order to keep away from type I (serial)

singularities, which occur when the centre of joint Si is located on the axis of the �rst actuated

joint of the leg � associated with unit vector ei1 �, links i1 are designed to make an obtuse

angle with respect to the base which is the angle described as α in Fig. 1.3. In the �nal

design, angle α is selected to be equal to π. This is the optimal selection to prevent type I

singularities if the base of the robot is considered as the lower limit of the workspace. Indeed,

in this case, the singular con�gurations are located outside of the workspace of the robot. In

order to reduce the e�ect of the inertia of motors i2 and i3, they are placed as close as possible

to the axis of the �rst actuator, as illustrated in Fig. 1.3. These motors drive respectively links
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Figure 1.3 � Geometric description of one leg.

i4 and i2 of the planar 5-bar linkage. As opposed to many other SPMs in which the S joints

are directly attached to the platform (for instance in (Monsarrat and Gosselin, 2001)), in the

present robot they are located between links i6 and i7. Such an arrangement, along with the

particular direction of the axis of the R joint attached to the platform � which is orthogonal

to the plane of the platform � yields advantages for the singularity and inverse kinematic

analysis, as shown in the upcoming sections of the chapter. It should also be pointed out

that, because of the extra link between the S joints and the platform, the mechanism has

9 degrees of freedom and 9 actuators (3 in each leg) which means that the redundancy is

purely kinematic. Therefore, there is no actuation redundancy and no antagonistic forces are

generated by the actuators.

1.3 Kinematic Modelling

A base frame and a moving frame are respectively attached to the centroid of the base and

moving platforms, which are noted as Oxyz and O′x′y′z′ (see Fig. 1.3). Vector p represents

the position of O′ with respect to O and matrix Q represents the orientation of the moving

platform with respect to the base. Vector si denotes the position of Si. Vector qz is the unit

vector along the axis of the revolute joint attached to the platform and bi is the position

vector of the centre of the revolute joint that is attached to the platform, which is expressed in

the moving frame. Except for bi, all vectors are expressed in the base frame. The constraint

equations of the robot, which are used to derive the kinematics, can be written as follows.

Firstly, the constraint on the length of the seventh link is written as

(p + Qbi − si)
T (p + Qbi − si) = l2i7, i = 1, 2, 3. (1.1)

10



Also, the seventh link must be orthogonal to the axis of the R joint attached to the platform,

which yields,

qTz (p + Qbi − si) = 0. (1.2)

Equations (1.1) and (1.2) are the geometric constraints of the robot. Equation (1.1) is �rst

considered. The time derivative of (1.1) yields

aTi ṗ + aTi Q̇bi = aTi ṡi (1.3)

where

ai = p + Qbi − si. (1.4)

The second term on the left-hand side of (1.3) can be written as

aTi Q̇bi = aTi ΩQbi = aTi [ω × (Qbi)] = [(Qbi)× ai]
Tω (1.5)

where ω is the angular velocity vector of the platform and Ω is the angular velocity tensor,

i.e.,

Q̇ = ΩQ. (1.6)

Also the right-hand side of (1.3) can be written as

aTi ṡi = aTi (Miθ̇i) = kTi θ̇i (1.7)

where θ̇i = [θ̇i1 θ̇i2 θ̇i3]
T is the vector of actuated joint velocities of the ith leg, while

kTi = aTi Mi, i = 1, 2, 3 (1.8)

is a 1×3 line vector, and Mi is the Jacobian matrix of the ith leg when considered as a 3-dof

robot that is used to position point Si. This matrix is readily obtained by considering the

kinematics of the leg, as shown in Fig. 1.3. The detailed derivation is given in Appendix A.

One obtains

Aiṡi = Biθ̇i, i = 1, 2, 3 (1.9)

where

Ai =

 eTi2
vTi1

1− li5
li6

vTi2

 , i = 1, 2, 3 (1.10)

and

Bi =

bi11 0 0

0 vTi1(ei2 × ui1) 0

0 bi32 vTi2(ei3 × ui2)

 (1.11)

with

bi11 = (si − ci)
T (ei2 × ei1) (1.12)
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bi32 =
li5
li6

vTi2(ui1 × ei2) (1.13)

vi1 = si − ci − ui1 (1.14)

vi2 = ui1 + wi − ui2. (1.15)

Finally, matrix Mi can be written as

Mi = A−1i Bi, i = 1, 2, 3. (1.16)

To assemble the kinematics of the global robot, it is now possible to combine (1.3), (1.5) and

(1.7) to obtain  aT1 [(Qb1)× a1]
T

aT2 [(Qb2)× a2]
T

aT3 [(Qb3)× a3]
T

[
ṗ

ω

]
=

 k1 0 0

0 k2 0

0 0 k3


T

θ̇ (1.17)

where 0 stands for the three-dimensional zero column vector, namely 0 = [0 0 0]T and θ̇ =

[θ̇T1 θ̇T2 θ̇T3 ]
T is the vector containing the 9 actuated joint velocities. Since vector ki is of

dimension 3×1, the �rst matrix appearing on the right-hand side of (1.17) is of dimension

3×9. Equation (1.17) contains the three velocity equations obtained from the �rst set of

geometric constraints given by (1.1).

The second set of geometric constraints, given by (1.2), is now considered. Similarly to the

above derivation, the time derivative of (1.2) yields

q̇Tz ai + qTz (ṗ + Q̇bi − ṡi) = 0 (1.18)

which can be rewritten as

aTi q̇z + qTz ṗ + qTz Q̇bi = qTz ṡi (1.19)

in which

qz = Q[z′]O′ (1.20)

where [z′]O′ = [0 0 1]T represents the z′ axis and is expressed in the moving frame, and

q̇z = Q̇[z′]O′ = Ωqz. (1.21)

With a derivation similar to the one given in (1.5), and using (1.21), the �rst term in (1.19)

can be rewritten as

aTi q̇z = (qz × ai)
Tω (1.22)

and the third term in (1.19) can be rewritten as

qTz Q̇bi = [(Qbi)× qz]
Tω. (1.23)
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Adding (1.22) and (1.23) then yields

(qz × ai)
Tω + [(Qbi)× qz]

Tω = [(Qbi − ai)× qz]
Tω. (1.24)

Now let

ui = Qbi − ai (1.25)

which is the vector from point O′ to the centre of joint Si. Then, (1.19) can be rewritten as

qTz ṗ + (ui × qz)
Tω = qTz ṡi (1.26)

in which

qTz ṡi = qTz (Miθ̇i) = kTi+3θ̇i, i = 1, 2, 3 (1.27)

where Mi is de�ned in (1.16) and

kTi+3 = qTz Mi (1.28)

is a line vector of dimension 1×3. Rewriting (1.26) in matrix form, we obtain qTz (u1 × qz)
T

qTz (u2 × qz)
T

qTz (u3 × qz)
T

[
ṗ

ω

]
=

 k4 0 0

0 k5 0

0 0 k6


T

θ̇. (1.29)

Equation (1.29) contains the three velocity equations obtained from the second set of con-

straints given by (1.2).

Finally, combining (1.17) and (1.29) and rearranging the components, we obtain

Jt = Kθ̇ (1.30)

where t = [ṗT ωT ]T is the vector of Cartesian velocities of the platform, and matrices J and

K have the following form

J =



aT1 [(Qb1)× a1]
T

qTz (u1 × qz)
T

aT2 [(Qb2)× a2]
T

qTz (u2 × qz)
T

aT3 [(Qb3)× a3]
T

qTz (u3 × qz)
T


(1.31)

K =



kT1 0T 0T

kT4 0T 0T

0T kT2 0T

0T kT5 0T

0T 0T kT3
0T 0T kT6


(1.32)
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where, as mentioned above, 0 stands for a zero column vector of dimension 3×1. Equation

(1.30) represents the velocity equation of the (6+3)-dof kinematically redundant robot. It

can be observed that matrix J is of dimension 6×6 while matrix K is of dimension 6×9.
The dimensions of the matrices re�ect the redundancy of the mechanism, which has in fact 9

degrees of freedom and 9 actuators.

1.4 Singularity Analysis

One of the main reasons for the limited orientational workspace of spatial parallel robots is

the occurence of singularities. Moreover, the translational workspace can always be increased

by scaling up the robot but this operation has no impact on the orientational workspace.

Therefore, the singularity analysis is a very important component of the assessment of the

performances of parallel robots. In this section, it will be shown that the singular con�gu-

rations of the proposed redundant hybrid parallel robot are easily avoided, which yields an

orientational workspace that is much larger than that of typical parallel mechanisms.

The singularities of the proposed robot architecture can be divided into two categories, namely

the singularities (serial and parallel) occuring in one of the legs and the parallel (type II)

singularities of the platform. Since the legs include a serial and a parallel component, the

singularities occuring in one of the legs can be of either type. However, because of the simple

architecture of the legs � one revolute joint in series with a planar �ve-bar linkage � the

analysis of the singularities occuring in a leg is rather straightforward. The type I (serial)

singularities of a leg occur when matrix Bi, de�ned in (1.11), is singular. Such a singularity

occurs if the spherical joint is located on the axis of the �rst revolute joint. In this case one

has bi11 = 0 which makes matrix Bi singular. This is avoided in the �nal design by making

the �rst joint horizontal, i.e., α = π, which renders this con�guration unreachable. A type I

singularity also occurs if vi1 is orthogonal to (ei2 × ui1) or if vi2 is orthogonal to (ei3 × ui2).

It is rather straightforward to avoid such con�gurations by a proper dimensioning of the 5-bar

linkage to make these con�gurations correspond to the limits of the workspace. The type II

singularities that can occur in a leg correspond to a singularity of matrix Ai, de�ned in (1.10).

In this matrix, the �rst row is always orthogonal to the last two. Therefore, singularities

can occur if the last two rows become linearly dependent. From the structure of the matrix,

it is easy to see that this condition corresponds to the alignment of links i3 and i5. These

con�gurations are easily avoided in practice. In summary, the possible singularities of the legs

are easily handled.

Our attention is now turned to the singular con�gurations of the moving platform (parallel

singularities of the robot), which are typically the most limitative for parallel or hybrid parallel

robots. Indeed, such singularities greatly limit the orientational workspace of spatial parallel

mechanisms like the Gough-Stewart platform. The type II singularities occur when det(J) =
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0, where J is the Jacobian matrix de�ned in (1.31). It is observed that, in the proposed

mechanism, the spherical joint Si is followed by link i7 and a revolute joint attached to

the platform. With such an arrangement, we can always �nd two lines expressed by Plücker

coordinates corresponding to the constraints on the platform provided by each leg: one of them

is parallel to the unit vector qz while the other is along vector ai, as shown in Fig. 1.3 (dashed

lines). In each leg, these two lines intersect at the centre of joint Si and they are perpendicular

to each other. The Jacobian matrix J is simply the combination of these six Plücker lines. By

introducing GLG, the singular conditions of the mechanism can be determined geometrically.

In order to simplify the singularity analysis, we can divide the six lines into two sets and we

show that we can investigate them independently. The �rst set contains the three lines parallel

to unit vectors qz and the other set is formed by the three lines along vectors ai. It can be

observed, from Fig. 1.3, that the three lines along qz are parallel to each other in space while

the three lines along ai are coplanar. The rationality of dividing these six Plücker lines in two

groups can be proved mathematically. Assume that the lines are expressed in an arbitrary

frame whose origin is located on the plane formed by vectors ai and whose z-axis is in the

direction of the three unit vectors qz. If the Plücker coordinates of the lines expressed in this

frame are noted [dj mj nj ; pj qj wj ], j = 1, . . . , 6, then the Plücker coordinates of the lines

belonging to set one can be written as

Jn =

 0 0 1 p1 q1 0

0 0 1 p2 q2 0

0 0 1 p3 q3 0

 (1.33)

while the Plücker coordinates of the lines belonging to set two can be expressed as

Ja =

 d4 m4 0 0 0 w4

d5 m5 0 0 0 w5

d6 m6 0 0 0 w6

 . (1.34)

As mentioned above, these lines are represented as dashed lines going through joint Si in

Fig. 1.3. It can be observed that each line in matrix Jn is linearly independent from the lines

in matrix Ja and vice versa. Therefore, it su�ces to analyse each of the sets independently

in order to determine the singular con�gurations. According to GLG, the largest number of

linearly independent lines for spatial parallel lines or for coplanar lines � which is the case

for each of the two sets here � is three. For any one of the two sets, a singularity may occur

when the three lines intersect at one point or when they are parallel to each other on a plane.

However, such singularities are easily avoidable for the proposed robot, as explained in the

following subsections.

1.4.1 Singularity of Set One

In this case, the ith line (i = 1, 2, 3) parallel to qz passes through point Si and is restricted to

rotate around the axis of the ith revolute joint attached to the platform. Its possible locations
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form the contour of a cylinder of radius equal to li7. We therefore have three cylinders with

parallel axes. Singularities may occur when the three lines, one on each cylinder, become

coplanar. A simple way to avoid this possibility is to make the links i7 relatively short with

respect to the platform in order to ensure that the cylinders are su�ciently far from one

another, i.e., to ensure that no straight line can go through all 3 cylinders. This is easily

taken care of at the design stage. For example, if the platform is an equilateral triangle with

a circumradius r, one should have

li7 <
3

4
r (1.35)

in order to prevent such singularities (Wen et al., 2019).

1.4.2 Singularity of Set Two

Here, for this set of lines, the advantages of using kinematically redundant legs are re�ected

most vividly. A type II singularity occurs when the three coplanar Plücker lines belonging

to this set intersect at a common point or are parallel to each other. However, such sin-

gular con�gurations can be avoided by reorienting one or two of the three links i7, using

the kinematic redundancy, without changing the con�guration of the platform. Moreover, it

should be noted that although in principle using only two redundant legs is su�cient to avoid

this set of singularities, we use three, such that we can always ensure that the robot is in a

well-conditioned con�guration, which keeps the platform far away from type II singularities,

passive joint limits and mechanical interferences. This arrangement will be explained in the

next section. With three redundant legs, it is possible, for instance, to maintain the relative

angle between the links i7 and the platform constant, in a well conditioned arrangement,

thereby completely avoiding singularities in all con�gurations of the platform while greatly

simplifying the redundancy resolution.

As a comparison, consider the non-redundant robot developed in (Monsarrat and Gosselin,

2001), which is akin to the robot proposed in this paper. In the non-redundant robot pre-

sented in (Monsarrat and Gosselin, 2001), the six Plücker lines are associated with the six

actuated input angles. For a given pose (position and orientation) of the platform, their di-

rections cannot be changed, which yields unavoidable type II singularities. By contrast, in

the redundant mechanism proposed here, the directions of the lines can be changed using

the redundancy without a�ecting the pose of the platform. Except for the leg singularities,

the present mechanism has only two di�erent kinds of type II singularities and both of these

are easily avoidable, as discussed above. However, for the non-redundant counterpart, �ve

di�erent kinds of singularities must be considered and no e�ective approach can be used to

avoid them. The workspace � especially the orientational workspace � is considerably lim-

ited compared to that of the redundant mechanism proposed here. As an illustration of the

capabilities of the proposed robot, its orientational workspace is shown in Section 1.7 (Fig. 1.8)

for the reference position, considering all possible leg and platform interferences. It can be
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Figure 1.4 � Ranges of orientation of the distal links (domains for βi) where singularity avoid-
ance is guaranteed: βi ∈ [30◦, 150◦], i = 1, 2, 3 (Wen et al., 2019).

readily observed that the robot is capable of very large tilt angles, which are far beyond the

capabilities of other similar non-redundant parallel mechanisms. It should also be pointed

out that the passive spherical joints, Si, must have very large motion ranges to accommodate

this motion. Such joints have been developed in (Schreiber and Gosselin, 2017) and are hence

available.

1.4.3 Type II Singularity-free Range

The redundancy was used to avoid singular con�gurations, which leaves in�nitely many non-

singular con�gurations for a given position and orientation of the platform. Considering again

the platform and the links i7, it can be readily observed, as shown in Fig. 1.4 that if links i7 are

maintained at an angle comprised within the ranges illustrated, namely βi ∈ [βmini , βmaxi ] =

[30◦, 150◦], then type II singularities can never occur (the three lines can never become

dependent). This is also con�rmed by the singularity locus, plotted in the [β1, β2, β3] space

in Fig. 1.5. Indeed, it can readily be determined, from this graph, that a box de�ned as

30◦ < βi < 150◦, i = 1, 2, 3 (1.36)

is free from singularities.

1.5 Inverse Kinematics

The inverse kinematics of most redundant manipulators is solvable only using numerical meth-

ods, which is achieved at the velocity level (Siciliano, 1990). For the hybrid robot proposed
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Figure 1.5 � Singularity locus of the proposed robot. The unit of βi, i = 1, 2, 3 in this �gure is
radian. It is noted that this singularity locus is de�ned in the space of the redundant degrees
of freedom and is independent from the position and orientation of platform. The box shown
in blue represents the singularity-free zone corresponding to the inequalities given in (1.36).

here, an analytical solution to the inverse kinematics which is straightforward, consistent and

conservative � thus overcoming the repeatability problem � can be obtained. Indeed, as ex-

plained in the singularity analysis presented above, it is possible to assign values to the angles

βi (see Fig. 1.3), which represent the redundant degrees of freedom, independently from the

platform pose. For example, angles βi can be prescribed to remain constant at all times, in

order to generate a con�guration that always remains far away from singularities.

Therefore, for a given pose of the platform (vector p and matrix Q) and with given values of

angles βi, the position of the spherical joint, vector si, in each of the legs is readily computed

as

si = p + Qbi − ai, i = 1, 2, 3. (1.37)

Once these vectors are obtained, each of the legs can be considered as a 3-dof robot that

is used to position the spherical joint and an analytical solution of the inverse kinematics is

readily obtained for such a robot. Due to the 5-bar linkages in the legs, this problem admits

at most 8 solutions and the branches of solution are easily determined. The detailed equations

are straightforward and are given in Appendix B. These equations are used to determine the

workspace and other characteristics of the robot.

As a comparison, consider the (6+3)-dof redundant parallel robot proposed in (Gosselin and
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Schreiber, 2016). It was shown that all singularities can be avoided for this robot by exploiting

the redundancy. However, the redundancy resolution must be computed numerically and

the conservative nature of the solution cannot be guaranteed. By contrast, the redundancy

resolution of the robot proposed here is straightforward and conservative while requiring almost

no computations.

1.6 Forward Kinematics

When all actuator coordinates are prescribed, the position of each spherical joint is readily

obtained by solving the forward kinematics of each of the legs. The solution of this prob-

lem is straightforward and leads to two solutions in each leg, because of the 5-bar linkage

arrangement. Also, the robot is designed to always operate in one of these two solutions and

a unique solution is readily determined. Once the positions of the three spherical joints are

obtained, the position and orientation of the moving platform can be computed using the same

formulation as for planar 3-dof parallel manipulators (Gosselin et al., 1992), applied in the

plane formed by the three spherical joints. This formulation yields a sixth order polynomial

equation. Nevertheless, it should be pointed out that, in practice, a numerical solution is used

since this problem is solved only based on a known initial guess that is very close to the actual

solution. Also, because the robot con�guration is always far from singularities, the numerical

procedure converges stably and quickly. Globally, the direct kinematics of the proposed robot

is signi�cantly simpler than that of other kinematically redundant parallel robots such as the

one proposed in (Gosselin and Schreiber, 2016). A more detailed analysis on the forward

kinematics will be given in Chapter 3.

1.7 Workspace

For illustrative purposes, the geometric parameters used for the workspace evaluation of the

proposed robot are chosen as follows:

Rb = 250 mm, Rp = 125 mm, li1 = li7 = 50 mm

li2 = 150 mm, li5 = 450 mm, li3 = li4 = li6 = 300 mm,

α = 120◦, βi = 97◦, i = 1, 2, 3

where Rb and Rp are respectively the circumradius of the base and platform and angles βi are

chosen such that the robot will never be in a type II singular con�guration. The geometric

parameters of the robot are chosen based on a design exercise with the consideration that the

size of the prototype be suitable and convenient for pHRI. The analytical inverse kinematic

solution is exploited for planning the motions of the robot and a discretization method is

implemented in the evaluations.
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1.7.1 Translational Workspace

In this evaluation, the orientation of the platform is Q = I, where I is the 3×3 identity matrix.

The base of the mechanism is regarded as the lower boundary of the workspace. In order to

prevent the type I singularities, the minimal perpendicular distance between the centre of the

ith spherical joint and the axis of corresponding �rst actuated revolute joint is set to be 20

mm, and the range of the angle between vectors ui1 and wi (see Fig. 1.3) is limited to be

[10◦, 170◦]. Each link of the robot is modeled as a cylinder with a radius of 7.5 mm. A safety

distance, d, between each pair of not directly connected cylinders is set to d = 5 mm. A

mechanical interference occurs when d < 5 mm.

The position of the platform during the evaluation is given as

p =
[
dp cos θc dp sin θc h

]T
(1.38)

with

0 ≤ dp ≤ dp,max, 0 ≤ θc ≤ 2π, and 0 ≤ h ≤ hmax, (1.39)

where dp is the distance that the platform moved in a direction de�ned by angle θc, and h

is the height (along the z-axis of the base frame) of the platform. The simulation intervals

of dp and h, and of θc , are set to 1 mm and 1◦, respectively. These intervals, as well as

those set for assessing the orientational workspace in the next subsection, are chosen based

on the compromise between the calculation time and accuracy of the obtained workspace.

The platform reaches the boundary of the workspace (dp = dp,max or h = hmax) if passive

spherical joint limits or mechanical interferences are detected. In addition, we assume that

the novel 4-dof spherical joint with a large motion range of ±150◦ (Schreiber and Gosselin,

2017) is used instead of the common ball and socket joints. In fact, the 4-dof spherical joints

proposed in (Schreiber and Gosselin, 2017) are used in the prototype of the proposed robot.

The results of the workspace evaluation are presented in Figs. 1.6 and 1.7. It can be observed

that the robot is singularity-free throughout the translational workspace. However, due to

the type I singularity condition (one), the lower part of the workspace is limited (the recessed

parts appearing in Fig. 1.7). As mentioned, this limitation can be improved by increasing the

angle α. Indeed, if α = π, the translational workspace will be convex, which is a desirable

property for parallel mechanisms. In fact, α = π is chosen in the prototype described in an

upcoming section. Also, as a comparison, for the non-redundant counterpart of the proposed

robot (Monsarrat and Gosselin, 2003), the translational workspace might be split into di�erent

regions due to singularities.

1.7.2 Orientational Workspace

The orientational workspace was evaluated when the position of the platform is �xed at p =

[0 0 350]T mm. Type I singularities are completely excluded in this location. Thereby, the

orientational workspace is limited only by the passive spherical joint limits and mechanical
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Figure 1.6 � The contours of several layers of the translational workspace of the proposed
architecture.
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Figure 1.7 � Translational workspace (top view) of the proposed architecture.

interferences. The orientation of the platform in this evaluation is given by the following

rotation matrix

Q = QtorsionQtilt (1.40)

where

Qtorsion =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (1.41)
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which is a rotation of the platform by a torsion angle ψ with respect to the z-axis of the base

frame, and in which

ψmin ≤ ψ ≤ ψmax, (1.42)

and

Qtilt =

cosφ+ u2x′(1− cosφ) ux′uy′(1− cosφ) uy′ sinφ

ux′uy′(1− cosφ) cosφ+ u2y′(1− cosφ) −ux′ sinφ
−uy′ sinφ ux′ sinφ cosφ

 (1.43)

with

0 ≤ φ ≤ φmax, (1.44)

and where ux′ and uy′ are respectively the x′ and y′ components of a unit vector u, namely

u =

ux′uy′

0

 =

cos θcsin θc

0

 (1.45)

which is expressed in the platform frame O′x′y′z′, and angle θc is de�ned in (1.38). Matrix Qtilt

represents a rotation of the platform by a tilt angle φ with respect to the unit vector u. The

simulation interval of angles ψ, φ and θc are all set to 1◦. The orientational workspace is also

conducted in two steps. We �rst �gure out the maximum and minimum torsion angles, ψmax

and ψmin, by leaving the term Qtilt out of (1.40). Then, for each value of ψ, the maximum tilt

angle, φmax, is determined by tilting the platform with respect to the unit vector u de�ned

by each value of θc.

Tilt and torsion angles are used to illustrate the orientational workspace (Bonev et al., 2002).

The result is shown in Fig. 1.8. Cylindrical coordinates (z, r, θc) are used in this representa-

tion, where the z-axis stands for the torsion angle (ψ), the radius r stands for the tilt angle

(φ), and θc is given in (1.45). It can be seen that a large span of the torsion angle (220◦) can

be reached. In Fig. 1.9, a section of the workspace corresponding to zero torsion is presented.

It can be observed that the platform can reach a very large tilt angle of more than ±135◦ in
certain directions. In the worst directions, the tilt angles can still be much larger than 90◦.

These results clearly show that the platform can produce an excellent rotational performance.

By contrast, due to singularities, the maximum tilt angle of a Gough-Stewart platform in most

cases is approximately 45◦, and it is approximately 40◦ for the non-redundant counterpart of

the proposed robot (Monsarrat and Gosselin, 2003).

1.8 Example

In this section, a tilt simulation is conducted to demonstrate the excellent rotation ability of

the platform. Di�erent performance indices are detected during the motion. The platform

is initially at p = [0 0 350]T mm, with Q = I and βi = 97◦, i = 1, 2, 3. The angles βi are

maintained for the whole trajectory.
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Figure 1.8 � Orientational workspace of the proposed architecture in the reference position.
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Figure 1.9 � The largest tilt angles of a section (zero torsion) of the proposed architecture.

The trajectory is divided into the following �ve sub-trajectories. The equation of the sub-

trajectory one is given as

Q =

 cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

 with 0 ≤ φ ≤ φmax (1.46)

which is a tilt rotation with respect to the y′-axis of the platform frame with φmax = 80◦. The

second sub-trajectory is a translation along the x-axis of the base frame

tx = [x 0 350]T mm with 0 ≤ x ≤ 100. (1.47)
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Figure 1.10 � Absolute motion range of the nine actuators for the example trajectory.

The third sub-trajectory is a circumferential tilt rotation, the orientation of the platform during

this sub-trajectory is determined by the following rotation matrix (Gosselin and Schreiber,

2016)

Q =

 sin2 ζ + cos2 ζ cosφmax sin ζ cos ζ(cosφmax − 1) cos ζ sinφmax

sin ζ cos ζ(cosφmax − 1) cos2 ζ + sin2 ζ cosφmax sin ζ sinφmax

− cos ζ sinφmax − sin ζ sinφmax cosφmax

 . (1.48)

The position of the origin of the platform frame in this sub-trajectory is

p = 100[cos ζ sin ζ 3.5]T mm with 0 ≤ ζ ≤ 2π (1.49)

which is a circular motion. The circle is parallel to the base and has a radius of 100 mm. At

the end of this step, the platform is in the �nal con�guration of sub-trajectory two. Finally,

the platform is returned to the initial con�guration by taking the opposite movements of

sub-trajectories two and one.

The absolute motion range of actuators are measured throughout the trajectory. The results

are shown in Fig. 1.10, in which θij , i, j = 1, 2, 3 denotes the absolute motion range of the jth

actuator in the ith leg. It can be observed that the largest absolute motion range is no more

than 60◦, which is reasonable.

The 2-norm condition number of the Jacobian matrix is often used for describing the closeness

of the platform to a singularity (Merlet, 2006a). However, it loses physical meaning when

the units of the elements in the Jacobian are inconsistent. To overcome this, a new Jacobian

matrix that transforms the velocities of three non-collinear points on the platform into actuator

velocities is developed (Gosselin, 1990). For the proposed KRHR, rather than choosing three

points on the platform, we prefer the centres of the three spherical joints. It is feasible since
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all the angles βi are remained constant in this example. For each sub-leg, as describe in (1.7),

the velocity equations can be expressed as,

ṡi = Miθ̇i, i = 1, 2, 3 (1.50)

where Mi has been given in (1.16) and in which all elements are with unit of length. The

three equations in (1.50) can be combined into one formula,

ṡ = J1θ̇ (1.51)

where ṡ is the 9× 1 vector of the velocities of the centres of the three spherical joints, and

J1 =

 M1 0 0

0 M2 0

0 0 M3

 (1.52)

in which 0 is the 3×3 zero matrix. Therefore, matrix J1 is of dimension 9 × 9 and is of full

rank as long as none of Mi is singular. The 2-norm condition numbers of J1 and Mi for the

example trajectory are shown in Fig. 1.11. These indices indicate the closeness of the robot to

a type I singularity. The numerical values are very close to 1, which indicate that the platform

or the ith sub-leg clearly stays away from the type I singularities.

Additionally, another two useful indices corresponding to kinematic sensitivity developed in

(Cardou et al., 2010), namely: the 2-norm of the position part of matrix U = J−1K (denoted

as Up), and the the 2-norm of the rotation part of matrix U (denoted as Ur), are also detected

to verify the dexterity of the mechanism. These indices represent the maximum ampli�cation

from the resolution of the actuated revolute joints to the platform displacement and rotation.

Since the numerical value of the 2-norm of Up is unit sensitive, we choose metre as the unit

of the elements involved in the computation of this index, in order to reduce the magnitude

of the numerical value. The results of these indices for the example trajectory are illustrated

in Fig. 1.12. It can be seen that the kinematic sensitivity of the robot is stable and excellent

throughout the trajectory, thereby we acquire the same conclusion as that obtained based on

the 2-norm condition number of Jacobian J1.

1.9 Conclusion

In this chapter, a novel (6+3)-dof KRHPR was introduced. It was shown that the type II

singularities of the mechanism can be easily avoided by proper design and simple trajectory

planning rules. As a result, the orientational workspace of the robot is very large when

compared to other similar non-redundant parallel mechanisms. Although the architecture of

the mechanism is not fully parallel, the moving actuators are located very close to the base

and undergo motion with only a small amplitude, thereby greatly reducing the inertia of
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Figure 1.11 � Condition numbers of J1 and Mi, i = 1, 2, 3 for the example trajectory.
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Figure 1.12 � Kinematic sensitivity for the example trajectory.

the moving components. Moreover, the robot is easily backdrivable due to the direct drive

transmission. All of these indicate that the robot is well suited for pHRI applications.

Additionally, a video (animation) presents the (6+3)-dof KRHPR performing trajectories

is available at: https://ieeexplore.ieee.org/abstract/document/8793772/media#media.

It demonstrates the large orientationnal workspace of the robot by performing movements

of tilt and torsion of the platform at +/− 90 degrees. It also shows the movement of the

gripper, using two of the three redundant degrees of freedom to move each of the gripper

�ngers independently. Finally, a trajectory combining tilt, torsion and the opening/closing

motion of the �ngers is shown.
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Chapter 2

KRHPRs with Simple Singularity

Conditions and Analytical Inverse

Kinematic Solutions

2.1 Introduction

Each leg of the KRHPR studied in Chapter 1 can be regarded as a combination of a fully

actuated sub-leg and a redundant link. In this chapter, we generalise this concept and pro-

pose a class of planar and spatial KRHPRs. In the proposed architecture, the platform is

connected to the base through three identical kinematically redundant legs. We introduce two

di�erent forms of redundant links, namely: revolute/spherical-revolute and revolute/spherical-

prismatic links1. The links are attached to the moving platform in three di�erent arrangements

by revolute or prismatic joints (see Fig. 2.1). The axes of the revolute joints �xed on the plat-

form shown in Fig. 2.1a are orthogonal to the platform plane. The composed KRHPRs

are completely type II singularity-free, while the inverse kinematic problem can be solved

analytically. These will be discussed in detail in the following sections.

The rest of this chapter is organized as follows. In Section 2.2, the velocity equations of

the proposed planar KRHPRs are developed and the singularity conditions of the robots are

investigated. Feasibility of using other types of planar sub-legs to compose the planar KRHPRs

are explained. Section 2.3 focuses on the development of the velocity equations and singularity

analysis of the spatial KRHPRs with three identical 3-dof revolute joint actuated serial sub-

legs. Di�erent types of mechanisms that can be used as sub-legs for spatial KRHPRs are

enumerated in Section 2.4. Methods of solving the inverse kinematic problem of both planar

and spatial KRHPRs are provided in Section 2.5. Finally, conclusions are drawn.

1Here, revolute/spherical means that in planar robots a revolute joint is used to connect the distal end of
the sub-leg to the redundant link while in spatial robots a spherical joint is used for this purpose.
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(a) (b) (c)

Figure 2.1 � Three di�erent assembly arrangements of the platform and the redundant links:
(a) R/S-R, (b) R/S-P, (c) R/S-P.

2.2 Planar Architectures

2.2.1 Velocity Equations of Architectures with Three Identical RR

Sub-Legs

We start with a 3-RRRR planar KRHPR shown in Fig. 2.2. Here R and R denote the actuated

and passive revolute joints. The length of the redundant RR link in each leg can be obtained

as

(p + Qbi − ri)
T (p + Qbi − ri) = l2, i = 1, 2, 3 (2.1)

where Q is the 2× 2 orientation matrix of the platform frame with respect to the base frame,

p is the position vector of the origin of the platform frame and ri is the position vector of the

third revolute joint of the ith leg. The time derivative of (2.1) yields

aTi (ṗ + Q̇bi − ṙi) = 0 (2.2)

where

ai = p + Qbi − ri (2.3)

and where the product aTi ṙi can be written as

aTi ṙi = aTi Miθ̇i, (2.4)

where Mi is the 2× 2 Jacobian matrix of the ith serial RR sub-leg and θ̇i = [θ̇i1 θ̇i2]
T .

Moreover, one has

Q̇ = φ̇EQ (2.5)

where φ̇ is the angular velocity of the platform and where

E =

[
0 −1
1 0

]
. (2.6)
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Figure 2.2 � Kinematic modelling of the 3-RRRR planar KRHPR.
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Figure 2.3 � Kinematic modelling of the 3-RRRP planar KRHPR with platform assembly
arrangement (b) of Figure 2.1.

Then, de�ning ci = aTi EQbi and then substituting (2.4) and (2.5) into (2.2) yields the velocity

equations of the robot, namely Jt = Kθ̇. In which the Jacobian matrices are respectively

J =

 aT1 c1

aT2 c2

aT3 c3

 , K =

 aT1 M1 0 0

0 aT2 M2 0

0 0 aT3 M3

 , (2.7)

where 0 is a 1× 2 zero vector. Matrix J is of dimension 3× 3 while matrix K is of dimension

3 × 6. And t = [ṗT , φ̇]T and θ̇ = [θ̇T1 θ̇T2 θ̇T3 ]
T . In addition, each row in the Jacobian J

represents a planar Plücker line along the direction of vector ai and passes through both the

passive revolute joints in the same leg.

For the assembly arrangements of the planar 3-RRRP architectures (see Figs. 2.3 and 2.4),

the axis of the ith prismatic (abbreviated as P) joint is always perpendicular to a unit vector
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Figure 2.4 � Kinematic modelling of the 3-RRRP planar KRHPR with platform assembly
arrangement (c) of Figure 2.1.

ni which is expressed in the platform frame. This can be written as

dTi (Qni) = 0. (2.8)

Vector di in the platform assembly arrangement (b) can be written as

di = ri + ai − p−Qbi (2.9)

in which ai = lQni and bi is a constant vector pointing from the origin of the platform

frame to an arbitrary point on the axis of the ith prismatic joint, expressed in the platform

frame. Di�erentiating (2.8) with respect to time and conducting a derivation similar to the one

presented above for the 3-RRRR architecture, one can obtain the following Jacobian matrices

J =

 nT1 QT c1

nT2 QT c2

nT3 QT c3

 (2.10)

K =

 nT1 QTM1 0 0

0 nT2 QTM2 0

0 0 nT3 QTM3

 (2.11)

in which the scalars ci, i = 1, 2, 3 are

ci = nTi QT (EQbi −ETdi). (2.12)

It can be easily observed that each Plücker line in J passes through the passive revolute and

prismatic joints and is perpendicular to the prismatic joint axis in the associated leg. For the

platform assembly arrangement (c), the vector di is written as

di = ri − p. (2.13)
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(a) (b) (c)

Figure 2.5 � Three Plücker lines in each platform assembly arrangement.

In this case the Jacobian matrices J and K have the same forms as (2.10) and (2.11) except

that ci, i = 1, 2, 3 become

ci = −nTi QTETdi (2.14)

and the Plücker lines in J have the same properties as those in assembly arrangement (b).

2.2.2 Singularity Analysis of Architectures with Three Identical RR

Sub-Legs

The Plücker lines for each platform assembly arrangement are illustrated in Fig. 2.5 by dashed

lines. A type II singularity occurs whenever the three Plücker lines intersect at one common

point (may happen in assembly arrangements (a) and (b)) or are parallel to each other (may

happen only in assembly arrangement (a)). Such singularities for assembly arrangement (c)

are automatically avoided due to mechanical limits. For the other assembly arrangements,

type II singularities are also readily avoided. Since the sub-legs are fully actuated, it is

possible to control the geometric relationship between each redundant link and the moving

platform independently during motions, to ensure that the robot is never in a type II singular

con�guration. For instance, a simple approach is to predetermine a non-singular geometric

relationship between the redundant links and the moving platform and maintain it unchanged.

Moreover, if the legs of the proposed planar KRHPR are stacked in di�erent planes parallel to

each other, theoretically, the rotational workspace could be unlimited, whereas the rotational

workspace of the 3-RRR non-redundant counterpart would mostly still be limited by type II

singularities, which can be visualized by determining the type II singularity loci (Bonev and

Gosselin, 2001).

Additionally, the type I singularities, corresponding to det(Mi) = 0, can be easily determined

since they occur simply when the ith RR sub-leg is fully expanded or folded.

2.2.3 Other Feasible Planar Sub-Legs

A feasible sub-leg could be a serial, parallel, or redundant planar robot which has at least

two translational degrees of freedom. For each platform assembly arrangement, using dif-
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Figure 2.6 � Kinematic modelling of one leg of the 3-RRRSR spatial KRHPR.

ferent forms of sub-legs only changes the Jacobian matrix Mi. Thereby, type II singularity

conditions are preserved. Most planar mechanisms have very simple structures, thus we omit

the kinematic analysis. Special attention should be paid to the planar parallel mechanisms

because they may encounter both type I and type II singularities. However, the singular con-

�gurations can be revealed easily via screw theory (Bonev et al., 2003) or Grassmann-Cayley

algebra (Wen et al., 2017).

2.3 Spatial Architectures with RRR Sub-Legs

2.3.1 Velocity Equations

In each leg of the spatial 3-RRRSR KRHPR (see Fig. 2.6), the axes of joints Ri2 and Ri3, (i =

1, 2, 3) are parallel to each other and perpendicular to the axis of joint Ri1. Parameters

lij(j = 1, 2, 3, 4) denote the length of the jth link in the ith leg and Si represents the passive

spherical joint of leg i.

The velocity equations of this KRHPR is similar to the variant of this architecture presented

in Chapter 1. The Jacobians J and K can be written in the same form of (1.31) and (1.32),

except that the Jacobian of the ith RRR linkage, which is Mi, in matrix K will be

Mi = [ei1 × ri1 ei2 × ri2 ei3 × ri3], (2.15)

in which the unit vector eik, k = 1, 2, 3 represents the direction of the axis of the kth actuated

joint and rik is a position vector pointing from the centre of this actuated joint to the centre

of joint Si. All these quantities are expressed in the base frame.

The derivations of the velocity equations for the 3-RRRSP KRHPRs with both platform assem-

bly arrangements (b) and (c) (see Figs. 2.7 and 2.8) are simpler than that of the 3-RRRSR
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Figure 2.7 � Kinematic modelling of one leg of the 3-RRRSP spatial KRHPR with platform
assembly arrangement (b).

architecture (although the detailed derivation is not provided here). For the architecture

schematically shown in Fig. 2.7, it can be observed that a vector along the axis of the ith pas-

sive prismatic joint is always perpendicular to a plane formed by two mutually perpendicular

vectors Qni and qz, which can be written mathematically as

dTi (Qni) = 0 (2.16)

dTi qz = 0, i = 1, 2, 3 (2.17)

where

di = si + ai − p−Qbi (2.18)

with ai = li4Qni. Also, bi is a constant vector pointing from the origin of the platform frame

to an arbitrary point on the axis of ith prismatic joint, ni is a constant unit vector on the

platform plane which is perpendicular to the ith prismatic joint and expressed in the platform

frame, and qz is a unit vector along the z′-axis and is expressed in the base frame, as it has

been de�ned in (1.20). If vector bi is chosen to be parallel to vector ni, (2.16) can be further

simpli�ed to

(si − p)T (Qni) = b− li4 (2.19)

where the constant scalars b and li4 are obtained from

b = (Qbi)
T (Qni), li4 = aTi (Qni). (2.20)

On the other hand, since vector qz is always perpendicular to vectors ai and Qbi, (2.17) can

be rewritten as

(si − p)Tqz = 0. (2.21)

The time derivative of (2.19) gives

(Qni)
T ṗ− (si − p)T (Q̇ni) = (Qni)

T ṡi. (2.22)
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Since

(si − p)T (Q̇ni) = (si − p)T (ΩQni)

= (si − p)T [ω × (Qni)]

= [(Qni)× (si − p)]Tω (2.23)

and ṡi = Miθ̇i with θ̇i = [θ̇i1 θ̇i2 θ̇i3]
T (the vector of actuated joint velocities of the ith leg),

equation (2.22) can be rewritten as

(Qni)
T ṗ + [(si − p)× (Qni)]

Tω = (Qni)
TMiθ̇i. (2.24)

Similarly, the time derivative of (2.21) yields

qTz ṗ− (si − p)T q̇z = qTz ṡi, (2.25)

here

(si − p)T q̇z = (si − p)T (ω × qz) = [qz × (si − p)]Tω, (2.26)

thus (2.25) can be rewritten as

qTz ṗ + [(si − p)× qz]
Tω = qTz Miθ̇i. (2.27)

The Jacobian matrices can be obtained by combining the corresponding terms in (2.24) and

(2.27), yielding

J =



nT1 QT [(s1 − p)× (Qn1)]
T

qTz [(s1 − p)× qz]
T

nT2 QT [(s2 − p)× (Qn2)]
T

qTz [(s2 − p)× qz]
T

nT3 QT [(s3 − p)× (Qn3)]
T

qTz [(s3 − p)× qz]
T


(2.28)

and

K =



nT1 QTM1 0 0

qTz M1 0 0

0 nT2 QTM2 0

0 qTz M2 0

0 0 nT3 QTM3

0 0 qTz M3


. (2.29)

The constraint conditions of the architecture illustrated in Fig. 2.8 can be described simi-

larly to those of the above discussed 3-RRRSP KRHPR. Thus, one can write the constraint

equations as follows

(si − p)T (Qni) = 0 (2.30)
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Figure 2.8 � Kinematic modelling of one leg of the 3-RRRSP spatial KRHPR with platform
assembly arrangement (c).

Figure 2.9 � Prototype of the 3-[R(RR-RRR)SP] robot. The gripper on the moving platform
has three jaws where each of them can move along the corresponding passive prismatic joint.

(si − p)Tqz = 0. (2.31)

Clearly, one obtains the Jacobian matrices J and K with the same forms as (2.28) and (2.29)

after di�erentiating the above equations with respect to time. A prototype of the variant of

the 3-RRRSP spatial KRHPR with platform assembly arrangement (c), namely the 3-[R(RR-

RRR)SP] spatial KRHPR, is shown in Fig. 2.9. The Jacobians of the prototype can be written

in the similar forms of those of (2.28) and (2.29), in which Mi (with i = 1, 2, 3) is de�ned in

(1.16).

2.3.2 Singularity Analysis

The type I singularity conditions of the proposed spatial KRHPRs are similar to those of

the architecture studied in Chapter 1 and thus such singularities are easily alleviated. The
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Figure 2.10 � Six Plücker lines in each platform assembly arrangement.

complexity of type II singularity conditions is signi�cantly reduced thanks to the types of

redundant links as well as the platform assembly arrangements. Each row of Jacobian J

represents a spatial Plücker line. For a spherical-revolute redundant link, as analysed in

Chapter 1, one Plücker line lies on the platform plane and passes through both joints, the

other one is parallel to vector qz. For a spherical-prismatic redundant link, one line passes

through both joints and is perpendicular to the prismatic joint and the other one is parallel

to vector qz. In each case, two lines intersect at the centre of the spherical joint. As described

in Fig. 2.10, the dashed lines represent the coplanar Plücker lines; while the spatial parallel

Plücker lines (orthogonal to the paper) are indicated by small solid circles. These two groups

of lines belong to two orthogonal vector spaces. Each line in one vector space is linearly

independent (in fact orthogonal) from those in the other vector space. Therefore, matrix J

becomes singular only when the lines in one of the two vector spaces become linearly dependent.

Nevertheless, all type II singularities can either be avoided or eliminated. Three cases should

be taken into consideration, namely (i) three spatial parallel Plücker lines become coplanar

parallel, (ii) three coplanar Plücker lines become parallel or (iii) intersect at a common point.

The platform assembly arrangement (a) may be subjected to all these cases, while the platform

assembly arrangement (b) is only subjected to the last one. These singularities are readily

avoided using the technique proposed for the planar KRHPRs. Moreover, similarly to the

planar case, it can be inferred that the platform assembly arrangement (c) is completely free

from type II singularities.

2.4 Examples of Other Sub-Legs for Spatial KRHPRs

Similarly to the planar case, the velocity equations of a novel KRHPR synthesized using the

following sub-legs are obtained simply by replacing the sub-leg Jacobians Mi in matrix K by

that of the new sub-leg.
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Figure 2.11 � The 3-PRRSR architecture with parallel axes of the actuated joints.
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Figure 2.12 � The 4R sub-leg.

2.4.1 Serial Sub-Legs: PRR and 4R Linkages

A simple way to avoid the shoulder singularity of the RRR linkage is to replace the �rst

revolute joint by an actuated prismatic (P) one whose axis is parallel to those of the following

joints. The Jacobian matrix of this PRR sub-leg is obtained simply by changing the �rst

column of the matrix in (2.15) by the direction vector of the prismatic joint.

Additionally, it is interesting to note that if three PRR sub-legs are assembled with the axes

of all actuated joints in parallel, the translational workspace of the robot can be, theoretically,

unlimited in the direction of the actuated joints axes. Such an architecture is represented

schematically in Fig. 2.11.

The 4R sub-leg can be regarded as an alternative to the PRR sub-leg, since it also has the

ability to avoid shoulder singularity (Hollerbach, 1985). This linkage (see Fig. 2.12) is obtained

by adding an actuated revolute joint between the two parallel revolute joints in the RRR sub-
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leg. The Jacobian matrix can be written as

M = [e1 × r1 e2 × r2 e3 × r3 e4 × r4] (2.32)

where ei and ri, i = 1, 2, 3, 4 are respectively the direction vector of the ith revolute joint and

the position vector from the centre of the ith revolute joint to the end-point.

2.4.2 Hybrid Sub-Leg: P(RR-RRR) Linkage

In this linkage (see Fig. 2.13), the axis of the prismatic joint is parallel to those of the revolute

joints. Three constraint equations can be written as

eT1 (s− b) = 0 (2.33)

(s− b− u1)
T (s− b− u1) = vT1 v1 = l25 (2.34)

(u1 + w − u2)
T (u1 + w − u2) = vT2 v2 = l23 (2.35)

where

b = c + d + m (2.36)

in which vector c is pointing from the origin of the base frame to an arbitrary point on the axis

of the prismatic joint, vector d is pointing from the end point of vector c to the centre of the

prismatic joint, and vector m is along the link between the prismatic joint and the following

two revolute joints, both c and m are constant vectors.

Since e1 is a constant unit vector and we can express the vector d as d = de1, the time

derivative of (2.33) can be written as

eT1 ṡ = ḋ. (2.37)

Equation (2.34) can be rewritten as

(s− b)T (s− b)− 2(s− b)Tu1 = l25 − l21 (2.38)
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in which l21 = uT1 u1. The time derivative of the above equation yields

(s− b)T (ṡ− ḋ)− uT1 (ṡ− ḋ)− (s− b)T u̇1 = 0. (2.39)

After rearranging the terms, one can obtain

(s− b− u1)
T ṡ = (s− b− u1)

T ḋ + (s− b)T u̇1 (2.40)

which yields

vT1 ṡ = θ̇2(s− b)T (e2 × u1) (2.41)

with

u̇1 = θ̇2e2 × u1 (2.42)

where θ̇2 is the angular velocity of the �rst actuated revolute joint. The �rst term on the right

hand side of (2.40) vanishes because vT1 ḋ = ḋvT1 e1 = 0.

The time derivative of (2.35) leads to

vT2 [u̇1 + (1− l4
l5
)(ṡ− ḋ− u̇1)− u̇2] = 0 (2.43)

with

ẇ = (1− l4
l5
)v̇1 = (1− l4

l5
)(ṡ− ḋ− u̇1). (2.44)

Considering that vT2 ḋ = ḋvT2 e1 = 0, then one can obtain the following velocity equation after

rearranging the terms in (2.43)

(1− l4
l5
)vT2 ṡ =

l4
l5
θ̇2v

T
2 (u1 × e2) + θ̇3v

T
2 (e3 × u2) (2.45)

with

u̇2 = θ̇3e3 × u2 (2.46)

where θ̇3 is the angular velocity of the second actuated revolute joint.

Combining (2.37), (2.41) and (2.45), one obtains the following velocity equations

Jṡ = Kθ̇ (2.47)

where θ̇ = [ḋ θ̇2 θ̇3]
T and the Jacobian matrices J and K are

J =

 eT1
vT1

(1− l4
l5
)vT2

 (2.48)

and

K =

 1 0 0

0 (s− b)T (e2 × u1) 0

0 l4
l5

vT2 (u1 × e2) vT2 (e3 × u2)

 . (2.49)
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Note that matrix K could be diagonal if the closed loop in the linkage is designed to be a

parallelogram. Finally, the combined Jacobian is written as

M = J−1K. (2.50)

Clearly, Jacobian J becomes singular only when vectors v1 and v2 are collinear and Jacobian

K is singular if vectors v1 and u1, or v2 and u2, become collinear.

2.4.3 Parallel Sub-Leg: 3-CPR Mechanism

In each leg of the 3-CPR mechanism (see Fig. 2.14), the axis of the cylindrical joint (C) is

parallel to the axis of the revolute joint, the axis of the prismatic joint is orthogonal to those of

the other joints. This mechanism has three translational degrees of freedom and the constraint

characteristics have been studied in (Zhao et al., 2002).

The constraint equation on the length of the actuators is written as

pTi pi = ρ2i , i = 1, 2, 3 (2.51)

where vector pi is written as

pi = s + vi − ci −wi, i = 1, 2, 3 (2.52)

in which vector ci is pointing from the origin of the base frame to an arbitrary point on the

axis of the ith cylindrical joint and wi is along the axis of the same cylindrical joint. Since vi

and ci are constant vectors as well as pTi ẇi = 0, the time derivative of (2.51) yields

pTi ṡ = ρiρ̇i, i = 1, 2, 3. (2.53)

The velocity equations can then be written as

Jṡ = Kρ̇ (2.54)

with ρ̇ = [ρ̇1 ρ̇2 ρ̇3]
T and the Jacobians J and K are respectively

J =

 pT1
pT2
pT3

 , K =

 ρ1 0 0

0 ρ2 0

0 0 ρ3

 . (2.55)

It can be seen that as long as vectors pi, i = 1, 2, 3 in the mechanism are not coaxial or

coplanar, Jacobian J will not be singular.

2.4.4 Other Feasible Sub-Legs

Any mechanism that can endow three translational degrees of freedom at the spherical joint

which is connected to the redundant link is a potential candidate. Examples of parallel mech-

anisms are: the 3-UPS (Gosselin and Schreiber, 2018), 3-UPU (Huang and Li, 2002) and
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Figure 2.14 � The 3-CPR mechanism.

the Tripteron (Gosselin et al., 2004) robots, which are actuated by prismatic joints, or the

Delta Robot (Clavel, 1990; Bonev, 2001), which is actuated using revolute joints. Moreover,

methodologies proposed in (Kong and Gosselin, 2004a,b,c,d; Huang et al., 2006; Kong et al.,

2006; Kong and Gosselin, 2007) greatly facilitate the synthesis of parallel mechanisms, as they

cannot be obtained intuitively in most cases. However, one should avoid to use a parallel

mechanism with complex singularity conditions.

2.5 Inverse Kinematics Analysis

For the proposed KRHPRs, an analytical inverse kinematic solution at the displacement level

which is computationally e�cient and conservative can be obtained in a similar manner as that

studied in Chapter 1. If the angles βi, i = 1, 2, 3 (see Figs. 2.2 and 2.6) or the displacements of

the prismatic joints in the redundant links (see Figs. 2.3, 2.4, 2.7 and 2.8) are predetermined,

as mentioned, it is possible to maintain the platform in favorable con�gurations which keep

it away from type II singularities, as well as passive joint limits and mechanical interferences.

By doing so, given the orientation matrix of the platform, the vector pointing from the origin

of the platform frame to the passive joint which connects the sub-leg to the redundant link

in the ith leg can be readily computed. The sum of this vector and the position vector of

the platform frame result in vector ri (in planar KRHPRs) or si (in spatial KRHPRs), which

is the end-point of the ith planar or spatial sub-leg. At last, an analytical inverse kinematic

solution of a KRHPR is solved by solving the inverse kinematic problem of every sub-leg.

Note that this method is valid only when the inverse kinematic problem of the sub-leg can be

solved analytically. For the 4R linkage discussed above, an analytical solution has been devel-

oped in (Hollerbach, 1985). Besides, for the parallel sub-legs that have additional rotational
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degrees of freedom, the orientation of the sub-legs should be pre-speci�ed before solving the

inverse kinematic problem.

2.6 Conclusion

By introducing two di�erent types of redundant links and three di�erent platform assembly ar-

rangements, a class of three-legged planar and spatial KRHPRs are synthesized. The KRHPR

can produce a better rotational behaviour than its non-redundant counterpart. But the im-

provement of the orientational workspace is at the expense of increased mass and inertia due

to the redundant links and the additional actuators, which may reduce the dynamic perfor-

mances of the KRHPR. However, this may not be a concern, since the proposed KRHPRs are

mainly intended for applications with relatively low accelerations, such as pHRI. Moreover,

it was shown that using several redundant legs yields advantages, namely: i) the type of the

joints used in the sub-legs is not limited and the geometric design is less restrictive, ii) type

II singular con�gurations can be determined and avoided easily in spite of the types of the

actuated legs and, iii) in most instances, an analytical, consistent and conservative solution for

the inverse kinematic problem of the composed KRHPRs can be obtained, which is a desirable

property for a redundant robot.
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Chapter 3

Forward Kinematic Analysis of Spatial

KRHPRs with Spherical-Revolute

Redundant Links

3.1 Introduction

In applications such as pHRI, the performance of a parallel robot is most likely limited due

to the di�culty of acquiring a unique solution of the forward kinematics and the relatively

small orientational workspace (because of the occurrence of type II (or parallel) singularities

(Gosselin and Angeles, 1990)). The orientational workspace of a parallel robot can be enlarged

by introducing kinematic redundancies to alleviate the type II singularities, as studied in the

previous chapters. However, the complexity of the forward kinematics is not decreased in the

presence of kinematic redundancy. Similarly to their non-redundant counterparts, di�erent

assembly modes of a kinematically redundant parallel robot may exist for given actuated joint

variables.

For example, it is well known that, the forward kinematic problem of the Gough-Stewart plat-

form can be described as a fortieth-degree univariate polynomial formulation (Husty, 1994).

Researchers have proposed several di�erent approaches for solving the forward kinematic

problem, such as elimination (Husty, 1994; Innocenti, 2001; Lee and Shim, 2001), homotopy

(Raghavan, 1993), Gröbner basis (Lazard, 1993), continuation (Wampler, 1996), and inter-

val analysis (Merlet, 2004). A more comprehensive discussion on this topic can be found in

(Merlet, 2006b). Nevertheless, because of the very nature of the structure of Gough-Stewart

platforms, determining all the solutions (real or complex) is challenging. Furthermore, as men-

tioned in (Gosselin and Schreiber, 2016), the forward kinematic problem of a kinematically

redundant Gough-Stewart platform is similar to that of its non-redundant counterpart.

In this chapter, we address the forward kinematic problem of a class of three-legged (6 + 3)-
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Actuators

Figure 3.1 � The architecture of a 3-RRRSR kinematically redundant mechanism.

dof spatial KRHPRs with spherical-revolute redundant links proposed in Chapter 2. Di�erent

from the issue mentioned in the preceding paragraph, the forward kinematic problem of the

KRHPR is much easier than that of its non-redundant counterpart and that of most other

kinematically redundant parallel robots. As it will be seen in one of the approaches developed

in Section 3.2, the maximum order of the univariate polynomial formulation of the forward

kinematic problem is only six, which can be readily handled.

A possible approach to determine a unique forward kinematic solution is to exploit the Newton-

Raphson method (Reboulet, 1985; Hesselbach and Kerle, 1995), which is also employed in this

study. However, this method may encounter, though it is rare, the convergence problem.

Another possible approach to obtain a forward kinematic solution is by introducing extra

sensors to measure the passive joint coordinates (Parenti-Castelli and Di Gregorio, 1999; Bonev

et al., 2001; Chiu and Perng, 2001). The minimum number of necessary extra encoders then

becomes an issue. In this chapter, we show that generally the number of extra encoders that

are needed to obtain a unique forward kinematic solution for the KRHPR is less than that for

its non-redundant counterpart.

The rest of this chapter is organized as follows: in Section 3.2, seven di�erent approaches

for solving the forward kinematics with or without extra rotary encoders for a KRHPR with

RRRSR legs are developed. Then, considering that the obtained orientation matrix of the plat-

form may not be orthonormal in the presence of manufacturing and measurement errors, the

Gram-Schmidt process is exploited to orthonormalize this matrix. In Section 3.4, a simulation

is conducted to verify the e�ectiveness of these approaches. The forward kinematic problem

of the R(RR-RRR) sub-leg of the 3-[R(RR-RRR)SR] architecture proposed in Chapter 1 is

brie�y studied in Section 3.5. Finally, conclusions are drawn.
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Figure 3.3 � The intermediate coordinate frame.

3.2 Forward Kinematic Analysis of a KRHPR with RRRSR

Legs

We start the forward kinematic analysis of an architecture with relatively simple structure,

namely: the 3-RRRSR KRHPR, as shown in Fig. 3.1. The kinematic modelling of one leg of

the robot is shown in Fig. 3.2 which is the same as that illustrated in Fig. 2.6.

3.2.1 Approach One: Particular Method

It can be observed from Fig. 3.2 that vector si is readily obtained by solving the forward

kinematics of the ith RRR sub-leg, and the solution can be uniquely determined. Then, as

shown in Fig. 3.3, an intermediate frame S1x1y1z1 can be de�ned, in which the x1-axis points

from the centre of joint S1 to that of joint S2 and the y1-axis lies on the plane of the platform.
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Figure 3.4 � Two di�erent solutions obtained from approach one.

The direction cosines of x1- and z1-axes expressed in the base frame can be given as

x1 =
s12
||s12||

(3.1)

z1 =
s12 × s13
||s12 × s13||

(3.2)

where || · || denotes the Euclidean norm of a vector and s1j = sj − s1, j = 2, 3. Since the

magnitude of li4 is designed to be smaller than one half of the circumradius of the platform, the

vectors s12 and s13 cannot be collinear and their norms can never be 0. The expression of the

y1-axis is obtained easily by the right-hand rule. The orientation matrix of the intermediate

frame expressed in the base frame can then be determined as

B
IQ = [x1 y1 z1]. (3.3)

Once B
IQ is obtained, the rest of the forward kinematic problem for the proposed robot is

similar to that of the planar 3-RPR (or 3-RRR) parallel manipulators (Gosselin et al., 1992),

i.e., it consists in identifying the possible poses of the platform with respect to the intermediate

frame.

By implementing the approach proposed in (Gosselin et al., 1992), a sixth-degree polynomial

equation with the unknown φ (see Fig. 3.3) can be established, a maximum of six di�erent

real solutions can then be obtained. For example, when the coordinates of the centre of the

joints Si, i = 1, 2, 3, expressed in the intermediate frame S1x1y1z1, are respectively [0 0 0]T ,

[233.1845 0 0]T , [116.5923 201.9437 0]T with units in mm, only two (φ = ±21.8014◦) of the six
solutions are real. The poses of the moving platform corresponding to these two real solutions

are schematically illustrated in Fig. 3.4.

By contrast, the forward kinematic problem of the non-redundant counterpart of the 3-RRRSR

KRHPR proposed in (Monsarrat and Gosselin, 2001), namely: the 3-[R(RR-RRR)S] parallel

robot, is not equivalent to that of any planar parallel robot. Therefore, the order of the

polynomial formulation describing the forward kinematic problem is much higher. Moreover,
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it can be seen that although the same type of redundant link is exploited in the (6 + 3)-dof

spatial kinematically redundant parallel robot proposed in (Gosselin and Schreiber, 2016),

it is impossible to implement the particular method discussed above to solve the forward

kinematic problem. This is because in the architecture proposed in (Gosselin and Schreiber,

2016), instead of the revolute joint, the spherical joint of the redundant link is attached to

the moving platform, and hence the moving platform and all of the redundant links are not

coplanar.

3.2.2 Approach Two: Newton-Raphson Method

Although it is possible to obtain all the possible postures of the platform by utilizing the pre-

vious approach, in practical applications, a unique solution is desired. The Newton-Raphson

method can be used for this purpose. Because the direction cosines of the z′-axis, denoted by

qz, is the same as the vector z1 which is given in Eq. (3.2), the remaining unknown parameters

are the direction cosines of the x′- and y′- axes, denoted, respectively, by qx and qy, and the

position vector p, which contains in total nine variables. Thus, a system of nine constraint

equations can be formed to implement the Newton-Raphson method.

As it can be observed from Fig. 3.2, a constraint equation on the squared length of each

redundant link can be written as

(p + Qbi − si)
T (p + Qbi − si)− l2i4 = 0, i = 1, 2, 3 (3.4)

in which Q = [qx qy qz]. In addition, the vectors (s1−p) and qz are always orthogonal, thus

(s1 − p)Tqz = 0. (3.5)

Finally, the rotation matrix must be orthogonal, namely

QTQ− I = 0 (3.6)

where I is the 3 × 3 identity matrix. Equation (3.6) provides �ve constraint equations since

qz is obtained from the outset using Eq. (3.2), as explained above.

Combining Eqs. (3.4), (3.5) and (3.6) yields a system of nine equations in nine unknowns

F(X) = 0 (3.7)

where X = [qTx qTy pT ]T and where most of the equations are nonlinear. The Newton-Raphson

method at iteration k can be written as

Solve F′(X(k))δ(k) = −F(X(k)) for δ(k) (3.8)

X(k+1) = X(k) + δ(k), k = 0, 1, · · · (3.9)
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where matrix F′(X) is the partial derivative of vector F(X) with respect to vector X and is

of dimension 9× 9.

The procedure stops when the equations are satis�ed within a predetermined accuracy. With

a proper initial guess (which is usually available in the continuous tracking of a trajectory),

the procedure converges very quickly (typically less than 4 iterations are required).

3.2.3 Approach Three: Using One Extra Encoder

One possible way to avoid the use of a numerical method while limiting the number of possible

solutions consists in adding extra encoders to the passive joints to acquire more information

(Tancredi et al., 1995; Han et al., 1996). We start the analysis by adding an encoder to joint

R14 to measure the magnitude of angle β1. As shown in Fig. 3.5, the vectors vi, i = 1, 2, 3, 4,

construct a planar 4-bar linkage whose vector loop equation expressed in the intermediate

frame S1x1y1z1 can be written as

v2 + v3 = v1 + v4. (3.10)

Writing Eq. (3.10) in matrix form yields[
v2 cosα1

v2 sinα1

]
+

[
v3 cosφ

v3 sinφ

]
=

[
v1

0

]
+

[
v4 cosα2

v4 sinα2

]
(3.11)

where φ = α1− γ with γ = π− β1, and vi, i = 1, 2, 3, 4 denotes the norm of the corresponding

vector. Equation (3.11) can be rewritten as[
a cosα1 + b sinα1 − v1
−b cosα1 + a sinα1

]
=

[
v4 cosα2

v4 sinα2

]
(3.12)
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in which a = v2 + v3 cos γ and b = v3 sin γ. Since v2 = v4, Equation (3.12) can be rewritten

as the following equation by eliminating α2

L sinα1 +M cosα1 −N = 0, (3.13)

which contains only one variable α1 and where

L = 2v1b (3.14)

M = 2v1a (3.15)

N = v21 + v23 + 2v2v3 cos γ. (3.16)

By applying the tangent half-angle formula to sinα1 and cosα1, one can obtain

(M +N)T 2 − 2LT − (M −N) = 0 (3.17)

where T = tan α1
2 . This quadratic equation can provide at most two di�erent real solutions

for T , which correspond to the two di�erent assembly modes of the 4-bar linkage. At last,

the availability of these two solutions should be validated by computing the length of l34. For

example, with the same coordinates of the centre of the joints Si, i = 1, 2, 3 given in approach

one, the obtained two postures of the platform and the redundant links are shown in Fig. 3.6.

It can be seen that the solution shown in Fig. 3.6a is exactly the same as the one shown in

Fig. 3.4a, while the other solution shown in Fig. 3.6b is invalid because the length of l34

cannot be preserved. Therefore, this method yields only two possible solutions, which can

generally be reduced to a unique solution, that can be computed analytically. However, there

is no guarantee that one of the two solutions can always be eliminated, although this should

be the case in general.

Considering the non-redundant counterpart (the 3-[R(RR-RRR)S] parallel robot) proposed

in (Monsarrat and Gosselin, 2001), the Cartesian coordinates of the moving platform can be

readily obtained if the position of each of the S joints is determined. If one extra encoder

is used to measure the coordinate of a passive R joint located on the base, we are only able

to determine the position of the corresponding S joint. Therefore, di�erent assembly modes

exist for the moving platform and each of the other two legs. Thereby, the forward kinematic

problem still cannot be established as a polynomial equation that is as simple as (3.17).

3.2.4 Approach Four: Using Two Extra Encoders

It is shown in approach three that a unique analytical solution cannot be produced in the

presence of only one extra encoder. The elimination of one of the two solutions was done a

posteriori. Therefore, we attempt to add two extra encoders to measure the angles β1 and β2

of the passive joints R14 and R24 (see Fig. 3.7). The vector loop equations for these two legs

can be written as

s1 = p + Qd1 (3.18)
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Figure 3.6 � Two di�erent solutions obtained from approach three. Only solution (a) is valid,
which can be veri�ed by computing the resulting length l34.

x1

y1

S3

S2S1

R34

v2 v4
𝛽1

𝜓

x'

y'
b2b1

𝛽2

b3

v6

Figure 3.7 � Two extra encoders at joints R14 and R24, associated respectively with angles β1
and β2.

s2 = p + Qd2, (3.19)

where di = bi−vj , i = 1, 2 and j = 2i, which are expressed in the platform frame. Subtracting

Eq. (3.18) from Eq. (3.19) yields

s12 = Qd12 (3.20)

where the orientation matrix Q is de�ned as

Q = B
IQ

I
PQ (3.21)

where B
IQ is given in Eq. (3.3) and I

PQ represents the orientation of the platform frame

expressed in the intermediate frame de�ned in Fig. 3.3. Substituting Eq. (3.21) into Eq.

(3.20) yields
I
BQs12 =

I
PQd12 (3.22)
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in which I
BQ = B

IQ
T . Since the platform and intermediate frames share the same xy plane,

I
PQ can be simply expressed as

I
PQ =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.23)

where angle ψ is illustrated in Fig. 3.7. Substituting Eq. (3.23) into Eq. (3.22) and de�ning
I
BQs12 = [λ 0 0]T and d12 = [d12x d12y 0]T , one can obtain[

d12x −d12y
d12y d12x

][
cosψ

sinψ

]
=

[
λ

0

]
. (3.24)

A unique set of solution for cosψ and sinψ can always be obtained since the matrix in Eq.

(3.24) is always invertible, due to the fact that d12 can never be a zero vector. Once I
PQ is

determined, the orientation matrix Q can be obtained using Eq. (3.21) while the position

vector p can be obtained using either Eq. (3.18) or Eq. (3.19).

It can be seen that the minimal number of extra encoders that can lead to a unique forward

kinematic solution for the KRHPR is two. However, even if the same number of extra encoders

is used in the 3-[R(RR-RRR)S] parallel robot to determine the positions of two of the S joints,

the Cartesian coordinates still cannot be obtained uniquely because di�erent assembly modes

exist for the third leg.

3.2.5 Approach Five: Using Three Extra Encoders

In order to improve the robustness of the forward kinematic solution presented in approach

four, a third extra encoder is included to measure the angle of joint R34, In this case, the

vector loop equation for the three legs are written as

s1 = p + Qd1 (3.25)

s2 = p + Qd2 (3.26)

s3 = p + Qd3 (3.27)

with d3 = b3 − v6. Subtracting Eq. (3.25) from Eqs. (3.26) and (3.27), one can obtain

s12 = Qd12 (3.28)

s13 = Qd13 (3.29)

where d13 ≡ [d13x d13y 0]T . Knowing that vector qz in Q is obtained independently, from the

outset (using Eq. (3.2)), the above equations can be rewritten in the following matrix form

Au = w (3.30)
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where A is

A =



d12x 0 0 d12y 0 0

0 d12x 0 0 d12y 0

0 0 d12x 0 0 d12y

d13x 0 0 d13y 0 0

0 d13x 0 0 d13y 0

0 0 d13x 0 0 d13y


(3.31)

which is of dimension 6× 6, and u = [qTx qTy ]
T and w = [sT12 sT13]

T . Matrix A is non-singular

because vectors d12 and d13 can never be collinear. A unique solution for u can be obtained

using Eq. (3.30) and p is readily determined using any equation of Eqs. (3.25)-(3.27). It can be

seen that compared to the other approaches discussed above, this one is quite straightforward

and compact, which re�ects the advantages of using three extra encoders.

3.2.6 Approaches Six and Seven: Newton-Gauss Method with Two and

Three Extra Encoders

The system of equations used in approach six or seven is obtained by replacing the �rst two

or all the three constraint equations in Eq. (3.4) by the vector loop Eqs. (3.18)-(3.19) or

(3.25)-(3.27). Because each vector loop equation can be expanded into three equations by

components, the system formed is over-determined, namely: Fo(X) = 0, and can be solved

via the Newton-Gauss method. This is to say, at each iteration δ(k) in Eq. (3.8) is given as

δ(k) = −J+Fo(X
(k)), k = 0, 1, · · · (3.32)

where

J+ = (F′o(X
(k))TF′o(X

(k)))−1F′o(X
(k))T (3.33)

is the Moore-Penrose inverse of F′o(X
(k)), and where matrix F′o(X) is the partial derivative

of vector Fo(X) with respect to vector X. In spite of the computational complexity, the

Newton-Gauss method has the potential capability to improve the robustness of approaches

four and �ve.

3.3 Orthonormalization of Matrix Q

In practice, because of inevitable manufacturing and measurement errors, the computed ori-

entation matrix Q may not be orthonormal. Among the three column vectors in Q, it is clear

that only qz (given by Eq. (3.2)) is a unit vector, in spite of the errors. Hence we can exploit

the Gram-Schmidt process (Strang, 2009) to orthonormalize Q by taking qz as the reference

vector. Firstly, three mutually orthogonal vectors qxo, qyo and qz can be constructed by the

following formulas

qxo = qx −
qTz qx
qTz qz

qz (3.34)
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qyo = qy −
qTz qy
qTz qz

qz −
qTxqy
qTxqx

qx. (3.35)

Then, dividing qxo and qyo by their norms, i.e., qxn = qxo/||qxo|| and qyn = qyo/||qyo||. At
last, the orthonormalized matrix Qn is obtained as

Qn = [qxn qyn qz]. (3.36)

Note that it is possible to create vector qyo prior to vector qxo. In this case, the resulting

Qn may be slightly di�erent from the one obtained by Eqs. (3.34)-(3.36). Moreover, for

the forward kinematic approaches in which the position vector p is computed based on the

orientation matrix Q, it is not recommended to apply the Gram-Schmidt process to matrix

Q before the position vector p is obtained because this may reduce the accuracy of vector p

signi�cantly.

3.4 Example

The dimensional parameters of the 3-RRRSR KRHPR are chosen as follows:

Rb = 250 mm, Rp = 125 mm, li1 = li4 = 50 mm

li2 = 300 mm, li3 = 450 mm, α = 120◦, i = 1, 2, 3

where Rb and Rp are respectively the radii of the circumscribed circles of the base and platform.

It was shown in Section 3.2 that a unique forward kinematic solution is obtained only by ap-

proaches two, and four to seven and to some extend with approach three. Moreover, approaches

one, two, six and seven rely on a numerical method and therefore it cannot be guaranteed that

they will converge and if they do that they will converge to the proper solution. Hence, only

approaches three, four and �ve lead to a unique solution that is computed analytically. The

drawback of these three methods is that they respectively require one, two or three extra joint

sensors. In this section, the feasibility of the di�erent approaches is veri�ed by a simulation

trajectory. The desired and real postures of the platform in the presence of measurement

errors are compared. In the example, the platform is initially at p = [0 0 350]T mm with

Q = I, where I is the 3× 3 identity matrix. Throughout the motion, the angles βi, i = 1, 2, 3

between the platform and each redundant link are maintained at 60◦ by taking advantage of

the redundancies. The example trajectory is the same as that provided in Section 1.8, which

is described by �ve sub-trajectories.

In this example, the tilt and translation intervals are respectively set to be 1◦ and 1 mm. Thus,

the trajectory consists of 720 di�erent con�gurations. With the prescribed con�gurations, we

�rst calculate the corresponding actuated joint values through the inverse kinematic analysis.

Then, we use these actuated joint values as the inputs when implementing the proposed

seven approaches. In the approaches which may lead to multiple forward kinematic solutions,
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we choose the actuated joint values that associate with the prescribed robot con�gurations.

The simulation was carried out in MATLAB. It was shown that the simulated position and

orientation of the platform are identical to the given trajectory. Nevertheless, in practice,

inevitable manufacturing and measurement errors may a�ect the accuracy of the posture of

the robot. To investigate this, random measurement errors in the range of [−0.005 0.005] with

units in radians are assigned to all (including the extra) encoders. For example, the random

errors of the encoders in the �rst leg are shown in Fig. 3.8, here e1j, j = 1, 2, 3, 4 denote the

encoder errors of joint R1j . The number at the top of each bar indicates the number of errors

that fall within the corresponding error range. The total number for a given joint is 720. The

position error is de�ned as

ep = ||pd − pr|| (3.37)

and the orientation errors are de�ned as

eoc = ||Qd −Qr||2 (3.38)
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eon = ||Qd −Qn||2 (3.39)

where pd and Qd, and pr and Qr are respectively the desired and real position and orientation

of the platform, Qn is given in Eq. (3.36), and || · ||2 stands for the 2-norm of a matrix. The

position error ep is of unit millimeters while the orientation errors eoc and eon are unitless.

The results of ep are illustrated in Fig. 3.9. It can be observed that approach three is the

worst, because it has the least number in the lower error ranges but the most number in the

higher ones. Approach four is less robust than the others except approach three. However, the

robustness of approach four can be improved considerably by implementing the Newton-Gauss

method, as it can be seen from the results of approach six, although such an improvement is

at the expense of computational complexity. Approaches one, two, and �ve to seven produce

no errors larger than 2.5 mm. These approaches have the potential for practical applications.

Among them, approaches �ve and seven are the most robust, which clearly shows the advantage
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of using three extra encoders. Approaches one and two are comparable. Although they are

less robust than approaches �ve to seven, the structure of the robot remains compact due to

no extra encoders.

The results of eoc are shown in Fig. 3.10. Basically, all the approaches are acceptable for

solving the forward kinematic problem because of the very small errors. Nevertheless, it can

be seen that in the ranges of [0 − 0.005) and [0.005 − 0.01), approaches one and two are

de�nitely dominant. At the same time, it shows that approaches �ve and seven are the worst

in the same ranges. This indicates that the main contribution of using three extra encoders

is to improve the position accuracy. Figure 3.11 shows the errors between the desired and

orthonormalized orientation matrices. It can be seen that the Gram-Schmidt process imposes

less e�ects on the approaches one to three, which re�ects that the obtained orientation matrix

Q is almost orthogonal all the time. However, after orthonormalization, the accuracy of the

rotation matrix obtained by approaches four to seven are improved dramatically, thereby

reducing the gap between them and the approaches one and two.

This simulation mainly focuses on the accuracy analysis of the proposed approaches. Based

on the above analysis, approaches three and four are excluded due to the poor position accu-

racy. It also shows that with the chosen simulation intervals, the approaches using a numerical

method always converge to the desired solution. In addition, since the di�erence in calcula-

tion speed between the numerical and analytical methods is negligible, the uniqueness and

reliability of the solution, and the complexity of the design will be the criteria for us to choose

the approach for solving the forward kinematic problem. For example, the KRHPRs proposed

in Chapter 2 are mainly used for pHRI applications. Thereby, approach two is recommended

since the structure of the robot remains compact. On the other hand, in general applications

in which the moving platform is less prone to interact with the environment, we recommend

approach �ve though additional wires must be reaching the end-e�ector.

3.5 Forward Kinematics of the R(RR-RRR) Sub-Leg

As studied in Chapter 2, a feasible sub-leg that can be used for composing the (6 + 3)-dof

KRHPR could be serial, parallel, hybrid or redundant, as long as the sub-leg can produce three

translational degrees of freedom at the corresponding passive spherical joint. The approaches

developed in Section 3.2 are independent of the type of the sub-leg. Thereby, they are easily

applied to other KRHPRs with platform assembly arrangement (a), except that in di�erent

architectures the position vector of the passive spherical joint of the redundant link should

be determined accordingly, which corresponds to solving the forward kinematics of the sub-

leg. If the sub-leg is serial, the forward kinematic solution is unique and is readily obtained.

Otherwise, multiple forward kinematic solutions may exist and the user should choose the

most suitable one. For example, considering the R(RR-RRR) hybrid sub-leg (actuator one
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Figure 3.12 � Kinematic modelling of the R(RR-RRR) sub-leg.

is arranged in series, while actuators two and three are arranged in parallel) of the 3-[R(RR-

RRR)SR] architecture studied in Chapter 1. The kinematic modelling of this hybrid sub-leg

is schematically shown in Fig. 3.12. All vectors are expressed with respect to the base frame

and the unit vector eij , i, j = 1, 2, 3 represents the direction of the jth actuated joint of the

ith leg.

Vector si, i = 1, 2, 3 is determined using the following procedures. In the sub-leg, vector wi

can be expressed as

wi = Qi

 (l4 − l5) cos ξi
(l4 − l5) sin ξi

0

 , i = 1, 2, 3 (3.40)

where Qi is the orientation matrix of the local frame at the second and third actuated joints

of the ith leg with respect to the base frame, which only depends on the magnitude of the �rst

actuated joint. ξi is the angle between vectors wi and (ei1× ei2). The constraint equation on

the length of the link along vector vi2 can be written as

(mi + wi)
T (mi + wi) = mT

i mi + 2mT
i wi + wT

i wi = l23 (3.41)

where

mi = ui1 − ui2 (3.42)

and

wT
i wi = (l4 − l5)2. (3.43)

Substituting Eq. (3.40) into Eq. (3.41) and rearranging the terms, we obtain

Gi cos ξi +Hi sin ξi + Ii = 0 (3.44)

where

Gi = 2(l4 − l5)mT
i Qie1 (3.45)
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(a) (b) (c) (d)

Figure 3.13 � Example of a translational motion.

Hi = 2(l4 − l5)mT
i Qie2 (3.46)

Ii = mT
i mi + (l4 − l5)2 − l23 (3.47)

with

e1 =

 1

0

0

 , e2 =

 0

1

0

 . (3.48)

Equation (3.44) can be converted to a quadratic equation using the tangent half-angle formula.

Angle ξi as well as vector wi are then readily obtained. The position of the spherical joint

can then be expressed as

si = ci + ui1 + vi1 (3.49)

in which ci is a constant vector and

vi1 =
l5

l5 − l4
wi. (3.50)

A maximum of two di�erent solutions are obtained. This is in agreement with what we can

observe on a physical model of the sub-leg. Indeed, for given values of the actuated joints, it

is easily observed that the sub-leg can be assembled in two di�erent con�gurations. It is also

easy to select the proper solution by considering the assembly mode of the RR-RRR linkage.

Approach two of the forward kinematic algorithms presented in this chapter was implemented

in the real-time controller of the 3-[R(RR-RRR)SR] prototype. Since the prototype is used

for pHRI, the Cartesian coordinates of the platform have not been determined using external

measurements (e.g. a vision system), which would have allowed a comparison of the actual

pose of the platform with the computed one. However, the results obtained are continuous

and yield a smooth and correct motion of the platform. This is illustrated in Figs 3.13 and

3.14, where a few pictures of the experiments are shown, for a translational trajectory and for

a rotational trajectory.

3.6 Conclusion

Seven di�erent approaches for the solution of the forward kinematic problem of KRHPRs

with platform assembly arrangement (a) are developed. Three of them result in an analytical
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(a) (b) (c) (d)

Figure 3.14 � Example of a tilt motion.

solution while a numerical procedure is utilized in the other approaches. It is shown that with

the same number of encoders, the forward kinematics of the proposed KRHPRs can be solved

much more easily than that of their non-redundant counterparts by implementing approaches

one, three and four. The feasibility of these approaches is validated through a simulation

based on the 3-RRRSR architecture. It is shown that approach �ve (and approach seven)

is the most robust and can therefore be implemented in general applications. In particular

applications such as pHRI, approach two � without extra encoders � is recommended since

the implementation of approach �ve requires extra sensors on the platform, thereby requiring

wired connections to the platform, which is a drawback. Approach two can satisfy the real-

time control requirements, which is realized by the 3-[R(RR-RRR)SR] prototype. Because

kinematic redundancy is used to avoid singularities, the numerical approach is reliable and

robust since the robot is never close to a singular con�guration. Moreover, it can be observed

that, although the detailed expressions should be modi�ed, all of the seven approaches are

readily applied to solve the forward kinematic problem of the planar KRHPRs with platform

assembly arrangement (a), while the forward kinematic problem of the planar and spatial

KRHPRs with platform assembly arrangements (b) and (c) proposed in Chapter 2 could be

solved using approaches two, and four to seven.
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Chapter 4

Workspace Enlargement and Joint

Trajectory Optimisation of KRHPRs

with Spherical-Revolute Redundant

Links

4.1 Introduction

It has been shown in Chapters 1 and 2 that because the inverse kinematic problem of the

proposed KRHPRs is solved analytically, we are able to actively control the redundant degrees

of freedom. In the examples studied in the previous chapters, the redundant parameters of

the KRHPRs are chosen somewhat arbitrary and based on the consideration that as long as

the type II singularities can be avoided. However, the size of the workspace and the dexterity

of the robot may be a�ected due to di�erent parameters of redundancy. In this chapter, we

investigate the possibilities to enlarge the workspace and optimise the joint trajectory (e.g.,

minimise the performance indices) of the KRHPRs by determining the optimal redundant

parameters.

For the sake of simplicity, the approaches for workspace enlargement and joint trajectory

optimisation that will be discussed in the following sections are implemented in the 3-RRRSR

(6 + 3)-dof KRHPR (see Figs. 3.1, 3.2 and 2.6). Nevertheless, these approaches are readily

applied to other KRHPRs with platform assembly arrangement (a) proposed in Chapter 2.

In the next section, an approach of enlarging the translational and rotational workspaces of the

KRHPR is proposed and the results are compared with those obtained in Chapter 1. A local

optimisation on the redundant parameters is also pursued. Then, an approximate optimal joint

trajectory planning strategy is developed, and its rationality is veri�ed by example trajectories.
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Finally, conclusions are presented.

4.2 Workspace Enlargement

4.2.1 Possibilities to Enlarge the Workspace

The geometric parameters of the 3-RRRSR KRHPR are the same as those shown in Section

3.4. In this subsection, we consider three cases that may a�ect the size of the workspace,

namely varying: 1) the three angles βi (see Fig. 2.6); 2) the length of the three redundant

links li4; and 3) the set of (Rp, li4) in which the length of li4 is given in 2) and Rp =
5
2 li4. In

each case, the remaining geometric parameters of the KRHPR are unchanged.

For the sake of brevity, the translational and orientational workspaces (see Figs. 1.6 to 1.9)

are reassessed only for the layers of z = 350 mm and ψ = 0◦, respectively. In each case,

four di�erent magnitudes of βi, li4, and (Rp, li4) are chosen. The results are presented in Fig.

4.1. It can be observed that as the value of βi or li4 increases, the translational workspace

is enlarged in all directions, but the enlargement is quite limited (see Figs. 4.1a and 4.1b).

However, the orientational workspace could be enlarged signi�cantly in certain directions (see

Figs. 4.1d and 4.1e), which is desired for such a KRHPR. On the other hand, as it can

be observed in Figs. 4.1c and 4.1f, a larger magnitude of (Rp, li4) reduces the workspaces

considerably, because the robot in this case is much more prone to reach the joint limits or

mechanical interferences than in the other two cases.

4.2.2 A Locally Optimal Design

The velocity equations and the Jacobians J and K of the 3-RRRSR KRHPR have been studied

in Section 2.3.1. In this subsection, we provide a method based on computing a performance

index to determine the optimal value of the redundant coordinates for each case studied in

the previous subsection. Three indices are suggested, which are the same as those proposed

in Section 1.8, namely:

η1 : the 2-norm of the position part of matrix U, where U = J−1K;

η2 : the 2-norm of the rotation part of matrix U;

η3 : the condition number of a novel Jacobian J1 with the form as that shown in (1.52), in

which the the Jacobians of the ith, (i = 1, 2, 3) RRR linkage are de�ned in (2.15).

The calculation for an optimisation over the whole workspace is time-consuming, because

this requires to compute the performance indices for each evaluation node of the workspace,

and there exists a tremendous number of evaluation nodes due to the discretisation method

(Merlet, 2006b). Thus, only small portions, e.g., the translational workspace along the x-axis
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Figure 4.1 � Translational workspace ((a)-(c)) for z = 350mm and orientational workspace
((d)-(f)) for ψ = 0◦, evaluated with respect to di�erent magnitudes of βi, li4, and (Rp, li4).
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Figure 4.2 � The maximum translational distance along the x-axis ((a)-(c)) and tilt angles
((d)-(f)) of speci�ed portions of the workspace and the corresponding performance indices,
evaluated with respect to di�erent magnitudes of βi, li4, and (Rp, li4).
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of layer z = 350 mm and the tilt motion with respect to the y′-axis of layer ψ = 0◦ of the

rotational workspace, are considered. Therefore, this is only a locally optimal design.

The minimum value of the angles βi, i = 1, 2, 3 in case 1) is assumed to be 55◦ in order to

prevent the platform from interfering with vicinal links, while the minimum length of the

redundant links li4, i = 1, 2, 3 in cases 2) and 3) is assumed to be 50 mm. The angles increase

by 5◦ at a time, while the incremental interval of the redundant links are set to be 5 mm. In

each evaluation the performance indices are computed when the robot reaches the workspace

boundary. The simulation results are presented in Fig. 4.2. In order to �t the scale of the

vertical axis, the numerical values of η1 are divided by 100. It can be observed that:

1) The values of η1/100 in every sub-�gure, as well as the values of η2 in Figs. 4.2b, 4.2c,

4.2e and 4.2f are stable. Nevertheless, this is not su�cient to guarantee that the robot

stays away from singularities. The values of η3 should also be taken into consideration.

It can be seen from Figs. 4.2e and 4.2f that the robot is close to type I singularities

when the values of η3 are much higher than 1;

2) In Figs. 4.2a and 4.2d, the value of η2 increases abruptly as the magnitude of βi becomes

larger. In fact, the value of η2 reaches in�nity when βi = 180◦. In this con�guration

the three lines along the redundant links intersect at one common point (a type II

singularity), and an instantaneously uncontrollable rotational dof with respect to the

z′-axis is generated;

3) The values of η3 shown in Figs. 4.2(a-c) indicate that the robot is close to the type I

singularities in the corresponding con�gurations. This is because at the boundary of the

translational workspace one or more legs of the robot are almost fully extended;

4) Based on the values of the performance indices shown in Fig. 4.2, it can be seen that a

relatively large range of the speci�ed portion of the workspace can be obtained if βi, li4

and (Rp, li4) for the cases 1), 2) and 3) are selected to be βi = 140◦, li4 = 160 mm and

(Rp, li4) = (200, 80) mm, respectively.

Depending on the applications, various geometric parameters of the redundant links and the

moving platform of the proposed KRHPR may be selected. The above method provides a

preliminary optimisation scheme for these parameters.

4.3 Joint Trajectory Optimisation

In�nitely many joint trajectories exist for a given Cartesian trajectory of the moving platform

of a kinematically redundant robot. In general, a joint trajectory is selected based on the

minimisation of a performance index. The inverse kinematic problem of such a robot is
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Figure 4.3 � Optimal βi corresponding to the minimum of di�erent indices for the translation
(a) and rotation (b) trajectories.

commonly solved using a numerical method relying on the velocity equations (Siciliano, 1990),

in which the actuated joint variables of the robot always approach the optimal con�guration

to minimize a performance index (Chang, 1987). However, sometimes it is inconvenient to

implement such a solution due to several reasons. For instance: the initial con�guration should

be prescribed; it must be guaranteed that the solution converges; and the robot may su�er

from the repeatability problem. In comparison, the proposed KRHPR will not su�er from

these drawbacks if the analytical inverse kinematic solution is exploited. On the other hand,

the actuated joint variables may not be in an optimal con�guration, since the selected value

of each angle βi (see Fig. 2.6) is somewhat arbitrary.

One possible way to overcome this problem is to calculate the values of a performance index

for all feasible combinations of (β1, β2, β3) for each given pose of the moving platform, and

identify the angles that minimise the index. However, the computation is not e�cient since

there exists in fact in�nitely many combinations of (β1, β2, β3). To simplify this, we assume

that the three angles are equal to each other at all times and limited to be an integer in

the range of [55◦175◦]. This range is chosen in order to prevent the interferences between

the spherical-revolute redundant links and the moving platform and to avoid the type II

singularities.

Example trajectories of a translation along the x-axis with z = 350 mm, and a rotation with

ψ = 0◦, 0◦ ≤ φ ≤ 80◦ and θc = 0◦ (where θc is de�ned in (1.38)) are simulated. The minima

of the indices ηi, i = 1, 2, 3 provided in Subsection 4.2.2 for each pose of the platform during

the trajectories are detected (see Fig. 4.3). The vertical axis in Fig. 4.3 denotes the value

of βi where ηi reaches its minimum, minηi . It can be seen that the results of η1 and η3 are

unacceptable since at some trajectory points the magnitude of βi should decrease rapidly,

which may result in an unstable motion of the robot. The numerical values of η1/100 for

particular trajectory points near the rapid decrease of βi shown in Fig. 4.3a are illustrated in

Fig. 4.4a, which clearly shows that the rapid change is caused by the shifting of the global
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Figure 4.4 � The global minimum of η1 for certain magnitudes of x in the translation trajectory
(a) and the �ltered βi according to η1 (b).

minimum of η1/100 (or η1). This drawback is readily avoided using one of two methods. The

�rst method is to scale down the range of βi that is used in computing the minimum of an

index to ensure that there exists only one minimum for η1. For instance, if βi is limited to be

in the range of [140◦160◦], the minη1 after the rapid decrease in Fig. 4.3a will be that labelled

as "Method one" shown in Fig. 4.4b. The second method is to �lter the data of βi using

exponential smoothing. The formulas are given as

βi,0 = a0 (4.1)

βi,t = αat + (1− α)at−1, t > 0 and 0 < α < 1 (4.2)

where βi,0 could be 146◦, the value of βi just before the rapid decrease (see Fig. 4.4b). The

results of minη1 after smoothing are shown in Fig. 4.4b labelled "Method two" with speci�ed

di�erent values for the smoothing factor α. Referring to the graph of Fig. 4.4a, we can see

that method one will try to follow the second local minimum (on the right) because it cannot

reach the one on the left and therefore βi will increase. However, method two will try to reach

the global minimum (on the left) and therefore it will make βi decrease, until it progressively

reaches the global minimum on the left. The di�erence between these two methods is reduced

if a smaller value of α is chosen. In addition, the index η3 shown in Fig. 4.3b can also be

corrected using the same methods.

4.4 Conclusion

It was shown that, by adjusting the redundant parameters of the 3-RRRSR (6 + 3)-dof

KRHPR, although the enlargement on the translational workspace is limited, the orienta-

tional workspace can be improved considerably in certain tilt directions. An approach for

determining the optimal con�guration of the actuated joint variables is developed, in which
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a performance index can be minimised approximately without using the numerical inverse

kinematic solution. The methods provided in this chapter can be applied directly to other

KRHPRs with platform assembly arrangement (a) proposed in Chapter 2. Furthermore, be-

cause only the coordinates of redundancy are taken into consideration in this investigation,

the concepts presented in this chapter can also be implemented in the KRHPRs with platform

assembly arrangements (b) and (c) proposed in Chapter 2.
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Chapter 5

Static Model Based Grasping Force

Control of Parallel Grasping Robots

with Partial Cartesian Force

Measurement

5.1 Introduction

In some of recently proposed kinematically redundant parallel robots (Gosselin et al., 2015)

and KRHPRs studied in the previous chapters, the redundancy is further utilised to operate

a remote gripper on the moving platform. An example of a planar (3 + 1)-dof kinematically

redundant parallel robot with RPR legs proposed in (Gosselin et al., 2015) is schematically

presented in Fig. 5.1. This robot is the kinematically redundant counterpart of the planar

parallel 3-RPR architecture (see, for instance (Gosselin and Angeles, 1988; Daniali et al.,

1995; Laliberté et al., 1999; Arsenault and Boudreau, 2006)), and has three Cartesian degrees

of freedom, i.e., the position of point P and the orientation of link PB (angle φ), and one

additional local dof, i.e., the orientation of link SB (angle β). Di�erent from many other

kinematically redundant parallel robots whose inverse kinematic problem is solved using a

numerical method at the velocity level (see, for instance (Gosselin and Schreiber, 2016)), the

inverse kinematic problem of the robots proposed in (Gosselin et al., 2015) and of the KRHPRs

can be solved analytically at the displacement level. Therefore, we are able to actively control

the redundant coordinates (the open and close of each jaw of the gripper), as demonstrated

in this video: https://www.youtube.com/watch?v=_vp1ELEtDN4.

In this chapter, we are particularly interested in the grasping force control of the above men-

tioned parallel grasping robots. In this study, we assume that the grasped object is rigid,

lightweight, and the geometry is known. In a conventional grasping system which consists
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Figure 5.2 � Kinematically redundant planar 4-dof parallel robot with PRR legs.

of a robot arm and a gripper, the robot arm is mainly used to deliver the gripper to the

appropriate grasping con�guration (Babin and Gosselin, 2018; Babin et al., 2019). The grasp

control is somewhat independent from the motion control of the robot arm because the former

can be conducted using the gripper's own actuator (Romano et al., 2011). The grasping force

is usually not considered as the interaction force between the robot arm and the environment.

Nevertheless, in our case, the gripper is operated by the robot's actuators (see, Fig. 5.1), the

movement of the robot could be a�ected by the external force applied to the robot by the

environment (the grasped object). Hence, a model of the robot that describes the relationship

between the external force and the actuated joint forces/torques should be included in the

grasping force control loop.

Rather than developing the dynamic model, which is computationally complex, we prefer, and

it is feasible, to use the static model for performing grasping force control of the kinematically

redundant parallel/hybrid parallel robots. As it is investigated in (Gosselin et al., 2015) and

Chapter 2, the type of the joints used in the legs of the robots is not limited and the geometric

design is less restrictive. For example, the RPR legs (see, Fig. 5.1) can be replaced by PRR
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legs (see, Fig. 5.2) without changing the mobility of the robot. This allows the use of legs

in which the actuators are located on or close to the base. Moreover, no gripper actuators

are required. Therefore, the inertia of the moving parts could be very small, and hence the

inertia force is not that critical when the acceleration of the robot is limited. By contrast, in

a conventional grasping system with a lightweight robot arm, the inertia of the hand/gripper

would still be a concern due to the actuators, though an underactuated hand/gripper (see,

for instance (Gosselin et al., 2008; Massa et al., 2002; Kragten et al., 2011; Grioli et al., 2012;

Catalano et al., 2014; Lévesque et al., 2018)) is utilised.

Di�erent from non-redundant and redundantly actuated parallel robots whose type of re-

dundancy is uniquely clari�ed, the above mentioned kinematically redundant parallel/hybrid

parallel robots can also be considered to be redundantly actuated, or non-redundant (Schreiber

and Gosselin, 2019). For example, if the local dof of the planar robot shown in Fig. 5.1 is

blocked (when a rigid object is grasped), the robot is redundantly actuated since the number

of actuators is higher than the number of Cartesian degrees of freedom. On the other hand, if

it is taken as an additional Cartesian dof, the robot can be considered non-redundant since it

has the same number of actuators and Cartesian degrees of freedom. Thus, we propose three

di�erent static models corresponding to the types of redundancy of the parallel robot. Two

case studies based on a planar and a spatial parallel robot are provided. The e�ectiveness

of each of the static models for pursuing grasping force control will be investigated in the

following sections.

Finally, in this chapter, we propose a partial Cartesian force measurement approach for imple-

menting the grasping force control, i.e., not all components of the Cartesian force and moment

are measured. Typically, in the case that the desired force applied to the environment by a

robot manipulator is controlled, a multi-degrees-of-freedom force/torque sensor is utilised to

measure the interacting force and moment acting at the robot's end-e�ector. However, we

will show that in our case we only need to measure the grasping force (the force component

orthogonal to the plane of each jaw of the gripper), which is just a component of the external

force. The external moment and the remaining components of the external force are calculated

through the static equilibrium analysis of the grasped object. This approach allows the use of

low-cost 1-dof load cells for the measurement, which is a signi�cant advantage.

The rest of this chapter is organised as follows. Three di�erent means of static modelling for

a planar and a spatial parallel grasping robots are presented respectively in Section 5.2 and

Section 5.3. The feasibility of these static models for grasping force control is analysed in

Section 5.4. Experiments of indirect and direct grasping force control of the planar parallel

robot based on one of the static models are conducted in Section 5.5. Finally, conclusions are

drawn in Section 5.7.
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5.2 Static Modelling of a Planar Parallel Robot

The static modelling of the planar parallel robot shown in Fig. 5.2 is studied in this section.

The two jaws (links PB and SB) are connected by a pivot at point B. The axes of all prismatic

joints are aligned with the x-axis of the base frame. The position vector of the centre of each

prismatic joint is written as

ai = ρie1, i = 1, 2, 3, 4 (5.1)

where e1 is the constant unit vector oriented along the x-axis, namely

e1 =
[
1 0

]T
. (5.2)

The detailed derivation of the static models associated with di�erent types of redundancy are

given in the following subsections.

5.2.1 Kinematically Redundant

In (Gosselin et al., 2015), the three Cartesian coordinates of the planar parallel robot are

denoted by [pT φ]T , where p is the position vector of point P and φ is the orientation of the

link PB with respect to the base frame. The left jaw is considered to be a link connecting to

the end-e�ector (the right jaw). If a rigid object is grasped, the force applied to the left jaw

by the grasped object will appear as an external force acting at this link.

The velocity Jacobian matrices of the kinematically redundant planar parallel robot are �rstly

provided in (Gosselin et al., 2015), and are brie�y recalled here. A moving frame Px′y′ is

attached to the right jaw whose origin is at point P and the x′-axis is pointing from point P

to point B. The velocity equations of the robot can be written as

Jkt = Kkρ̇ (5.3)

where t = [ṗT φ̇]T and ρ̇ = [ρ̇1 ρ̇2 ρ̇3 ρ̇4]
T , and where Jacobians Jk and Kk are de�ned as

Jk =

(p− a1)
T 0

(p− a2)
T 0

(s− b)T (s− b)TEQφv1

 (5.4)

and

Kk =

(p− a1)
Te1 0 0 0

0 (p− a2)
Te1 0 0

0 0 k33 k34

 (5.5)

in which s and b are respectively the position vectors of points S and B, matrix E is de�ned

as

E =

[
0 −1
1 0

]
, (5.6)
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Qφ is the orientation matrix of the moving frame Px′y′ with respect to the �xed base frame

and is written as

Qφ =

[
cosφ − sinφ

sinφ cosφ

]
, (5.7)

and v1 is a vector connecting point P to point B, expressed in the local frame Px′y′, namely

v1 =
[
b 0

]T
, (5.8)

and the detailed expressions of the components k33 and k34 in matrix Kk are described in

(Gosselin et al., 2015), thereby they are not shown here for brevity. The Jacobian Jk is of

dimension 3 × 3 while the Jacobian Kk is of dimension 3 × 4. The kinematic redundancy is

apparent from matrix Kk.

According to the principle of virtual work, one has

FT δD = fT δρ (5.9)

where F is a 3× 1 Cartesian force and moment vector acting at the right jaw, δD is a 3× 1

vector of in�nitesimal Cartesian displacement of the right jaw, f is a 4 × 1 vector of the

actuator forces, and δρ is 4× 1 vector of in�nitesimal actuated joint displacements. Based on

the de�nition of the Jacobian, one has

JkδD = Kkδρ, (5.10)

where the in�nitesimal Cartesian displacement δD can be obtained as

δD = J−1k Kkδρ (5.11)

in which Jacobian Jk is invertible as long as the robot is not in a type II (parallel) singular

con�guration (Gosselin and Angeles, 1990). Substituting (5.11) into (5.9) and using the prin-

ciple of virtual work � namely that the equation obtained must be veri�ed for any value of

vector δρ � and rearranging the terms yields the inverse static equations

f = (J−1k Kk)
TF. (5.12)

5.2.2 Redundantly Actuated

When a rigid object is grasped by the gripper, the angle γ � which is the angle between the

two jaws (see Fig. 5.2) � cannot be further reduced. The robot becomes over-constrained and

is no longer (3 + 1)-dof but has only three Cartesian degrees of freedom, which are [pT φ]T .

The grasping force appears as an internal antagonistic force.

Jacobian matrices that are di�erent from (5.4) and (5.5) can be established. The (constant)

length of the RR link in each PRR linkage can be written as

(p− ai)
T (p− ai) = u2i , i = 1, 2 (5.13)
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(p + Qφc− ai)
T (p + Qφc− ai) = u2i , i = 3, 4 (5.14)

where c is a position vector pointing from point P to point S, expressed in the moving frame

Px′y′ and is constant (since angle γ is constant).

Di�erentiating (5.13) and (5.14) with respect to time yields

uTi (ṗ− ρ̇ie1) = 0, i = 1, 2 (5.15)

uTi (ṗ + φ̇EQφc− ρ̇ie1) = 0, i = 3, 4 (5.16)

where

ui = p− ai, i = 1, 2 (5.17)

ui = p + Qφc− ai, i = 3, 4 (5.18)

and where

Q̇φ = φ̇EQφ (5.19)

in which matrix E is de�ned in (5.6).

The velocity equations are obtained by combining (5.15) and (5.16), which can be written as

Jrt = Krρ̇. (5.20)

The �rst two rows of Jacobians Jr and Kr are constructed by (5.15), while the last two rows

are constructed by (5.16), leading to

Jr =


uT1 0

uT2 0

uT3 uT3 EQφc

uT4 uT4 EQφc

 (5.21)

and

Kr =


uT1 e1 0 0 0

0 uT2 e1 0 0

0 0 uT3 e1 0

0 0 0 uT4 e1

 . (5.22)

Matrix Jr is of dimension 4 × 3, while matrix Kr is of dimension 4 × 4. The actuation

redundancy is apparent from matrix Jr. Similarly to (5.11), the in�nitesimal actuated joint

displacements of the redundantly actuated robot can be obtained as

δρ = UT δD (5.23)

where UT = K−1r Jr is of dimension 4 × 3 and in which matrix Kr is invertible as long as

the robot is not in a type I (serial) singular con�guration (Gosselin and Angeles, 1990). The
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forward static equations are then obtained by substituting (5.23) into (5.9) and using the

principle of virtual work to eliminate δD and rearranging the terms, leading to

F = Uf (5.24)

where F is de�ned in (5.9). Therefore, the general solution for the actuator forces is obtained

as

f = UIF− ζ(I−UIU)
∂η

∂f
, (5.25)

which consists of a minimum norm solution (which is UIF) in addition with a term (which is

ζ(I −UIU)∂η∂f ) that belongs to the null space of matrix JTr , and in which UI is the Moore-

Penrose inverse of U, ζ is a scaling factor used to adjust the magnitude of the null space term,

I is the identity matrix, and η is a performance index to be minimized. Equation (5.25) can

be considered as an analogue of the general solution of the velocity equations of kinematically

redundant robots (see, for instance (Gosselin and Schreiber, 2016)) in the static force domain.

The second term in (5.25) can be used to adjust the internal forces, e.g., the force applied to

the right jaw by the grasped object (including the grasping force and the friction which are

orthogonal and parallel to the plane of the right jaw, respectively), the force applied to the

right jaw at point B by the left jaw, and the forces applied to the right jaw at point P by

the associated two PRR legs. Nevertheless, an explicit expression of the grasping force and

actuator forces is not obtained from (5.25).

5.2.3 Non-redundant

Di�erently from the Cartesian coordinates de�ned in the previous subsections, the robot is

now considered to be non-redundant and the generalized Cartesian coordinates are de�ned

as a 4 × 1 vector, which is noted
[
bT φ β

]T
. The whole gripper (including the left jaw) is

regarded as the end-e�ector and the grasping force appears as an external force acting at the

end-e�ector.

In addition to the local frame Px′y′ on the right jaw, another local frame is attached to the left

jaw, denoted by Sx′′y′′, whose origin is at point S and the x′′-axis is pointing from point S to

point B. Four constraint equations, which are similar to (5.13) and (5.14) can be established

as follows

(b−Qφv1 − ai)
T (b−Qφv1 − ai) = u2i , i = 1, 2 (5.26)

(b−Qβv2 − ai)
T (b−Qβv2 − ai) = u2i , i = 3, 4 (5.27)

where

Qβ =

[
cosβ − sinβ

sinβ cosβ

]
(5.28)
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is the orientation matrix of the local frame Sx′′y′′ with respect to the base frame, and v2 is

written as

v2 =
[
l 0

]T
(5.29)

which is a vector connecting point S to point B, expressed in the local frame Sx′′y′′.

The time derivatives of (5.26) and (5.27) can be written as

uTi (ḃ− φ̇EQφv1 − ρ̇ie1) = 0, i = 1, 2 (5.30)

uTi (ḃ− β̇EQβv2 − ρ̇ie1) = 0, i = 3, 4 (5.31)

where matrix E is de�ned in (5.6) and where

ui = b−Qφv1 − ai, i = 1, 2 (5.32)

ui = b−Qβv2 − ai, i = 3, 4. (5.33)

The velocity equations are constructed by combining (5.30) and (5.31) and can be written as

Jntn = Knρ̇ (5.34)

where tn = [ḃ φ̇ β̇]T , the Jacobian Jn is

Jn =


uT1 −uT1 EQφv1 0

uT2 −uT2 EQφv1 0

uT3 0 −uT3 EQβv2

uT4 0 −uT4 EQβv2

 (5.35)

and the Jacobian Kn is the same as Jacobian Kr de�ned in (5.22). These Jacobians are of

dimension 4× 4.

According to the duality of kinematics and statics, the forward static equations of the robot

can be written in a similar form as (5.24), namely

Fn = (K−1n Jn)
T f (5.36)

where vector f is de�ned in (5.9), and where

Fn =
[
fTb mr ml

]T
(5.37)

is the generalized 4×1 vector of Cartesian force (fb) and moments (mr andml). The Cartesian

force fb is applied to the environment by the robot at point B, while the Cartesian momentsmr

and ml are applied to the environment by the right and left jaws, respectively. As mentioned

before, in this study it is not necessary to measure these terms directly. An approach for

determining them is given as follows.

Consider the free-body diagram of the grasped object, which is represented schematically in

Fig. 5.3. For this planar robot, the gravity is in the direction of the −y-axis. Each jaw exerts a
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Figure 5.3 � Free-body diagram of the grasped object. The gripper is indicated by dashed
lines.

force on the object, which can be decomposed into a component whose direction is orthogonal

to the jaw (flo or fro) and another component whose direction is parallel to the same jaw (flp

or frp), as illustrated in Fig. 5.3. The latter components are due to the friction between the

jaws and the object, and we assume that they are large enough to prevent the object from

sliding. Since the geometry of the object is assumed to be known a priori, the directions of

these forces can be readily determined. Thus, only their magnitude will appear as unknowns,

which can be measured using four load cells. However, this will lead to a complicated design

of the gripper. In fact, if one of the four forces is measured by a load cell, the others can be

computed from the three static equilibrium equations of the object, which contains two force

equilibrium equations in the directions of the x- and y-axes of the base frame and one moment

equilibrium equation with respect to the centre of mass of the object.

The force equilibrium equations can be combined into a vector form equation

fro + frp + flo + flp +mg = 0 (5.38)

where m is the mass of the object, g is the gravitational acceleration vector, and 0 is a 2× 1

zero vector. In addition, the moment equilibrium equation is written as

(Err)
T (fro + frp) + (Erl)

T (flo + flp) = 0 (5.39)

where matrix E is de�ned in (5.6), and rr and rl are the position vectors pointing from the

centre of mass of the object to the contact point between this object and the right and left

jaws, respectively (see Fig. 5.3). In practice, we measure the magnitude of flo or fro, which

will be explained in Section 5.5.

Once these forces are obtained, they can be converted to a corresponding force exerted by the

robot at point B, which is fb; and two corresponding moments, which are mr and ml. The
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Figure 5.4 � Kinematic modelling of one leg of the 3-[R(RR-RRR)SP] robot.

converting equation is written as

Fn = Tfobj (5.40)

where

fobj =
[
fTro fTrp fTlo fTlp

]T
(5.41)

which is of dimension 8× 1, and T is the transformation matrix which is given by

T =


eT1 eT1 eT1 eT1
eT2 eT2 eT2 eT2

(Evr)
T (Evr)

T 0T 0T

0T 0T (Evl)
T (Evl)

T

 (5.42)

which is of dimension 4× 8, and in which e1 is de�ned in (5.2) while

e2 =
[
0 1

]T
, (5.43)

vr and vl denote respectively the position vectors pointing from point B to the points of

contact between the object with the right and left jaws (see Fig. 5.3), matrix E is de�ned in

(5.6), and 0 is a 2× 1 zero vector. Finally, the inverse static equations can be obtained as

f = (J−1n Kn)
TFn. (5.44)

5.3 Static Modelling of a Spatial Hybrid Parallel Robot

The static modelling of the spatial 3-[R(RR-RRR)SP] hybrid parallel robot shown in Fig. 2.9

is studied in this section. Here S and P respectively stand for a passive spherical joint and

a passive prismatic joint. The kinematic modelling of one leg of the robot is schematically

presented in Fig. 5.4, where Oxyz is the �xed base frame while a moving frame O′x′y′z′

is attached to the platform in which the z′-axis is orthogonal to the plane formed by the

prismatic joints, ni (with i = 1, 2, 3) is a unit vector in the direction orthogonal to the ith
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prismatic joint, si (with i = 1, 2, 3) is the position vector of point Si, vector ps and matrix Q

represent the position vector and orientation matrix of the moving platform frame with respect

to the base frame. Because the robot is driven by nine revolute actuators, the actuated joint

variables of the inverse static equations (for instance, which is noted f in (5.12), (5.25), or

(5.44)) of this spatial robot will be the motor torques.

5.3.1 Kinematically Redundant

In Chapter 2, the spatial hybrid parallel robot is considered to be kinematically redundant

and is (6 + 3)-dof, where the six Cartesian degrees of freedom are the position of point O′

and the orientation of the moving frame, while the additional three local degrees of freedom

are the lengths of links SiO
′, noted di, i = 1, 2, 3 (Wen and Gosselin, 2019). The velocity

equations are similar to those of the architecture shown in Fig. 2.8 and can be written as

Jskts = Kskθ̇, (5.45)

where the vectors of Cartesian and joint velocities are respectively written as

ts = [ṗTs ω
T ]T (5.46)

and

θ̇ = [θ̇T1 θ̇
T
2 θ̇

T
3 ]
T (5.47)

with θ̇i = [θ̇i1 θ̇i2 θ̇i3]
T , i = 1, 2, 3, and where the Jacobian matrices Jsk and Ksk are given as

Jsk =



nT1 QT [(s1 − ps)× (Qn1)]
T

qTz [(s1 − ps)× qz]
T

nT2 QT [(s2 − ps)× (Qn2)]
T

qTz [(s2 − ps)× qz]
T

nT3 QT [(s3 − ps)× (Qn3)]
T

qTz [(s3 − ps)× qz]
T


(5.48)

which is of dimension 6× 6 and

Ksk =



nT1 QTM1 0T 0T

qTz M1 0T 0T

0T nT2 QTM2 0T

0T qTz M2 0T

0T 0T nT3 QTM3

0T 0T qTz M3


(5.49)

which is of dimension 6 × 9 and where 0 is a 3 × 1 zero vector, qz is a constant unit vector

along the z′-axis, and Mi is a 3× 3 Jacobian matrix of the ith R(RR-RRR) robot leg which

is de�ned in (1.16). The kinematic redundancy is re�ected in matrix Ksk. The inverse static

equations can be written in a form similar to that of (5.12).
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5.3.2 Redundantly Actuated

The local degrees of freedom disappear because the moving platform and the prismatic joints

are considered to be rigidly connected due to the grasped object, and the robot is over-

constrained. Nine constraint equations can be established for the robot. Firstly, it can be

observed that in the ith leg vector si − ps is always perpendicular to vectors ni and qz, one

can then write

(si − ps)
T (Qni) = 0 (5.50)

(si − ps)
Tqz = 0, i = 1, 2, 3 (5.51)

which are the same constraint equations used to develop the Jacobians given in (5.48) and

(5.49). Secondly, the (constant) distance between points Si and point O′ can be written as

(si − ps)
T (si − ps) = d2i , i = 1, 2, 3. (5.52)

Di�erentiating (5.52) with respect to time yields

(si − ps)
T ṗs = (si − ps)

T ṡi, i = 1, 2, 3 (5.53)

where

ṡi = Miθ̇i, i = 1, 2, 3 (5.54)

and where Mi is de�ned in (5.49). The velocity equations are constructed by rearranging the

items in the equations of the time derivative of (5.50) and (5.51) and in (5.53)

Jsrts = Ksrθ̇ (5.55)

The Jacobians are given as

Jsr =



nT1 QT [(s1 − ps)× (Qn1)]
T

qTz [(s1 − ps)× qz]
T

nT2 QT [(s2 − ps)× (Qn2)]
T

qTz [(s2 − ps)× qz]
T

nT3 QT [(s3 − ps)× (Qn3)]
T

qTz [(s3 − ps)× qz]
T

(s1 − ps)
T 0T

(s2 − ps)
T 0T

(s3 − ps)
T 0T


(5.56)
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which is of dimension 9× 6 and

Ksr =



nT1 QTM1 0T 0T

qTz M1 0T 0T

0T nT2 QTM2 0T

0T qTz M2 0T

0T 0T nT3 QTM3

0T 0T qTz M3

(s1 − ps)
TM1 0T 0T

0T (s2 − ps)
TM2 0T

0T 0T (s3 − ps)
TM3


(5.57)

which is of dimension 9 × 9. The actuation redundancy is re�ected in matrix Jsr. The

resolution of the actuator torques can be obtained in a manner similar to (5.25).

5.3.3 Non-redundant

If the robot is considered to be non-redundant, a 9× 1 vector of generalized Cartesian degrees

of freedom can be de�ned which comprises the position of point O′, the orientation of the

platform frame, and the three local degrees of freedom (the length of the prismatic joints).

The generalized Cartesian velocities can then be de�ned as a 9 × 1 vector, namely, tsn =

[ṗs
T ωT ḋ1 ḋ2 ḋ3]

T . Nine constraint equations which are the same as (5.50), (5.51) and (5.52)

can be established. Since this time di, i = 1, 2, 3 will appear as variables, the time derivative

of (5.52) becomes

(si − ps)
T ṗs + diḋi = (si − ps)

T ṡi, i = 1, 2, 3. (5.58)

Rearranging the items in the equations of the time derivative of (5.50) and (5.51) and in

(5.58), one can obtain

Jsntsn = Ksnθ̇ (5.59)

where the Jacobian Jsn is constructed as

Jsn =



nT1 QT [(s1 − ps)× (Qn1)]
T 0T

qTz [(s1 − ps)× qz]
T 0T

nT2 QT [(s2 − ps)× (Qn2)]
T 0T

qTz [(s2 − ps)× qz]
T 0T

nT3 QT [(s3 − ps)× (Qn3)]
T 0T

qTz [(s3 − ps)× qz]
T 0T

(s1 − ps)
T 0T d1e

T
s1

(s2 − ps)
T 0T d2e

T
s2

(s3 − ps)
T 0T d3e

T
s3


(5.60)

80



Q2f2

Q1f1 Q3f3

mg
Si

di
xiOi

zi
yi

fi
ith Jaw

(a) (b)

Figure 5.5 � (a) The force applied to the object by the ith jaw, expressed in the jaw frame.
(b) Free-body diagram of the object.

which is of dimension 9× 9 and in which esi, i = 1, 2, 3 are respectively

es1 =

10
0

 , es2 =

01
0

 , es3 =

00
1

 , (5.61)

and Jacobian Ksn is the same as the Jacobian Ksr de�ned in (5.57). The inverse static

equations can be written in a manner similar to (5.44).

However, in order to implement the inverse static equations, the 9 × 1 vector of generalized

Cartesian force and moment, noted Fsn, should be determined �rst. Similarly to the planar

robot studied in the preceding section, a procedure for calculating Fsn based on the forces

applied to the object by the jaws is developed, as detailed below.

As it can be seen in Fig. 5.5a, a local jaw frame Oixiyizi, i = 1, 2, 3 is attached to the ith jaw,

in which the xi-axis is along the ith prismatic joint and is pointing from point Si to point O
′,

and the zi-axis is in the same direction of the z′-axis. The force applied to the object by the

ith jaw is noted fi = fxies1 + fyies2 + fzies3, expressed in the ith jaw frame. The free-body

diagram of the grasped object is shown in Fig. 5.5b. The rotation matrix Qi (with i = 1, 2, 3)

� the orientation matrix of the ith jaw frame with respect to the base frame � maps the force

fi to the base frame. Because the orientation of the ith local jaw frame Oixiyizi with respect

to the moving frame O′x′y′z′ is constant, it is quite straightforward to determine matrix Qi.

This is to say, the directions of the forces acting at the object are readily obtained. Thus, only

the magnitude of fxi , fyi and fzi , i = 1, 2, 3 is unknown. In fact, the components fxi , i = 1, 2, 3

are the grasping forces to be controlled, and will be measured directly. This is easily achieved

in the �nal design by having a load cell in each jaw and aligning the measurement direction

with the xi-axis.

Consider now the six remaining unknown components fyi and fzi , i = 1, 2, 3. A system of six

equilibrium equations can be established for the object, which contains three force equilibrium

equations in each of the axes of the base frame, in addition with three moment equilibrium

equations (expressed in the base frame) with respect to the centre of mass of the object.
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Thereby, these six unknowns are readily obtained from these equilibrium equations. The

detailed derivations are not shown here since the calculation is quite straightforward.

It can be observed, from the vector of the generalized Cartesian velocities, tsn, that the vector

of the generalized Cartesian forces and moments, Fsn, should be in the following form

Fsn =
[
fTO′ mT fx1 fx2 fx3

]T
(5.62)

where fO′ a 3 × 1 vector of Cartesian force acting at the point O′, m is a 3 × 1 vector of

Cartesian moment acting at the moving platform, and the scalar fxi (with i = 1, 2, 3) is the

magnitude of the �rst component of fi. The term fO′ is composed by the last two components

of fi, i = 1, 2, 3, namely

fO′ =

3∑
i=1

Qi(fyies2 + fzies3), i = 1, 2, 3. (5.63)

And the term m is written as

m =

3∑
i=1

(wi × (Qifi)), i = 1, 2, 3 (5.64)

which is contributed by forces f1, f2 and f3, and vector wi is pointing from point O′ to point

Oi, expressed in the base frame and can be readily predetermined since the geometry of the

object is known.

A matrix form equation similar to (5.40) can be obtained by combining and rearranging the

terms in (5.63) and (5.64) [
fO′

m

]
= Tsfs,obj (5.65)

where

fs,obj =
[
fT1 fT2 fT3

]T
, (5.66)

and where the transformation matrix Ts is written as

Ts =

[
Q1Es Q2Es Q3Es

W1Q1 W2Q2 W3Q3

]
(5.67)

which is of dimension 6× 9, and in which matrix Es is de�ned as

Es =
[
0 es2 es3

]
, (5.68)

where 0 is a 3×1 zero vector, and Wi (with i = 1, 2, 3) is the skew-symmetric matrix composed

by the components of the vector wi, namely Wi ≡ wi×. The procedure for determining the

transformation matrix Ts described above is readily applied to the planar and other spatial

kinematically redundant hybrid parallel robots proposed in Chapter 2.

Once Fsn is determined, the vector of actuator torques is obtained utilising the inverse static

equations, thereby completing the static modelling.
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Figure 5.6 � A setup of the prototype of the proposed planar robot with a load cell.

5.4 Summary of the Static Modelling

As it can be observed, from the kinematically redundant inverse static equations (see, for

instance (5.12)) of the planar or spatial robot, a vector of actuated joint forces or torques can

be determined in order to balance the Cartesian force and moment. However, since the left

jaw of the gripper of the planar robot, or each of the jaws of the gripper of the spatial robot,

is considered to be a link of the corresponding leg rather than a part of the end-e�ector, the

inverse static equations hold only when no external force or moment acting at the left jaw

of the planar robot, or at any of the jaws of the spatial robot. However, this situation is

unrealistic in practice, as it can be observed from Figs. 5.3 and 5.5. The situation is the same

for the redundantly actuated counterpart because the Cartesian degrees of freedom of these

two types of redundancies are identical. Therefore, the static equations (5.12) and (5.25) are

insu�cient to pursue the grasping force control.

It can be observed that only the non-redundant static model is well suited for grasping force

control. In the following section, experiments are carried out based on a prototype of the

planar robot shown in Fig. 5.2 to verify the e�ectiveness of this static model.

5.5 Experiments

A set up of the planar parallel grasping robot is shown in Fig. 5.6. Instead of a prismatic

actuator, a motor coupled with a timing belt is used to actuate each of the prismatic joints.

Each actuator consists of a RE-max 24, graphite brushes, 11 Watt motor, a MR type M,

128 − 512 CPT, 2/3 channels encoder, and a planetary gearhead GP 22C, 0.5 − 2.0 Nm, all

from Maxon. The force sensor is a 3133 - micro load cell (0− 5kg) - CZL635.

The vector of actuator torques can be obtained as

τ =
r

N
f (5.69)
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where r = 4.5 mm is the radius of the output shaft (connecting to the timing belt) of each of

the actuator transmissions, N = 29 is the reduction of each of the gearheads, and f is a vector

of the tensions of all of the timing belts which is de�ned in (5.44).

The grasped object consists of a load cell and two brackets (between the load cell and the

two jaws, see Fig. 5.6). The dimensions of the brackets are designed so that the two jaws are

always parallel to each other and the forces flo and fro (see Fig. 5.3) that are applied to the

grasped object by the jaws pass through the geometric centre of the load cell but in opposite

directions.

The geometric parameters of the prototype are given as

ui = 120 mm, i = 1, . . . , 4,

b = l = 42.4 mm,

d = 42.7 mm, h = 42.5 mm.

where d is the distance between the two parallel jaws, and h is the distance between the

geometric centre of the load cell and the centre of the pivot connecting the two jaws. With

the given length of b and l, the corresponding two links (which are respectively along vectors

v1 and v2) will always be orthogonal to each other when the object is grasped.

The rotational capability of the robot is unlimited (Gosselin et al., 2015), which indicates that

the motion range of angle φ (and angle β) is [0, 2π]. As the robot rotates, the magnitude

of forces flo and fro, which are respectively noted flo and fro, might be di�erent due to the

weight of the grasped object, mg (see Fig. 5.3). It can be observed from Fig. 5.6 and the

geometric parameters of the robot that if φ = π
4 or −3π

4 , the direction of mg is parallel to

both jaws. In these con�gurations, the magnitude of the measured grasping force, which is

noted fg,m, is equal to both flo and fro. Otherwise, there will always be a component of mg

acting on one of the jaws, in which case fg,m is equal to the magnitude of the force of the

corresponding jaw, which is not a�ected by mg. These relationships can be expressed as
fg,m = flo = fro, if φ = π

4 or − 3π
4

fg,m = flo, if − 3π
4 < φ < π

4

fg,m = fro, otherwise

(5.70)

which is used to specify the measured force when solving the static equilibrium equations

(5.38) and (5.39).

Experiments are conducted with respect to a given initial con�guration of the robot, which is

de�ned as

ρ2 − ρ1 = ρ4 − ρ3 = 207.8 mm,

φ =
π

4
, β = φ+

π

2
. (5.71)
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In this con�guration, the height of the pivot connecting the two jaws is 90 mm. The desired

grasping force, noted as fg,d, is set to 2 N, which is large enough to prevent the grasped object

from sliding.

Three control schemes of the grasping force are proposed and will be validated, namely, i):

gripper position control; ii): grasping force control without force feedback; and iii): combined

position and grasping force control with force feedback. The �rst two schemes are indirect

force control schemes, in which the measured grasping force is not included in the control loop.

The last two schemes are established based on the non-redundant static model of the robot.

It is expected that the third scheme will be the most robust and that it can guarantee that a

desired grasping force is always achieved.

5.5.1 Scheme i): Gripper Position Control

In this experiment, a grasping force is generated by specifying a value of angle γ smaller than

the grasped object. Because in practice, angle γ can never reach the speci�ed magnitude due

to the large sti�ness of the grasped object, position errors in actuators are generated. Then,

a closed-loop proportional-derivative (PD) joint position controller is exploited in order to

produce a torque in each of the actuators to result in the grasping force. An integral controller

is not recommended because the actuated joint errors will be continuously accumulated, which

may eventually make the robot unstable (wind-up phenomenon).

The inverse kinematic analysis provided in (Gosselin et al., 2015) indicates that each of the jaws

can be reoriented through the PRR legs connecting to the jaw, without changing the position

of point B and the orientation of the other jaw. This is to say, angle γ can be adjusted by

reorienting the left, or right, or both jaws. For the sake of brevity, in this experiment, we only

consider that angle γ is virtually reduced by trying to reorient the right jaw (increasing angle

φ). In fact, it has been veri�ed that similar grasping force responses can be obtained in spite

of the ways of achieving a speci�ed γ.

Results of the grasping forces for di�erent input values of φ for the given initial con�guration

of the robot are shown in Fig. 5.7. It can be observed that the relationship between the input

values of φ and the measured grasping forces is almost linear. In fact, this relationship can be

�tted as a linear function by taking su�ciently many samples, e.g.,

fg,m = keφ (5.72)

where eφ is the angle error between the real and speci�ed values of φ, and k is a constant.

Equation (5.72) shows that the grasping system under this control scheme is similar to a

torsion spring with constant sti�ness. Using (5.72), a grasping force of 2 N can be produced

approximately by properly choosing the error of angle φ. However, the relationship between

fg,m and eφ is con�guration and controller gains dependent, and it is not guaranteed that a

linear function is obtained throughout the workspace of the robot, which makes it di�cult
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Figure 5.7 � Grasping forces of the control scheme i) for di�erent values of φ.
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Figure 5.8 � Block diagram of the combined position and grasping force controller. In control
scheme ii), the force feedback loops shown in the dotted box are excluded.

to predict the desired eφ. Thereby, this control scheme is less e�ective for the control of the

grasping force.

5.5.2 Scheme ii): Grasping Force Control without Force Feedback

If the non-redundant static model precisely describes the planar robot, a desired grasping force

can be reached by simply applying an open-loop controller with the vector of actuator torques,

τ , speci�ed using (5.44) and (5.69), without causing any motions of the robot. However, in

practice, there will always be a modelling error mainly due to the unknown friction in the

actuator's gearing. Therefore, directly applying (5.44) and (5.69) may result in actuator

torques that are di�erent from the desired ones and make the robot unstable. Hence, we

suggest an additional closed-loop PD joint position controller to ensure that the robot is

always in the desired con�guration. The block diagram of this control scheme is shown in Fig.

5.8 without the force feedback loops inside the dotted box.
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Figure 5.9 � Grasping forces of the control scheme ii) for di�erent input values of fg,d.

The measured grasping forces with respect to several di�erent desired grasping forces for the

given initial con�guration of the robot are shown in Fig. 5.9. Although the inertial force due

to the moving links and the gravity e�ect can be neglected (the total mass of the robot is

quite small), because of the signi�cant friction in the gear transmission of the motors, the

output torques of the actuators are generally not identical to � which are, in fact, much lower

than � the desired ones computed from the non-redundant static model. As a consequence,

the measured grasping force is much lower than the corresponding input reference (see Fig.

5.9). Similarly to the case studied in the preceding subsection, a mapping between fg,m

and fg,d can be determined which allows to approximately control the desired grasping force.

Nevertheless, this control scheme is still ine�cient due to the same limitations of control

scheme i), namely the mapping depends on the con�guration and controller gains. A possible

approach to improve the e�ectiveness of this control scheme is to use direct drive motors (no

gear friction), which is part of our future work.

5.5.3 Scheme iii): Combined Position and Grasping Force Control

In order to overcome the drawback of the control scheme ii), an additional closed-loop

proportional-integral-derivative (PID) force controller is introduced to compose a combined

position and grasping force control system (see, Fig. 5.8). The input term ḟg,d is set to zero

because a constant controlled grasping force is expected. The step response when the robot

is in the initial con�guration is shown in Fig. 5.10 with properly chosen PID gains. It clearly

demonstrates that the force response is fast and stable, and the noise is e�ectively suppressed

compared with the results given in Figs. 5.7 and 5.9.

The capability of this control scheme during motions of the robot (with initial con�guration

de�ned in (5.71)) is veri�ed using the following three trajectories

x = 20 sin(t), y = 90, φ =
π

4
, β =

3π

4
(5.73)
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Figure 5.10 � Step response of the grasping force of the control scheme iii).
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Figure 5.11 � Grasping forces for the given trajectories.

y = 20 sin(t) + 90, x = 0, φ =
π

4
, β =

3π

4
(5.74)

φ =
π

18
sin(0.3t) +

π

4
, β = φ+

π

2
, x = 0, y = 90 (5.75)

with

0 s ≤ t ≤ 20 s (5.76)

which are, respectively, translations along the x-axis and along the y-axis, and a rotation

around the axis of the pivot connecting the two jaws. The units of x and y are millimeter

and of φ and β are radian. The results are shown in Fig. 5.11, where the signals are noisier

than that shown in Fig. 5.10, which is due to the inertial e�ect of the load cell (whose weight

is much larger than each of the links of the robot) during motions. Also, we found that the

grasping force is more likely to be a�ected by the inertia of the load cell during the rotational

trajectory. Thus, we choose a smaller angular frequency (here 0.3 rad/s) in order to reduce

88



the magnitude of the Cartesian angular acceleration φ̈ (and β̈) for the rotational trajectory.

Nevertheless, the values of fg,m shown in Fig. 5.11 indicate that the combined position and

grasping force controller is quite e�ective.

5.6 Multimedia Material

In addition to the results given in subsection 5.5.3, a video on the experiment provided in

the same subsection accompanies this chapter. In the video, the e�ectiveness of the pro-

posed non-redundant static model as well as the combined position and grasping force con-

troller is demonstrated. The video can be found from: https://www.youtube.com/watch?v=

TmsC61CAr4g&feature=youtu.be.

5.7 Conclusion

In this chapter, we showed that the type of redundancy of a class of kinematically redundant

parallel and hybrid parallel robots with remotely operated gripper can also be actuation re-

dundant or non-redundant. Three di�erent static models corresponding to each of the types of

redundancy were developed for two architectures. It was analysed that only the non-redundant

static model is feasible for preforming grasping force control. Experimental results for a pla-

nar parallel grasping robot based on a combined position and grasping force controller are

obtained and compared with those obtained from two other indirect control schemes. It was

shown that the combined position and grasping force control scheme is more e�ective and

stable. This study indicated that the kinematically redundant parallel grasping robots are

capable for a variety of tasks, e.g., pick-and-place or assembly, where the grasped object is

sensitive to the grasping force. Future work includes applying the grasping force controlled

parallel grasping robots studied in this chapter to industry and implementing the proposed

grasping force control approach in other novel kinematically redundant parallel robots with

remotely operated gripper.
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Conclusion

This thesis has presented a methodology for synthesizing kinematically redundant hybrid

parallel robots (KRHPRs), and provided several results on kinematic analysis and grasping

force control of the proposed architectures.

The synthesis methodology is quite simple, which is based on three di�erent redundant links

and moving platform assembly arrangements, but yields many advantages of the synthesized

KRHPRs over several other non-redundant and redundant parallel robots:

(i) The type II singularities are easily determined and avoidable, thereby the KRHPRs can

produce a very large orientational workspace;

(ii) An analytical, consistent and conservative inverse kinematic solution is obtained, which

is a desirable property for redundant parallel robots whose inverse kinematic problem is

solved in general using numerical methods that may encounter the repeatability problem;

(iii) The forward kinematic problem of the KRHPRs can be solved much more easily than

that of their non-redundant counterparts or many other redundant parallel robots using

several of the proposed approaches for forward kinematic analysis;

(iv) The redundant coordinates can be controlled actively, which is utilised to optimise the

workspace and joint trajectory;

(v) In most cases, the actuators can be placed on or close to the base to achieve very low

inertia of the moving parts;

(vi) Large numbers of architectures can be obtained using the synthesis methodology;

(vii) Additional actuators are not required to operate the gripper on the moving platform,

preserving the lightweight of the KRHPR, which allows the control of the grasping force

using the static model without gravity compensation;

(viii) Most of the proposed KRHPRs are well suited for physical human-robot interaction

applications due to the large orientational workspace, lightweight, and low-impedance.
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Figure 5.12 � Illustration of the intended use of the 3-[R(RR-RRR)SR] KRHPR in an upside
down con�guration (Wen et al., 2020).

Future work on kinematically redundant parallel and hybrid parallel robots includes:

(i) Development of new methodologies for synthesizing novel architectures that have simple

structure, lightweight, and low-inertia (low-impedance);

(ii) Mount the proposed KRHPRs in an upside down con�guration on a gantry robot (see,

for example, Fig. 5.12) for the performance of typical industrial tasks requiring high

dexterity and high-bandwidth.

The robots studied in this thesis belong to a subset of parallel robots. In addition to the

future work mentioned above, several directions of research on parallel robots (non-redundant

and redundant) that can be pursued in the near future include:

� Implement the parallel robots in quadruped and humanoid robots. For ex-

ample, the R(RR-RRR) robot leg which contains a planar �ve-bar parallel mechanism

of the 3-[R(RR-RRR)SR] KRHPR shown in Figure 5.12 is quite standard and widely

used as the legs of quadruped robots. Although the second and third actuators are very

close to the �rst one �xed on the body of the quadruped robot, the dynamic properties

could be improved if the R(RR-RRR) linkage is replaced by an equivalent parallel robot

that has the same mobility but with all actuators �xed on the base. The arms or legs

of a humanoid robot could also be constructed using parallel mechanisms. For example,

such an arm or leg could be assembled by mounting a three-degree-of-freedom rotational

parallel mechanism � which is used as the wrist or ankle � on the distal link of the

R(RR-RRR) linkage.
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� Intrinsically safe parallel robots with compliant links. A possible approach that

is reliable to keep the human user safe from unexpected collisions is to use compliant

links in the parallel robots. A threshold of the deformation of each of the compliant

links can be de�ned. The robot stops if the threshold is exceeded due to an unexpected

collision. The design, modelling, and deformation measurement of the compliant links

would be the key issues for implementing intrinsically safe parallel robots.

� Micro parallel robots with conventional joints and actuators. Di�erent from

many serial manipulators which contain several moving actuators, a large number of par-

allel robots have the potential to be built at the centimetre- or millimetre-scale because

all of the actuators can be mounted on the base. At these scales, conventional joints and

actuators can be used, which are widely used in the common size parallel robots (for

example, the robots proposed in this thesis). It is anticipated that such parallel robots

will exhibit many interesting features di�erent from their macro counterparts and be

suitable for micro pick-and-place and assembly tasks.
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Appendix A

Velocity Equations of the R(RR-RRR)

Robot Leg

Three constraint conditions can be determined for the R(RR-RRR) linkage contained in each

leg. Firstly, ei2 (or ei3), the direction vector of the actuated joint i2 (or i3), is perpendicular

to the vector (si − ci) (see Fig. 1.3). Thus, we have

eTi2(si − ci) = 0. (A.1)

Di�erentiating (A.1) with respect to time yields

ėTi2(si − ci) + eTi2ṡi = 0 (A.2)

where it is noted that ci is a constant vector in the proposed mechanism. Since

ėi2 = ωi2 × ei2 = θ̇i1(ei1 × ei2), (A.3)

then (A.2) can be rewritten as

eTi2ṡi = θ̇i1(si − ci)
T (ei2 × ei1). (A.4)

The second constraint equation can be written as

vTi1vi1 = (si − ci − ui1)
T (si − ci − ui1) = l2i6 (A.5)

which can be rewritten as

(si − ci)
T (si − ci)− 2(si − ci)

Tui1 = l2i6 − l2i4 (A.6)

in which

l2i4 = uTi1ui1. (A.7)
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Di�erentiating (A.6) with respect to time yields

(si − ci)
T ṡi − uTi1ṡi − (si − ci)

T u̇i1 = 0 (A.8)

which can be rewritten as

(si − ci − ui1)
T ṡi = (si − ci)

T u̇i1. (A.9)

The time derivative of ui1 can be written as

u̇i1 = ωui1 × ui1 = (θ̇i1ei1 + θ̇i2ei2)× ui1. (A.10)

Substituting (A.10) into (A.9) yields

vTi1ṡi = (si − ci)
T [θ̇i1(ei1 × ui1) + θ̇i2(ei2 × ui1)]. (A.11)

Since si − ci, ei1 and ui1 are coplanar, one can write

(si − ci)
T (ei1 × ui1) = 0. (A.12)

Also
(si − ci)

T (ei2 × ui1) = (vi1 + ui1)
T (ei2 × ui1)

= vTi1(ei2 × ui1).
(A.13)

Hence, (A.11) can be rewritten as

vTi1ṡi = θ̇i2v
T
i1(ei2 × ui1). (A.14)

The third constraint equation can be written as

vTi2vi2 = (ui1 + wi − ui2)
T (ui1 + wi − ui2) = l2i3. (A.15)

where

wi = (1− li5
li6

)vi1 = (1− li5
li6

)(si − ci − ui1). (A.16)

Di�erentiating (A.15) with respect to time yields

(ui1 + wi − ui2)
T (u̇i1 + ẇi − u̇i2) = 0 (A.17)

which can be rewritten as

vTi2(u̇i1 + ẇi) = vTi2u̇i2 (A.18)

where

u̇i1 + ẇi = u̇i1 + (1− li5
li6

)(ṡi − u̇i1) =
li5
li6

u̇i1 + (1− li5
li6

)ṡi (A.19)

and similar to (A.10), u̇i2 can be given as

u̇i2 = ωui2 × ui2 = (θ̇i1ei1 + θ̇i3ei3)× ui2. (A.20)
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Substituting (A.19) and (A.20) into (A.18) then yields

vTi2[
li5
li6

(θ̇i1(ei1 × ui1) + θ̇i2(ei2 × ui1)) + (1− li5
li6

)ṡi]

= vTi2[θ̇i1(ei1 × ui2) + θ̇i3(ei3 × ui2)].

(A.21)

The above equation can be simpli�ed to

(1− li5
li6

)vTi2ṡi = θ̇i2
li5
li6

vTi2(ui1 × ei2) + θ̇i3v
T
i2(ei3 × ui2) (A.22)

since vi2 is always perpendicular to (ei1 × ui1) and (ei1 × ui2).

Finally, the combination of (A.4), (A.14) and (A.22) gives

Aiṡi = Biθ̇i (A.23)

where matrices Ai and Bi are respectively shown in (1.10) and (1.11). Finally, the Jacobian

matrix of the R(RR-RRR) robot leg can be written as

Mi = A−1i Bi (A.1)

where one has

A−1i = αi

[
(vi1 × vi2) −(ei2 × vi2)

li6
li6−li5 (ei2 × vi1)

]
(A.2)

with

αi =
1

eTi2(vi1 × vi2)
. (A.3)
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Appendix B

Inverse Kinematics of the R(RR-RRR)

Robot Leg

The inverse kinematic problem of the ith R(RR-RRR) robot leg is solved in two steps. Firstly,

solve the inverse kinematics of the serial part of the leg, which contains the �rst link (link

i1) and the links along vectors ui1 and vi1. This is straightforward and yields at most four

di�erent sets of solutions for θi1 and θi2. Secondly, angle θi3 is obtained. The vector loop

equation of the 5-bar linkage included in the leg is written as

ui1 + wi = ui2 + vi2 (B.1)

where wi is given in (A.16). One then obtains

vi2 = ri − ui2 (B.2)

where ri = ui1 + wi. The squared length of vi2 can be written as

vTi2vi2 = l2i3 = (ri − ui2)
T (ri − ui2), (B.3)

this is to say

2rTi ui2 + (l2i3 − l2i2 − rTi ri) = 0 (B.4)

where

l2i2 = uTi2ui2. (B.5)

Vector ui2 can be obtained as

ui2 = Qiui2,l (B.6)

where Qi is the rotation matrix corresponding to the orientation of the local frame located at

the two revolute joints with coaxial axes � whose y-axis is in the opposite direction of the

unit vectors ei2 and ei3 and whose z-axis is along the unit vector ei1 � with respect to the
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base frame, Oxyz. It can be observed that matrix Qi is a function of just the variable θi1.

Also,

ui2,l =

 li2 cos θi3

li2 sin θi3

0

 (B.7)

is the vector, ui2, expressed in the above mentioned local frame. Substituting (B.6) and (B.7)

into (B.4) leads to

2rTi Qie1li2 cos θi3 + 2rTi Qie2li2 sin θi3 + (l2i3 − l2i2 − rTi ri) = 0 (B.8)

in which

e1 =

 1

0

0

 , e2 =

 0

1

0

 . (B.9)

Equation (B.8) can be rewritten as

Gi cos θi3 +Hi sin θi3 + Ii = 0 (B.10)

with

Gi = 2rTi Qie1li2 (B.11)

Hi = 2rTi Qie2li2 (B.12)

Ii = l2i3 − l2i2 − rTi ri. (B.13)

Applying the tangent half-angle formula to cos θi3 and sin θi3, one can then obtain

(Ii −Gi)T 2
i + 2HiT

2
i + (Ii +Gi) = 0 (B.14)

where

Ti = tan
θi3
2
. (B.15)

Two di�erent solutions can be obtained for θi3 from (B.14) and at last a maximum number of

eight di�erent inverse kinematic solutions can be obtained for the R(RR-RRR) robot leg.
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