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Résumé

L’interaction physique humain-robot constitue un mode d’opération prometteur pour plusieurs
applications où la force et l’endurance des robots peut être combinée aux capacités d’adapta-
tion et de jugement des humains. Toutefois, l’interaction physique humain-robot soulève des
questions au niveau de la sécurité. Les standards généralement acceptés dans le domaine de la
robotique prescrivent un seuil de force statique maximale de 150 N et une puissance maximale
de 80 W afin de considérer une situation donnée comme étant sécuritaire.

Cette thèse propose la synthèse de mécanismes robotiques sériels qui soient intrinsèquement
sécuritaires pour l’interaction physique humain-robot. Le concept proposé consiste à inclure
un ensemble de limiteurs de forces ou de couples passifs avec des seuils constants dans la
structure même du robot afin de limiter les efforts possibles à l’effecteur. Lorsque la force ou
le couple appliqué à l’un des limiteurs dépasse la valeur seuil prescrite, celui-ci est déclenché,
entraînant ainsi un mouvement qui vise à protéger les humains contre les forces excessives.

Il est bien connu que la relation entre les efforts articulaires et les efforts à l’effecteur d’un
robot varie en fonction de la configuration. Afin de pallier cet effet, il est proposé d’inclure
un nombre de limiteurs supérieur au nombre d’articulations actionnées. Ainsi, la synthèse
de modules de limiteurs de forces isotropes est présentée afin d’obtenir des forces transmises
suffisantes tout en assurant la sécurité. Plusieurs modules de limiteurs de forces isotropes plans
sont proposés et utilisés pour analyser les caractéristiques de robots sériels à deux degrés de
liberté. En plus de modéliser les forces de contact à l’effecteur, les forces de contact le long
des membrures ainsi que la puissance de collisions potentielles sont analysées. Des exemples
de manipulateurs sériels et leur analyse statique sont présentés.

Ensuite, le concept d’espace de force isotrope est généralisé afin d’inclure les modules tridi-
mensionnels. Des architectures possibles de modules isotropes spatiaux sont proposés et les
conditions requises pour assurer l’isotropie des efforts à l’effecteur sont obtenues. Des mani-
pulateurs sériels spatiaux à trois degrés de liberté incluant un module isotrope sont proposés
afin de démontrer l’efficacité du concept. Les forces maximales possibles le long des membrures
sont aussi étudiées. Des limiteurs de forces et de couples sont montées sur la structure du robot
afin de s’assurer que les forces de contact sont limitées en tout point du robot. Une analyse
de la puissance est également présentée.
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Finalement, la mise en oeuvre pratique de l’approche proposée dans la thèse est considérée.
Deux types de limiteurs de forces ou couples sont proposés. Leur design est compact et per-
met de produire une limitation bi-directionnelle des efforts en utilisant un ressort unique. Le
premier type de limiteur ne retourne pas à sa configuration initiale lorsque les efforts externes
sont retirés puisque la résistance aux efforts externes diminue drastiquement lorsque le seuil
d’activation est dépassé. À l’opposé, le second type de limiteur retourne automatiquement à
sa configuration initiale lorsque les efforts externes sont retirés. Il est démontré que les archi-
tectures de limiteurs proposées peuvent être intégrées au design de membrures de robots grâce
à leur simplicité et leur compacité. Des prototypes de modules isotropes sont alors construits
et testés expérimentalement afin de démontrer leur possible utilisation pratique.
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Abstract

Physical human-robot interaction is a desirable paradigm for many applications where the
strength and endurance of robots can be combined with the adaptability and judgement of
human beings. However, physical interaction between humans and robots leads to safety
concerns. Robotics standards state that, as a sufficient condition for allowing human-robot
collaboration, the static force and the dynamic power at the tool centre point must not exceed
150(N) and 80(W), respectively.

This dissertation proposes a synthesis approach to build intrinsically safe serial robotic mech-
anisms for applications in human-robot cooperation. In this concept, a number of passive
torque and force limiters with constant force thresholds are included in the structure of a se-
rial manipulator in order to limit the feasible forces at the tool centre point of the end-effector.
Once the torque/force at any one of the limiters exceeds the prescribed maximum threshold,
the corresponding clutch is triggered, thus protecting humans from injury.

It is well known that the relationship between the joint torques/forces and the achievable end-
effector forces is configuration dependent. In order to alleviate this effect, i.e., the variation
of the joint to Cartesian force mapping, it is proposed to include more clutches than actuated
joints. Hence, the design of isotropic force modules is addressed to produce proper force
capabilities while ensuring safety. Several planar isotropic force modules are first proposed
and used to analyze the force capabilities of two-degree-of-freedom planar serial robots. In
addition to modelling the contact forces at the end-effector, the forces that can be applied by
the robot to its environment when contact is taking place elsewhere along its links are also
analyzed as well as the power of potential collisions. Examples of planar serial manipulator
architectures and their static analysis are given.

Then, the concept of isotropic force space is extended from planar modules to spatial modules.
Possible architectures of spatial isotropic modules are proposed and the conditions required to
ensure isotropy of the forces at the end-effector are derived. Three-degree-of-freedom spatial
manipulators including a proposed spatial isotropic module are designed to demonstrate the
effectiveness of the concept, and the maximum contact forces along the links are then studied.
Force and torque limiter are distributed along the structure of the manipulator in order to
ensure that the forces applied at any point of contact along the links are bounded. A power
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analysis is also presented in order to support the results obtained.

Finally, the implementation of the proposed approach in a real application is addressed.
Two types of passive clutch mechanisms are designed. Both are compact and produce a
bi-directional limiting behaviour using a single extension spring. One is referred to as the no-
return limiter. The mechanism does not return to its original configuration even if the external
load is removed since its resisting torque drops rapidly once the limiter is triggered. The other
one is the elastic return limiter, which can bring the robot links to their original positions after
an applied excessive force is removed. The proposed architectures can be integrated in the de-
sign of robotic links since they are simple and compact. Then, some prototypes equipped with
force and torque limiters are built and tested experimentally to illustrate a possible practical
implementation of the concept.
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Chapter 1

Physical Human-Robot Interaction
(PHRI)

Robotics is advancing quickly, both in industry and in the service domain. Industrial robots
are based on a mature and effective technology and have been widely used in manufacturing
plants, such as for palletizing, machine tending, arc welding, etc. Many developments have
come, conferring the necessary qualities to these machines with the realization of their poten-
tial: precision, speed, stiffness. As robotic systems are expected to perform complex tasks in
real-world environments (e.g., the International Space Station (ISS), factories, disaster sites),
roboticists are working on equipping their new creations with abilities of vision, comprehen-
sion, locomotion, and orientation. All challenges aim at arriving at versatile robots, thereby
realizing complex tasks.

Industrial robots are not capable of interacting physically with humans because they are un-
safe. In factories, robots and humans are segregated and cannot directly cooperate. However,
in many applications, it would be desirable to combine the strength and the endurance of
robots with the adaptability and judgement of human beings, so that integrating robots in
the workspace of humans is a goal that is pursued by many roboticists and researchers.

Robots for physical assistance to humans should reduce fatigue and stress, increase human
capabilities in terms of force, speed, and precision, and improve in general the quality of life.
On the other hand, humans can bring experience, global knowledge, and understanding for a
correct execution of tasks [Khatib et al., 1999]. The conceptions of robotics have popularly and
long foreseen humans and robots sharing workspace, existing side by side, or even integrating
into a greater whole. However, despite large efforts in all major robotic fields, until very
recently have robots gained capabilities in both sensing and actuation, which may enable
operation in the proximity of humans. Direct high performance physical interaction became
possible without the loss of speed and payload.
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Recently, some significant contributions in control, design, motion planning, and safety were
achieved to provide a solid basis for Physical Human-Robot Interaction (PHRI). These in-
novations are expected to lead to entirely new application domains that will require highly
flexible and autonomous robotic systems. Especially:

• automation of common daily tasks (Fig. 1.1),

• support of humans in heavy works (Fig. 1.2),

• elderly care in elderly-dominated societies (Fig.1.3),

• tasks fulfillment in hospitals and medical care (Fig.1.3),

• rehabilitation robotics (Fig. 1.4),

• tele-presence systems during lack or high cost of local human expertise,

• entertainment robotics (Fig. 1.5),

• and unmanned warfare with human augmentation

are most likely to form large markets and cause significant impact on society. Indeed, due
to these desires, the extension of application domains for robotics, from factories to human
environments, is growing increasingly. Moreover, application domains asking for human aug-
mentation and substitution by robots include everyday houses and offices, but also unmanned
warfare operations, mainly in USA [ref, c], and robot companions as well as humanoids, the
robots with “kokoro” (heart) diffused in Japan [ref, 2005].

Apart from terrestrial applications, the use of robots in space applications (Fig. 1.6), intends
to relieve astronauts from both physical and mental burden during long and exhaustive tasks.
Especially during field work in space, humans carry out complex and possibly dangerous
missions. The use of robotic technology may significantly improve the efficiency and reliability
of the entire process [Haddadin, 2014b].

Figure 1.1 – A human is interacting with the humanoid Pepper [Stutman, 2015].
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(a) (b)

Figure 1.2 – Support of humans in heavy works: (a) A human is equipped with an exoskeleton
developed by Sarcos Inc. [SARCOS]; (b) Human-robot cooperation in Audi’s production.

(a) (b)

Figure 1.3 – (a) YURINA is moving elderly and disabled people to and from beds and chairs ref
[2010]; (b) A robot hands a prescription bottle to a patient Bujak [2013].

However, despite intense efforts in robotics research, numerous “grand challenges” remain. In
order to finally bring robots and humans spatially together as exemplified in Figs. 1.1 to 1.6
especially the fundamental concern of how to ensure the safety to the human by all means
has to be treated. Isaac Asimov’s famous “three laws of robotics” written in 1942 [ref, b] are
mainly science-fiction, since the “will” of the robots cannot be clearly mapped into motion
behaviours, so that it is quite difficult for a robot to be aware of the potential damages. This
major challenge of safe robot was already noted in his literature several years later [Asimov,
1954].

1.1 Safety in PHRI

Providing safety during PHRI is a multi-faceted challenge and requires an analysis on various
levels of abstraction. PHRI aims at the coexistence of humans and robots in a common
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Figure 1.4 – The leg therapist “Lokomat” is already being used successfully ref [2004].

(a) (b)

Figure 1.5 – Entertainment robotics: (a) A child is drawing with the assistance of a robot [ref,
d]; (b) AIBO ERS-7 is following pink ball held by a child [ref, e].

workspace and at extending their communication modes by physical means. In the complexity
of a PHRI, the physical viewpoint is mainly focused on the risks of collisions occurring between
the robot and its user: too high energy/power may be transferred by the robot, resulting in
serious human damages.

Every robot design is a “map” (Fig. 1.7), like in the literature [Albu-Schäffer et al., 2005],
where “destinations” are machines embedded in anthropic domains, “viability conditions” are
safety, dependability, reliability, failure recovery, and performance, and “via points” are sensors,
actuators, mechanics, control, and software architectures. There is a need for “pathways”
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(a) (b)

Figure 1.6 – PHRI on the ISS: (a) Two astronauts are working with third robot freighter
undertaken by ESA [ref, a]; (b) A human is interacting with Robonaut 2 (R2) built by NASA
and General Motors [NASA].

connecting crucial components and leading to technological solutions to applications, while
fulfilling the viability requirements [Santis et al., 2008]. To increase robot safety, all aspects
of manipulator design, including mechanics, electronics, software etc., as shown in Fig. 1.7,
should be considered. There have been initial investigations and analyzing of robot-human
collisions and their related impact characteristics ([Haddadin et al., 2007a], [Duchaine and
Gosselin, 2008], [Malm et al., 2010]). The resulting contact forces during the impact phase
may be reduced by pursuing a light weight robot design [Hirzinger et al., 2002], by correcting
development of the mechanical or actuator system ([Zinn et al., 2004a]–[Bicchi and Tonietti,
2004]), by adding soft visco-elastic covering to the links Yamada et al. [1996], by designing the
controller to achieve safe compliance [Khan et al., 2010], or by high-level recognition, control
schemes and motion generation algorithms for the PHRI ([Ju and Liu, 2010], [Sisbot et al.,
2010]). Other improvements for anticipating and reacting to collisions can be achieved through
the use of combinations of external/internal robot sensing, electronic hardware and software
safety procedures, which intelligently monitor, supervise, and control manipulator operation.

The research in PHRI must consider any issue which could lead to define better evaluation
criteria for the safety and dependability, considering “scores” or even “cost functions” to include
the impact of different issues related to design and control of PHRI.

1.2 Safety standards and injury criteria

In recent years, great efforts have been made to consider together safety and dependability as
the unified optimality criteria for future technical challenges in the design of robots for human
environments [Giralt and Corke, 2001]. In PHRI there is the natural demand for a clear set
of standards that provide a reliable basis on which manufacturers can rely. The introduced
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Figure 1.7 – A “map” of robotics for anthropic domains: main issues and superposition for
PHRI [Santis et al., 2008].

ISO safety standard ISO-10218 [ISO10218, 2006], the only standardized guideline related to
industrial robots collaborating with humans, specifies new regulations of the speed, power,
and force of the robot. The presence of the human in this collaborative workspace requires
one of the following conditions to be fulfilled:

• TCP(Tool Center Point)/flange velocity ≤ 0.25m/s ,

• maximum dynamic power ≤ 80W ,

• maximum static force ≤ 150N .

In [Yamada et al., 1996], human pain tolerance is used as a main safety criterion, based
on the observation that humans usually suffer if contact force exceeds 50N in the case of
static collision (i.e., collision speed below 0.6m/s). However, these safety requirements are
too restrictive for robots to efficiently perform their given tasks.

Comparing the thresholds defined in ISO-10218 with the results given in [Haddadin, 2014a], it
is clear that the listed requirements in ISO-10218 are not based on biomechanical analysis. On
the one hand, such an evaluation leads to much higher tolerance values for blunt impacts and
on the other hand, to possibly lower ones for sharp contact. The intention of ISO-10218 is to
keep the velocity of the robot low in order to enable active avoidance of unintended contact by

6



a human operator. If this is not possible, only very low exerted forces and power could avoid
any kind of risk, i.e. ISO-10218 is a conservative safety requirement. However, this appears
to be an overly stringent restriction of robot performance for systems especially designed for
PHRI applications. For instance, ISO safety standard is considered "unnecessarily restrictive"
in the report [Haddadin et al., 2009].

Furthermore, the injury criteria used in automobile crash tests are often borrowed to estimate
collision safety between humans and robots as well. In the relevant literature [Park and Song,
2009], a neck injury criterion was proposed to estimate the safety of service robots. Besides,
among the injury criteria used in car tests, the Head Injury Criterion (HIC) is the most widely
used index in the automotive industry [Schiavi et al., 2008], [Park et al., 2008a]. The head
injury criterion (HIC) was proposed by Versace [Versace, 1971], defined as

HIC = T

[
1

T

∫ T

0
a(τ)dτ

]2.5

, (1.1)

where a(τ) is the acceleration measured in g’s (gravitational acceleration), τ is the time and T
is conventionally the duration of the impact. As the choice of this duration is often difficult,
it is recommended to consider the worst-case HIC at varying T. In general, both ends of the
interval T = (t2− t1) are varied, and time t2 is close to the time at which the head reaches its
maximum velocity (typically, t2 − t1 ≤ 15ms). Generalizations of the HIC to collisions with
other parts of the body have been proposed whereby the 2.5 exponent is replaced by other
empirically determined values. Bicchi and Tonietti [Bicchi and Tonietti, 2004] and Zinn et
al. [Zinn et al., 2004a] made the first attempt to use the HIC to quantify the injury potential
during occurring collisions. A correction to the initial misinterpretation in units was first
carried out by Haddadin et al. ([Haddadin et al., 2007b], [Haddadin et al., 2007a]) and then
by Bicchi et al. [Bicchi et al., 2008] and Shin et al. [Shin et al., 2008]. Later, Gao and Wampler
[Gao and Wampler, 2009] showed that HIC should be used with care and that it may not be
the most appropriate index when consider ring robot safety.

Standards and criteria for defining safety levels in PHRI (inside and outside factories) are
strictly related to the potential injuries caused by robots. Safety and dependability of the
physical interaction should be evaluated considering all the different components of a robot,
from mechanisms to actuators, from sensing to control. Note that recently some European
robot manufacturers (such as ABB, Reis Robotics, KUKA) have included software modules
that monitor through external sensing the Cartesian space around the robot and stop opera-
tions in case of danger.

1.3 Approaches to improve safety in PHRI

Many methods have been developed to improve the safety of a manipulator physically cooper-
ating with humans. Operational tactics can actively contribute to safety, by means of suitable
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force/impedance control schemes, the sophisticated software architectures, and a complete set
of external sensory devices can also be used to monitor task execution and reduce the risks
of unexpected impacts. Indeed, control methods are relevant for performance improvement,
reduced sensitivity to uncertainties and better reliability, but they cannot fully compensate
for a poor mechanical design. And if a problem occurs with the crash sensor or controller, it
must ensure that no serious injury can be caused by the robot. To do this, intrinsically safe
mechanical design, as well as modern actuation strategies, is anyway crucial in PHRI. This
suggests to improve both active and passive safety for robots in anthropic domains.

1.3.1 Active safety in PHRI

The “active” safety is easy to understand: controllers, sensors, motion-planning, which have
of course a real effect on avoidance and detection of collisions, and have also the additional
property of being present in anthropic domains for the same purposes. In the pre-impact phase,
collision avoidance is the primary goal and requires knowledge of the current environment
geometry and computationally expensive motion planning techniques. Anticipating initiating
collisions or recognizing them in real-time is typically based on the use of additional external
sensors, such as sensitive skins ([Lumelsky and Cheung, 1993], [Duchaine et al., 2009]), on-
board vision ([Ebert and Henrich, 2002], [Ebert et al., 2005]), strain gauges and force load
cells, etc. In the work of Kulic and Croft ([Kulic and A, 2006], [Kulic and Croft, 2007]), an
extensive methodology for safe planning and control in PHRI was proposed and several danger
indices have been used as a tool for both path planning and generating the trajectory in real
time. The main principle behind the proposed approach is to reduce the danger during the
robot motion.

In the post-impact phase, the first task is to detect the collision occurrence, which may have
happened at any point along the robot arm. The controller should then promptly react
with an appropriate reaction strategy. Less expensive methods are able to detect a collision
without the need of additional sensors. A rather intuitive scheme is to compare the current
torque in an electrical drive with the torque expected in the absence of collision and to look
for fast transients due to possible collision ([Yamada et al., 1997], [Takakura et al., 1989],
[Suita et al., 1995]).This approach has been refined by including adaptive compliance control
in [Morinaga and Kosuge, 2003] and [Kosuge et al., 2003]. This detection scheme is particularly
convenient for switching control strategies, since it is independent from the control methods
used to generate the commanded motor torques ([Luca and Mattone, 2005], [Luca et al., 2006],
[Kuntze et al., 2003]).

Sensor-based active control of robots is one of the most promising ways to tackle safety issues.
The concept is to use information provided by sensors able to perceive changes in the robot’s
environment (exteroceptive sensors, such as vision, force, and distance sensors) and to dy-
namically adjust the robot behaviour, accordingly. If a contact between a human and a robot
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has to be avoided, visual and distance information have to be used. An effective way to deal
with such information about the environment is that, based on the impedance control [Hogan,
1985], a virtual force, calculated through vision/distance sensors, serves as the input of the
impedance controller, which regulates the robot dynamics so to achieve a compliant motion
([Tsuji et al., 1997], [Nakabo and Ishikawa, 1998] and [Kaldestad et al., 2014]). In these cases,
safety is increased as much as possible by avoiding collisions. However, this approach pos-
sesses two limitations. The first is that the collision detection is based on the interpretation
of data from sensors which may be lacking. The second is that the controller must be able
to distinguish between voluntary and involuntary contacts between the human and the robot,
unless interaction takes place according to a protocol.

1.3.2 Intrinsically safe PHRI

In order to truly enable future robots to interact and co-work closely with humans in everyday
environments, as well as to support them even under worst-case conditions, there are still
numerous open problems [Haddadin et al., 2012]. The approaches above have been intensively
explored to design actively safe PHRI, nevertheless, they may not prove robust with respect to
impacts on portions of the arm that are not equipped with force/torque sensors. This means
that one is first interested in the intrinsic properties of robot- human collisions. Based on the
accordingly gained insight, the potential benefit is obtained by control and motion schemes.

Researchers have attempted to design intrinsically safer robots in various ways. The first
critical criterion to limit injuries of collisions is to reduce the weight of the moving parts of
the robot ([Albu-Schäffer et al., 2007]). In the case of a collision, the lighter arms display
lower inertia and thus lower energy is transferred during the impact. The first arm with a
lightweight structure intended for service applications was the whole-arm manipulator (WAM)
proposed in [Salisbury et al., 1998], which is a backdrivable robot, i.e., by pushing on the links,
it is possible to force motion of all mechanical transmission components, including the motors’
rotors. In addition, a typical prototypical example is the design of the DLR Lightweight Robot
(LWR) III arm (Fig. 1.8), which is capable of operating a payload equal to its own weight
(13.5 kg). Indeed, as was shown experimentally in the literature [Haddadin et al., 2008], the
mass of a manipulator is an important parameter as to its dangerousness, particularly when
one considers collisions in which the person involved is wedged between the robot and a rigidly
fixed object. Lightweight, high strength metals or composite materials are used for the robot
links. Moreover, the design of the entire system (controllers, power supply) is optimized for
weight reduction to enable mobility.

However, reducing the weight of robot is not always possible and may decrease the effective
stiffness and precision of the manipulators. Static balancing (gravity compensation) is also
a promising avenue to protect humans in PHRI. This approach can significantly reduce the
power of robotic mechanisms [Lacasse et al., 2013], and in cable routing it can be used to
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Figure 1.8 – DLR LWR-III Robot arm [Albu-Schäffer et al., 2007].

reduce the actuation forces of vertical motion in order to improve the safety of the robot
[Gosselin et al., 2013]. The main static balancing techniques consist in using directly the
counterweights on the robot [Wang and Gosselin, 1999] and moving away by cables or fluid
transmissions [Laliberté et al., 2010].

Significant joint compliance is present in DLR lightweight robots, while motor transmis-
sion/reduction is based on harmonic drives, which display high performance actuators with
low ratio and efficient power transmission. Suitable force-control schemes have been designed
to employ such arms in safety-critical applications ([Luca et al., 2006], [Albu-Schäffer and
Hirzinger, 2003]). Most importantly, compliant transmissions tend to decouple mechanically
the larger perceived inertias of the motors from those of the links. By this measure, the
low-inertia design of the arms’ links (DLR) and soft coverings ([Park et al., 2011], [Lacasse
et al., 2010]) can be complemented. The presence of compliant elements may thus be useful,
as another protection approach, against unexpected contacts during PHRI.

Very compliant transmissions may ensure natural and safe interaction but be inefficient in
transferring energy from actuators to the links for fast motion. An approach to increasing
the safety level by reducing the inertia of the robot interacting with humans, while preserving
performance, is to introduce actuation technologies into the design. Chief among these are
the series elastic actuation, variable impedance actuation, distributed macro-mini actuation
and series clutch actuation, which will be introduced in the following subsections.
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Series Elastic Actuation

Series elastic actuation (SEA), proposed in [Pratt and M.Williamson, 1995], is a departure
from the traditional approach of rigid actuation commonly used in factory room automation.
Unlike rigid actuators (electromagnetic, hydraulic, and pneumatic actuators), SEAs contain
an elastic element with constant stiffness which is deliberately introduced between the output
of the motor and the robotic link. It is the result of a trade-off between position high control
bandwidth and stable high performance force control. Furthermore, the intrinsic elasticity
gives SEAs several unique properties, including low mechanical output impedance, tolerance
to impact loads, increased peak power output, and passive mechanical energy storage ([Aru-
mugom et al., 2009], [Paine et al., 2014] and [Mathijssen et al., 2015]). These properties align
with requirements of robustness, high-power output, and energy efficiency placed on legged
actuation systems. Therefore, SEAs have been widely adopted in the fields of legged robotics
and human orthotics ([Pestana et al., 2010]–[Mooney and Herr, 2013]). Existing SEA designs
can be analyzed to identify various tradeoffs which affect the power output, weight, impact
resistance, etc, based on their choice of speed reduction, compliant element, and transmission
mechanism. For instance, the rotary designs were proposed, using a planetary gearbox for the
speed reduction, rotary or compression springs as the compliant element, and power transmis-
sion through a bevel gear [Kong et al., 2009] or chain/cable [Curran and Orin, 2008], [Hutter
et al., 2009]; A compact rotary SEA design can be achieved using a harmonic drive and a
high-stiffness planar spring [Lagoda et al., 2010], [Diftler et al., 2011]; In [Parietti et al., 2011]
and [Torres-Jara and Banks, 2004], the authors use linear springs coupled to rotary shafts
and place the springs between the motor and the chassis ground to achieve compact actuator
packaging with low spring stiffness; [Kong et al., 2012] and [Taylor, 2011] place the spring
within the reduction phase, which reduces the torque requirement on the spring compared to
designs with the spring at the actuator output.

Variable Impedance/Stiffness Actuation

The variable impedance approach (VIA) [Bicchi and Tonietti, 2004] is a mechanical/control co-
design that allows varying continuously and in real-time during task execution the impedance
parameters, such as stiffness, damping, and gear-ratio, satisfying safety constraints and in-
creasing the performance of the mechanism. In this approach, the best possible trade-off
between safety and performance is desired. It should be pointed out that, although several
mechanisms have been proposed in the robotics literature ([Morita and Sugano, 1995], [Okada
and Nakamura, 1999]) that can change transmission stiffness to adapt to different tasks, the
originality of this approach relies in dynamically controlling transmission stiffness within a
single task ([Vanderborght et al., 2008], [Bicchi and Tonietti, 2004]). Especially, the high stiff-
ness is set for low-velocity tasks so as to preserve accuracy in positioning, while low stiffness is
set during high-velocity tasks, decreasing the physical injury in case of impact with a human.
This matches with intuition since most of the motion energy transfer should occur during the
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Figure 1.9 – Variable Stiffness Actuator [Haddadin, 2014b].

initial and final acceleration or deceleration phases.

Based on VIA, a 1-dof prototype of variable stiffness mechanisms (Variable Stiffness Actuator
(VSA)) was proposed in [Tonietti et al., 2005] and [Tonietti et al., 2006], which is composed of
double electric motors for implementation of the agonist and antagonist effects, in which the
position and stiffness are simultaneously controlled by adjusting the direction and magnitude
of the torques generated by the two actuators (see Fig. 1.9). The design and control of such
systems were addressed in numerous Publications ([Wolf and Hirzinger, 2008]–[Grebenstein
et al., 2011]). Basically, the VSA promises several benefits, including storing the potential
energy in the elasticity of the actuator, improving the safety in PHRI, and enhancing the
robustness of the robot itself [Wolf and Albu-Schäffer, 2013]. VSAs allow to exploit and adapt
the natural dynamics of a system by controlling the stiffness, such as in pneumatic artificial
muscles [Davis et al., 2003], MACCEPA [Ham et al., 2007], AMASC [Hurst and Rizzi, 2008],
AwAS Jafari et al. [2010], AwAS-II [Jafari et al., 2014], Floating Spring Joint [Wolf et al.,
2011], and others.

Distributed Macro-Mini Actuation

Based on a human friendly design philosophy, [Zinn et al., 2004a] and [Zinn et al., 2004b]
proposed the Distributed Macro-Mini (DM2) actuation approach for robot manipulators. As
the name implies, the DM2 actuation employs a pair of actuators, connected in parallel and
distributed to different locations on the manipulator. The key of the macro–mini actuation
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Figure 1.10 – DM2 actuation approach (from [Zinn et al., 2004a]). (a) Partition of torque
into low- and high-frequency (parallel) components; (b) Distributed actuation: large, low-
frequency actuators are located at the base; small, high-frequency actuators are located at the
joints.

approach is to divide the torque generation into separate low- and high-frequency components
which sum in parallel (Fig. 1.10). Gravity compensation and other large but slowly time-
varying torques are generated by a series elastic actuator (SEA) consisting of a relatively large
actuator located at the base of the manipulator and connected to the axis through a spring,
thus achieving low overall impedance. For the high-frequency torques needed, small motors
collocated at the joints are used, providing high-performance motion while not significantly
increasing the combined impedance of the manipulator–actuator system. The DM2 approach
was very successful to overcome the safety and performance limitations in the development of
human friendly manipulators, while it presented some disadvantages due to the use of a large,
heavy DC motor and coupling spring as the macro actuator. To improve upon this, Shin and
Khatib proposed the use of smaller and lighter air muscle actuators to replace the macro DC
motor and spring in the DM2 approach [Shin and Khatib]. Recently, on the base of DM2

Actuation approach, a new robotic manipulator with hybrid actuation, air muscles-DC motor,
has been developed [Sardellitti et al., 2007].

Series Clutch Actuation

Recently, a new actuation approach, referred to as the Series Clutch Actuator (SCA) [Lauzier
and Gosselin, 2011], has been developed to circumvent the need of a compromise between
safety and performance for human-robot interaction. The SCA, by analogy to SEA, utilizes a
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clutch between the motor and output, which transfers torque up to some saturation level. The
clutch consists of a torque limiter placed in series with each actuator of a serial manipulator to
create stiff robots that become compliant after a contact force threshold is reached as shown
in Fig. 1.11. Using a SCA is more effective than limiting the articular torque with the current
sent to the motor because it decouples the inertia of the rotor (which can be predominant since
it is multiplied by the square of the gearbox reduction ratio) from the inertia of the robot’s
links, therefore reducing the effective inertia of the robot during a collision. A disadvantage
of SCA is that the robot acceleration must be limited in order to prevent the inertial forces
from triggering the clutch. SCAs allow high stiffness and precision for low interaction forces
(under normal conditions) and high compliance and safety when the interaction forces exceed
a preset threshold, for example during a collision. However, as explained in [Lauzier and
Gosselin, 2012], the problem with SCAs is that the relationship between articular torques and
Cartesian forces at the tool centre point is determined by the manipulator’s Jacobian matrix
and is therefore configuration dependent.Indeed, as the manipulator is moving, the shape of
the achievable force space changes according to the Jacobian matrix. Therefore, it is required
that the maximum torque allowed at the series clutch actuators be adjusted on-line during
the clutch activity.

In [Lauzier and Gosselin, 2011], for the objective of designing intrinsically safe robots, multi-
disc friction clutches are employed (Fig. 1.11(a)). Besides, many other types of clutch tech-
nologies are available, such as compact magnetorheological clutches [Kikuchi et al., 2011],[Walker
et al., 2009], and safe joint mechanisms [Park et al., 2008b] for example. These adjustable SCAs
could keep the maximum static force acting at the end-effector relatively constant throughout
the workspace, while the effective minimum force threshold cannot be imposed, due to the
configuration dependency.

1.4 Objectives and structures of the thesis

This research project aims at developing a synthesis approach to build safe planar serial
robotic mechanisms for applications in human-robot cooperation. The basic concept consists
in using torque limiting devices that slip when a prescribed torque is exceeded so that the
maximum force and the maximum power that the robot can apply to its environment are
limited. In order to alleviate the effect of the change of pose of the robot on the joint to
Cartesian force mapping and to simplify the controller in SCA approach, in this thesis, it is
proposed to use constant torque limiters and force limiters (clutches) while using a sufficient
number of such clutches to guarantee a well-conditioned achievable force space throughout the
workspace of serial robots. Conceptual designs are developed, simulations are produced and
simple experimental prototypes are built and tested. The thesis is structured as follows.

Chapter 2 lays the mathematical foundation for the kinetostatics of serial manipulators. First,
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(a) (b)

Figure 1.11 – SCA (image from [Lauzier and Gosselin, 2011]). (a)Schematic drawing of the
distribution of forces. (b) Picture of the robot with SCAs outlined.

the Denavit-Hartenberg method with regard to the position, based on the concept of the
kinematic chain, is presented. The differential kinematic properties of serial manipulator is
developed and the Jacobian is defined. Then, the study of serial manipulator is extended
from the kinematics to the statics with regard to the forces. The principle of virtual work is
presented for the static analysis. In the absence of gravity, the end-effector output forces are
related to the joint torques/forces by the transpose of the Jacobian matrix. Finally, the power
analysis of serial manipulator is studied as well.

Chapter 3 presents a synthesis approach to build safe planar serial robotic mechanisms for
applications in human-robot cooperation. In order to alleviate the effect of the change of
posture of the manipulator on the joint to Cartesian force mapping, it is proposed to include
more limiters than actuated joints. The design of isotropic force modules composed of the force
limiters and torque limiters is addressed to produce proper force capabilities while ensuring
safety. The isotropic modules are integrated into the planar manipulator’s links, which leads
to optimal force performance. In addition to modelling the contact force at the end-effector,
the forces that can be applied by the manipulator to its environment, when contact is taking
place elsewhere along its links, are also analyzed as well as the power of potential collisions.

Chapter 4 focuses on the design of spatial serial manipulators equipped with a spatial isotropic
force module (SIFM) which protect humans from mechanical overload. First, 3R SIFMs
are introduced as kinematic structures whose achievable force polyhedron is a cube in the
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space of end-effector forces, for all robot configurations, and some architectures of SIFMs are
explored. Then, the design of a spatial 3-dof robot with prescribed force performances is
illustrated, based on the characteristics of SIFM. Also, a power analysis is presented in order
to demonstrate the effectiveness of the approach. Additionally, since unpredictable collisions
can occur anywhere on the robot — not only at the tool centre point — the force thresholds
and the power thresholds along the links of the robot are also analyzed.

Chapter 5 concerns the mechanical designs of the force limiters. The mechanism provides a
two-direction clutches with a single extension spring which is attached on a centre pin. Based
on this mechanism, two types of force limiter are proposed. One is no-return clutch, for which
the centre pin slides along two circular arcs centred respectively on two revolute joints of the
mechanism when the clutch is triggered, but it cannot return to its original position if the
external load is removed. The no-return force limiter is built using 3D printing. Since the
Cartesian forces imposed by the force limiters are geometry independent, the architecture of
the manipulator composed of the force limiters can be more compact. Then, the prototypes
of planar and spatial isotropic modules are built and tested experimentally. The other one is
designed as elastic return force limiter so that the robot including this limiter keeps working
even after the collision. The elastic return force limiters are also built by changing the shapes
of the arcs to implement the concept.

Chapter 6 extends the study of mechanism of clutches from the force limiter to the torque
limiter. The design concept of torque limiter derives from that of force limiter. The parallel-
ogram mechanism is changed to be a symmetric trapezoid with a virtual centre of rotation.
The external force applied by the mechanism to its environment is related to the joint torque
at the centre of rotation by a lever arm, which is indeed the requirement for the torque lim-
iter. Similarly to the force limiter, both the no-return torque limiter and the elastic return
torque limiter are introduced. Then, the prototypes of planar and spatial isotropic module are
compactly built and tested experimentally. Since the proposed architecture of torque limiter
does not have to be physically co-located with the actuated joint, it can be integrated in a
link, maintaining the force performance of the isotropic module.

Finally, a summary of the results obtained in this thesis and some discussion as well as
directions on future research work are given in the last chapter.
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Chapter 2

Kinetostatics of serial robots

This chaper is devoted to the kinetostatics of serial robots, i.e., the kinematics and statics of
these systems, kinematics dealing with the position and velocity of motion without regard to
the forces/torques that cause it, while statics focusing on the relations of forces that produce
equilibrium among the various members of a robot. First, the position equations based on the
Denavit-Hartenberg (DH) parameters is described. Then these equations are applied to the
kinetostatic analysis of serial manipulators, i.e., the transformation between the end-effector
velocities/forces and joint torques.

2.1 Denavit-Hartenberg notation

In this section, DH notation is recalled from [Angeles, 1997]. For a serial manipulator with
n links, a coordinate frame Fi defined with origin Oi and axes Xi, Yi, Zi is attached to the
(i − 1)st link. Here, Zi is the positive direction of ith axis and Xi is defined as the common
perpendicular to Zi−1 and Zi, directed from the former to the later. Notice that if these two
axes intersect, the positive direction of Xi is undefined and hence, can be assigned by the
right-hand rule. Thus, the DH parameters associated with coordinate transformations are
composed of such four variables ai, bi, αi and θi, which are defined by the following rules:
ai is the distance between the axis Zi and Zi+1 which is a positive definite quantity and,
consequently, cannot be negative; bi is denoted as the Zi-coordinate of the intersection of the
axes Zi and Xi+1, which can be either positive or negative; The angle between Zi and Zi+1 is
noted as αi and is measured about the positive direction of Xi+1; The angle between Xi and
Xi+1 is defined as θi which depends on the positive direction of Zi.

The relative position and orientation between links is fully specified, once the DH parameters
are known. First, the rotation matrix carrying Fi into an orientation coincident with that of
Fi+1 is discussed presently. This matrix is most easily derived if the rotation is decomposed
into two rotations, one by turning Fi about the Zi axis through an angle θi, obtaining an
intermediate coordinate frame F ′i with X ′i, Y

′
i , Z

′
i, then the other by rotating F ′i about X ′i
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i
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i

Figure 2.1 – Layout of the successive coordinate frames.

through an angle αi, coincident with Fi+1, as indicated in Fig. 2.1. These two rotations are
denoted by [Qi,i′ ]i and [Qi′,i+1]i′ , respectively, which can be written as

[Qi,i′ ]i =

 cos θi − sin θi 0

sin θi cos θi 0

0 0 1

 (2.1)

[Qi′,i+1]i′ =

 1 0 0

0 cosαi − sinαi

0 sinαi cosαi

 (2.2)

and simply, the global rotation matrix is obtained as

[Qi,i+1]i = [Qi,i′ ]i[Qi′,i+1]i′ . (2.3)

With the abbreviation Qi = Qi,i+1, one has

[Qi]i =

 cos θi − cosαi sin θi sinαi sin θi

sin θi cosαi cos θi − sinαi cos θi

0 sinαi cosαi

 . (2.4)

Secondly, as shown in Fig. 2.1, the expression of the position vector connecting the two origins
Oi and Oi+1 is, clearly,

ai ≡
−−→
OiOi+1 =

−−→
OiOi′ +

−−→
Oi′Oi+1 (2.5)

where

[
−−→
OiOi′ ]i =

 0

0

bi

 (2.6)
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[
−−→
Oi′Oi+1]i+1 =

 ai

0

0

 . (2.7)

In order to attain the sum appearing in Eq.(2.5), the two foregoing vectors should be expressed
in the same coordinate frame Fi. Thus,

[
−−→
Oi′Oi+1]i = [Qi]i[

−−→
Oi′Oi+1]i+1 =

 ai cos θi

ai sin θi

0

 . (2.8)

Henceforth, the position vector can be rewritten as

[ai]i =

 ai cos θi

ai sin θi

bi

 . (2.9)

2.2 Velocity analysis

2.2.1 Jacobian matrix

The relationships between the twist of the manipulator’s end-effector and the corresponding
joint-rates are derived in this section, following the framework used in [Angeles, 1997]. Con-
sidering here the manipulator of Fig. 2.2, in which a joint coordinate θi, a joint velocity θ̇i,
and a unit vector ei are associated with each revolute joint. Obviously, the relations that
follow are apparent from the figure, namely,

ω1 = θ̇1e1

ω2 = θ̇1e1 + θ̇2e2

...
ωn = θ̇1e1 + θ̇2e2 + · · ·+ θ̇nen

(2.10)

Figure 2.2 – General n-axis manipulator [Angeles, 1997].
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where ωi is defined as the angular velocity of the ith moving body. If the angular velocity of
the end-effector is denoted by ω, then

ω ≡ ωn =

n∑
i=1

θ̇iei. (2.11)

Likewise, the position vector of point P of the end-effector in the base reference frame is

p = [a1]1 + [a2]1 + · · ·+ [an]1 (2.12)

where [ai]1 is derived from Eq.(2.9) as follows

[ai]1 = Q1Q2 · · ·Qi−1[ai]i, i = 1, 2, . . . , n. (2.13)

Upon differentiating both sides of Eq.(2.12) with respect to time, one has

v ≡ ṗ = ȧ1 + ȧ2 + · · ·+ ȧn (2.14)

where
ȧi = ωi × ai, i = 1, 2, . . . , n. (2.15)

Furthermore, substituting Eqs.(2.10) and (2.15) into Eq.(2.14), the Cartesian velocity of the
end-effector can be written as

v = θ̇1e1 × a1 + (θ̇1e1 + θ̇2e2)× a2+
...

+(θ̇1e1 + θ̇2e2 + · · ·+ θ̇nen)× an

(2.16)

which can be readily rearranged as

v = θ̇1e1 × (a1 + a2 + · · ·+ an)

+θ̇2e2 × (a2 + a3 + · · ·+ an)+
...

+θ̇nen × an.

(2.17)

Now, we define a vector ri as that joining Oi with P , directed from the former to the later,
i.e.,

ri ≡ ai + ai+1 + · · ·+ an (2.18)

and hence, v can be rewritten as

v =

n∑
i=1

θ̇iei × ri. (2.19)

Let A and B denote the 3× n matrices defined as follows

A ≡ [e1, e2, · · · , en] (2.20)
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B ≡ [e1 × r1, e2 × r2, · · · , en × rn]. (2.21)

Further, the n-dimensional joint-rate vector θ̇ is denoted as

θ̇ ≡ [θ̇1, θ̇2, · · · , θ̇n]T . (2.22)

Thus, ω and v can be expressed in a more compact form as

ω = Aθ̇, v = Bθ̇. (2.23)

With the definition of the twist of the end-effector t ≡ [ω,v]T , one has

Jθ̇ = t (2.24)

where J is the Jacobian matrix of the manipulator, which is defined as

J =

[
A

B

]
. (2.25)

Moreover, if ji denotes the ith column of J, one has

ji =

[
ei

ei × ri

]
. (2.26)

If the ith joint is not rotational, but prismatic, then the (i − 1)st and the ith links have the
same angular velocity, while the vector ai is no longer of constant magnitude but undergoes a
change along the axis of the prismatic pair. That is,

ωi = ωi−1, ȧi = ωi−1 × ai + ḃiei. (2.27)

In this case, Eqs.(2.11) and (2.16) should be changed, respectively, as

ω = θ̇1e1 + θ̇2e2 + · · ·+ θ̇i−1ei−1 + θ̇i+1ei+1 + · · ·+ θ̇nen

v = θ̇1e1 × r1 + θ̇2e2 × r2 + · · ·+ θ̇i−1ei−1 × ri−1 + ḃiei

+θ̇i+1ei+1 × ri+1 + · · ·+ θ̇nen × rn

from which it is apparent that the relation between the twist of the end-effector and the
joint-rate vector is formally identical to that appearing in Eq.(2.24) if vector θ̇ is defined as

θ̇ ≡ [θ̇1, θ̇2, · · · , θ̇i−1, ḃi, θ̇i+1, · · · , θ̇n]T (2.28)

and accordingly, the ith column of J is changed to

ji =

[
0

ei

]
. (2.29)
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Obviously, an alternative definition of the Jacobian matrix can be given. Let the position and
orientation of the end-effector be a set of m equations, each a function of n independent joint
variables, that is

xi = fi(q1, q2, . . . , qn), i = 1, 2, . . . ,m. (2.30)

Then the time derivatives of pi can be written as a function of q̇i in matrix form as follows
ẋ1

ẋ2

...
ẋm

 =


∂f1
∂q1

∂f1
∂q2

· · · ∂f1
∂qn

∂f2
∂q1

∂f2
∂q2

· · · ∂f2
∂qn

...
... · · · ...

∂fm
∂q1

∂fm
∂q2

· · · ∂fm
∂qn



q̇1

q̇2

...
q̇n

 (2.31)

or simply
ẋ = Jq̇ (2.32)

which is actually the same as Eq.(2.24), where the joint rates are defined as

q̇i =

{
θ̇i for a revolute joint
ḋi for a prismatic joint.

(2.33)

The Jacobian matrix is a linear transformation matrix that maps an n-dimensional joint-rate
vector q̇ into an m-dimensional velocity vector ẋ of the end-effector. We may think of the
elements of J as the influence coefficients of the vector function x. The (i, j) element describes
how a differential change in qj affects the differential change in xi. Generally, the vector x is
a nonlinear function of q. Therefore, the Jacobian matrix is also a function of q. Thus, the
Jacobian matrix is configuration dependent.

2.2.2 Velocity transformation

The transformation of velocities for manipulators with only revolute joints can be characterized
by assuming a unit end-effector Cartesian velocity. Substituting v = Jθ̇ into vTv = 1 yields:

θ̇TJTJθ̇ = 1. (2.34)

At a given manipulator configuration, Eq.(2.34) represents an ellipsoid. Because the product
JTJ is symmetric positive semidefinite, its eigenvectors are orthogonal. The principal axes
of the ellipsoid coincide with the eigenvectors of JTJ, and their lengths are equal to the
reciprocals of the square roots of the eigenvalues. Since the Jacobian matrix is configuration
dependent, the joint velocity ellipsoid is also configuration dependent. As the end-effector
moves from one location to another, the shape and orientation of the joint velocity space will
also change accordingly.

For a RR planar manipulator, the end-effector output Cartesian velocity vector and the input
joint-rate vector can be given as v = [vx, vy]

T and θ̇ = [θ̇1, θ̇2]T , respectively. Its Jacobian
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Figure 2.3 – Velocity ellipsoid.

matrix is expressed as

J =

[
(−a1sθ1 − a2sθ12) −a2sθ12

(a1cθ1 + a2cθ12) a2cθ12

]
(2.35)

where a1 and a2 are the link lengths, θ1 and θ2 are the joint coordinates, sθi and cθi stand for
sin θi and cos θi respectively and θij = θi + θj . An example of velocity transmission shows the
ellipse and its principal axes in Fig.2.3 where a1 =

√
2 m, a2 = 1 m, θ1 = 0 and θ2 = π/2.

If we set two fixed joint-rate thresholds as θ̇max = [θ̇max,1, θ̇max,2]T , assuming symmetrical
joint limit rates and neglecting singular configurations, the velocity at the tool centre point
satisfies the following inequalities:

−θ̇max � J−1v � θ̇max (2.36)

where � stands for the componentwise inequality. If only considering the ith joint rate limit,
the Cartesian velocity space is limited by:

−θ̇max,i ≤ j−1
i v ≤ θ̇max,i (2.37)

where j−1
i is the ith row of J−1 and θ̇max,i is the ith component of θ̇max. If the end-effector

velocity is in the direction determined by the inverse Jacobian’s ith row j−1
i , the magnitude of

the minimum velocity induced by the ith joint rate limit is:

Vmin,i =
θ̇max,i

‖j−1
i ‖

(2.38)

where ‖·‖ stands for the norm of its vector argument. Fig. 2.4 presents a graphical illustration
of the velocity space limited by two revolute joint velocity limiters in one configuration, which
is always a parallelogram.
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Figure 2.4 – Velocity transmission.

2.3 Force analysis

2.3.1 Force transformation

The principle of virtual work is applied to derive a transformation between the joint torques
and end-effector forces ([Asada and Slotine, 1986], [Paul, 1981]). A virtual displacement of
a system refers to an infinitesimal change in the configuration of the system as a result of
any arbitrary infinitesimal changes of the coordinates that are compatible with the forces and
constraints imposed on the system at a given instant in time. The virtual displacement is used
to distinguish it from an actual displacement, for which the forces may be changing. Here, δx
is used to denote a virtual displacement.

For the serial manipulator, the virtual displacement at the joints and at the end-effector can
be expressed, respectively, as

δq = [δq1, δq2, . . . , δqn]T

δx = [δx1, δx2, . . . , δxm]T .

Let τi be the torque acting at the ith revolute or the force acting at the ith prismatic joint.
Moreover, let τ be the n-dimensional vector of joint forces and torques, whose ith component
is τi, whereas F = [nT , fT ]T denotes the wrench acting on the end-effector, with n denoting
the resultant moment and f the resultant force applied at contact point of the end-effector
of the manipulator. Assuming that frictional forces at the joints are negligible, the virtual
work produced by the forces of constraint at the joints is zero. Hence, by neglecting the
gravitational effect, the virtual work, δW , done by all the active forces is given by

δW = τT δq− Fδx. (2.39)

The principle of virtual work states that a system is under equilibrium if and only if the
virtual work vanishes for any infinitesimal virtual displacement. This is true if the virtual
displacements are compatible with the constraints imposed on the system. In Eq.(2.39),
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however, the virtual displacements δq and δx are not independent since they are related by
Eq.(2.32), namely

δx = Jδq. (2.40)

Substituting Eq.(2.40) into Eq.(2.39) yields

(τT − FTJ)δq = 0. (2.41)

Since Eq.(2.41) holds for any arbitrary virtual displacement, δq, we conclude that

τT − FTJ = 0. (2.42)

Taking the transpose of both sides of the foregoing equation, one has

τ = JTF (2.43)

which maps the end-effector output force into the joint torques/forces. Since the Jacobian
matrix is configuration dependent, the mapping is also configuration dependent.

2.3.2 Force space

Consider first a serial manipulator with clutches (torque/force limiters) in series with each
of its actuated joints. Let τmax = [τmax,1, τmax,2, . . . , τmax,n]T be the vector containing the
maximum threshold for each of the joints, in which τmax,i is the maximum torque acting at the
ith revolute or the maximum force acting at the ith prismatic pair. The static workspace of
the robot can be defined as the set of poses for which one has, for a given load at the contact
point on the end-effector [Lauzier and Gosselin, 2012],

−τmax − τg � τ � τmax − τg (2.44)

where τg is the vector of joint torques induced by the weight of the robot links. We consider
first a planar robot operating in a horizontal plane, thus gravity can be neglected. Assuming
that the clutches are located at the actuated joints and assuming symmetrical torque/force
thresholds, based on Eq.(2.43), the external static force f that can be applied to the reference
point on the end-effector must satisfy the following inequalities

−τmax � JT f � τmax. (2.45)

Similarly to the transformation of velocities, if only the ith clutch is considered, the external
force is limited by

−τmax,i ≤ jTi f ≤ τmax,i. (2.46)

If the force is applied in the direction defined by the Jacobian’s ith column ji, the magnitude
of the minimum force that can possibly overcome the ith limiter is

Fmin,i =
τmax,i
‖ji‖

. (2.47)
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Figure 2.5 – Achievable force limit imposed by one torque limiter for a given configuration (ri
is the position vector of the ith joint with respect to the end-effector).

Fig. 2.5 presents a visual representation of the force limit imposed by the ith clutch. For a
manipulator comprising n limiters, the maximum force that can be applied in any direction
at the contact point while guaranteeing that no torque/force limit is exceeded is thus

Fmin = min
i
Fmin,i = min

i

τmax,i
‖ji‖

, i = 1, 2, . . . , n (2.48)

This value is important because it represents the maximum isotropic force that can be applied
by the robot at the contact point in any direction without triggering any of the clutches.
Therefore, a serial manipulator comprising clutches in series with each of its actuated joints
should apply forces that are limited within this magnitude in order to ensure that clutches are
not activated. Another important variable is the maximum force that can be applied by the
robot at the contact point without activating any of the limiters. For a planar robot with n
clutches, the maximum force Fmax is attained when two thresholds are reached simultaneously
that correspond to the vertex of the force polytope that is the furthest away from its centre,
namely

F 2
max,2D = max

i,j

(
τTmax,ijJ

−1
ij J−Tij τmax,ij

)
(2.49)

subject to
−τmax � JT

(
J−Tij τmax,ij

)
� τmax (2.50)

where
τmax,ij = [±τmax,i,±τmax,j ]T , Jij = [ji, jj ]. (2.51)

Therefore, for a manipulator using clutches, the ability to apply forces to the environment
depends on its pose, as illustrated in Fig. 2.6 for planar robots with n clutches. Indeed,
the determination of the force space is based on the Jacobian matrix, which is configuration
dependent. In singular configurations, the maximum force tends to infinity, which is too
dangerous for humans. One approach to cope with such degenerate configurations is to use
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Figure 2.6 – Examples of achievable force polygon for planar manipulators.

additional clutches in the corresponding directions. However, on the links near the base, the
infinity force is inevitable in singular poses. In Fig. 2.6, for one pose of a given robot, the
achievable force spaces are represented as polygons. Generally, for a planar robot with n

limiters, the achievable force space is a polytope with at most 2n sides. In fact this polytope
is a zonotope since its sides are parallel by pairs [Bouchard et al., 2009]. The inner circle has
a radius equal to Fmin whereas the outer circle has a radius equal to Fmax. From a geometric
perspective, it is desired to maximize the size of the inner circle for a given outer circle. This
same analysis can be extended to spatial manipulators. In the case of a spatial robot, Fmax
is computed as

F 2
max,3D = max

i,j,k

(
τTmax,ijkJ

−1
ijkJ

−T
ijk τmax,ijk

)
(2.52)

subject to
−τmax � JT

(
J−Tijk τmax,ijk

)
� τmax (2.53)

where
τmax,ijk = [±τmax,i,±τmax,j ,±τmax,k]T , Jij = [ji, jj , jk]. (2.54)

Thus, the achievable force space becomes a polyhedron limited by spheres instead of a ploygon
limited by circles.

2.4 Mechanical power

Power in mechanical systems is the combination of forces and movement. In particular, power
is the product of a force on a body and the body’s velocity, or the product of a torque on a shaft
and the shaft’s angular velocity. A serial n-axis manipulator is considered here. The power,
P , exerted on the manipulator by all forces and moments denoted as m at the end-effector is
given by

P = mT t. (2.55)

where t is the vector of twist. Under static conservative conditions, there is neither power
dissipation nor change in the kinetic energy of the manipulator. If the serial manipulator
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is equipped with clutches in series with each of its actuated joints—for instance, two torque
limiters used for a planar 2-dof serial robot—due to Eqs.(2.24) and (2.43), the power should
be equal to that exerted on the manipulator by all joint motors, namely

mT t = τT θ̇. (2.56)

However, if the serial manipulator mounted more clutches than actuators, such as n actuators
but (n + s) limiters, two distinct Jacobian matrices can be defined: one for the static force
transformation, noted Jf and the other for the kinematics, noted Jv. For instance, as a 2-dof
planar robot with 3 clutches, Jf is a 2× 3 matrix and Jv is 2× 2. The power is only obtained
by Eq.(2.55) and the foregoing Eq.(2.56) will fail to be established.

Let θ̇max,i be the maximum joint-rate threshold for ith the actuator mounted on the manipu-
lator. Since the velocity space and the achievable force space are both convex (see Fig. 2.4 and
Fig. 2.6), the maximum power Pmax acting on the end-effector, for the planar manipulator,
is given by the maximum of the dot product of the force vector and the velocity vector when
both vectors are at a vertex of their space simultaneously, leading to

Pmax,2D = max
1≤i,j≤(n+s)

(
τTmax,ijJ

−1
f,ijJvθ̇max

)
(2.57)

under the conditions
−τmax � JTf

(
J−Tf,ijτmax,ij

)
� τmax (2.58)

where θ̇max = [θ̇max,1, . . . , θ̇max,n]T . Similarly to the planar robot, the maximum power for
the spatial robots is displayed below

Pmax,3D = max
1≤i,j,k≤(n+s)

(
τTmax,ijkJ

−1
f,ijkJvθ̇max

)
(2.59)

subject to
−τmax � JTf

(
J−Tf,ijkτmax,ijk

)
� τmax. (2.60)

2.5 Conclusions

This chapter established the basic framework for the kinetostatic analysis of serial manipu-
lator including the Denavit-Hartenberg notation, velocity of motion, and the transformation
between the end-effector forces and joint torques. The velocity and the forces are configuration
dependent, i.e., determined by the manipulator’s Jacobian matrix. And the velocity space and
force space are linear with respect to the joint rates and the joint torques, respectively. Fur-
thermore, the maximum isotropic force Fmin guaranteeing that no limiter is activated in any
direction and the maximum force Fmax of the achievable force space were defined. The two
variables describe the capabilities of the manipulator applying forces to its environment. Fi-
nally, in order to provide more information on the manipulator’s performances, the maximum
power Pmax combining the force and the velocity were also defined.
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Chapter 3

Planar manipulators with more
clutches than actuators

For the manipulator architectures proposed in this work, the objective is to maintain a cer-
tain magnitude for Fmax as imposed by the safety standard — e.g. a limit force of 150[N]
proposed in [ISO10218, 2006] —, while maximizing Fmin to make it as close as possible to
Fmax. However, as mentioned above, the force polytopes are configuration dependent. For
instance, if two torque limiters are used for a planar 2-dof robot, the force polytope degener-
ates in singular configurations where it can potentially sustain large loads (theoretically, up to
infinity) in certain directions. Consequently, in the poses close to singularities, it may lead to
very large (unsafe) maximum forces Fmax or to very small isotropic forces Fmin for prescribed
maximum forces. Therefore, it is proposed here to use more clutches (torque/force limiters)
than actuators for planar manipulators and to optimize their geometric distribution in the
structure of the robot in order to minimize the variation of the Cartesian forces for different
robot poses. The design of planar isotropic force module (PIFM) is first addressed, which
produces a square achievable force space that can then be used in a planar serial manipulator
with well-conditioned force transmission capabilities in all configurations. In addition to mod-
elling the contact forces at the end-effector, the forces applied by the robot to its environment
when contact is taking place elsewhere along its links are also analyzed as well as the power
of potential collisions. Examples of planar manipulator architectures and their kinetostatic
analysis are given in this chapter.

3.1 Planar isotropic force modules (PIFMs)

Based on the results of Subsection 2.3.2, it appears clearly that if the number of torque limiters
is equal to the number of degrees of freedom of the robot, there will always exist configurations
(e.g., singularities) for which the force transmission polytope degenerates, which is greatly
detrimental to the performance or safety of the robot. Therefore, it is proposed to include
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additional clutches, thereby alleviating the variations of the force transmission properties due
to configuration changes. This section aims at designing PIFM. Here, the module represents
a set of links and passive joints for which there is no relative motion between the links.
Then, PIFMs will be integrated into the structure of a planar robot in order to preserve
well-conditioned force transmission properties throughout the workspace.

3.1.1 RR isotropic force module

Consider the RR planar manipulator of Fig. 3.1 with the end-effector output force vector
f = [fx, fy]

T and input joint torque vector τ = [τ1, τ2]T . They are related by Eq.(2.43), for
which the Jacobian matrix is given as the expression Eq.(2.35). Without losing generality,
we may set θ1 = 0 which is equivalent to writing the Jacobian matrix in the reference frame
attached to the first moving link. Since there is no relative motion between the links, the
angle between them is fixed and denoted as θ∗2. Hence the Jacobian matrix reduces to

J =

[
−a2sθ

∗
2 −a2sθ

∗
2

a1 + a2cθ
∗
2 a2cθ

∗
2

]
. (3.1)

Eq.(2.47) is then used to obtain two minimum forces due to τmax,1 and τmax,2, respectively
which are given by:

Fmin,1 =
τmax,1√

a2
1 + a2

2 + 2a1a2cθ∗2
(3.2)

Fmin,2 =
τmax,2
a2

. (3.3)

At a given manipulator configuration, the Jacobian matrix represents the mapping of the
end-effector forces into joint torques. Fig. 3.2 shows that in general a rectangle in the joint
torque space maps onto a parallelogram in the end-effector force space. Since the Jacobian

x

y

τ1

τ2

f(f x,f y)

a1

a2

0

0

x1

x2

y1

y2

Figure 3.1 – Planar RR manipulator exerting a force f .
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Figure 3.2 – Force mapping of a planar 2-dof manipulator.

matrix is configuration dependent, the force space defined by the torque limiters is also con-
figuration dependent. The closer the achievable force parallelogram is to a square, the better
the transmission characteristics are since in this case the difference between Fmax and Fmin
is minimized. When the achievable force polygon is square, the maximum force in all direc-
tions without activating any clutch is a circle, which is isotropic. Therefore, the resulting
arrangement is called “isotropic force module”, which means

Fmin,1 = Fmin,2 (3.4)

and that the Jacobian matrix must be a multiple of an orthogonal matrix. Therefore, using
Eqs.(3.2) and (3.3), we obtain

τmax,2

√
a2

1 + a2
2 + 2a1a2cθ∗2 = τmax,1a2 (3.5)

a2
2s

2θ∗2 + a2cθ
∗
2(a1 + a2cθ

∗
2) = a2

2 + a1a2cθ
∗
2 = 0 (3.6)

where Eq.(3.5) arises from Eq.(3.4) while Eq.(3.6) represents the orthogonality between the
columns of J. Denoting ρ = a2/a1, γ = τmax,2/τmax,1 and substituting into the expressions
above yields

γ
√

1 + ρ2 + 2ρcθ∗2 = ρ (3.7)

ρ2 + ρcθ∗2 = 0. (3.8)

Since the ratio of the link lengths cannot be zero (ρ 6= 0), we obtain

ρ = − cos θ∗2 (3.9)

γ = ± cot θ∗2 (3.10)

where one must have sin θ∗2 6= 0 and where it is assumed that τmax,i > 0. Conditions Eqs.(3.9)
and (3.10) represent a family of isotropic architectures whose locus in the design space is shown
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Figure 3.3 – Locus of the isotropic force limitation modules in the design space.

in Fig. 3.3. Points on the curves correspond to isotropic mechanisms. A negative value of ρ
should be interpreted as an offset of π in angle θ∗2. It is pointed out that the (unique) point of
intersection of the two curves, corresponding to θ∗2 = π/2, should be excluded from the solution
set because it corresponds to a degeneracy of the equations that would yield a zero link length
ratio and a zero joint torque ratio. This observation is consistent with the above mentioned
limitation, namely sin θ∗2 6= 0. Moreover, it is also consistent with the following geometric
interpretation: from Eq.(3.9), it appears clearly that the segment connecting the end-effector
point to the second joint must be orthogonal to the segment connecting the end-effector point
to the first joint, which is readily verified in the examples shown in Fig. 3.4.

The above result is used to build a one-dof isotropic force limitation mechanism, referred to
as “Isotropic Module”. To this end, the second joint of the 2-dof planar manipulator shown
above is replaced with an unactuated torque limiter while an actuator and a torque limiter
are mounted at the first joint. Actually, the Isotropic Module has only one degree of freedom.
Therefore, the relative pose of the two links does not change and the isotropic condition is
maintained. If the above two conditions — Eqs.(3.9) and (3.10) — are satisfied, the second
joint angle θ∗2 can be chosen arbitrarily — as long as sin θ∗2 6= 0 — and γ and ρ adjusted
accordingly using the curves of Fig. 3.3. However, it should be noted that θ∗2 should not be
close to or equal to 0, π2 or π since the conditions then lead to very small (or very large) link
and torque ratios, as observed in Fig. 3.3. Examples of isotropic designs are shown in Fig.
3.4 with the scale τlim,1/a1 = 1. Such one-degree-of-freedom modules are designed to be used
in addition to other actuated joints to build effective mechanisms with more clutches than
degrees of freedom, as it will be shown in this chapter.
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Figure 3.4 – Square achievable force space of isotropic force module designs.

3.1.2 More compact RR architecture

As observed in Fig. 3.4, the isotropic modules tend to produce ‘elbows’ that may be cum-
bersome during the operation of the robot. In order to alleviate this problem, an alternative
architecture can be used.
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Fig. 3.5 presents a 2-dof planar module which can be used in replacement of the 2R planar
isotropic force module. The links of length l1, l4 and l5 are parallel to each other while the
links of length l2, l3 and l6 are parallel to one another. Selecting one joint among joints 2 to
8 in Fig. 3.5 to be equipped with a torque limiter, joint 1 is active in series with an actuator
while the others are passive. Thus, the manipulator of Fig. 3.5 is equivalent to the planar
RR isotropic module built with two links as the dashed lines shown in the figure. Since the
Jacobian matrix represents the transformation between joint rates and end-effector velocities,
the Jacobian matrix of this manipulator can also be expressed as in Eq.(2.35), where a1 and
a2 are the link lengths of the equivalent two-link isotropic manipulator. This more compact
module can replace the planar isotropic force module to be used in the construction of the
robot. Other similar architectures may also be found.
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�
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Figure 3.5 – An alternative 2-dof planar module.

3.1.3 RP isotropic force module

Fig. 3.6 presents a conceptual one-degree-of-freedom mechanism consisting of a bi-directional
torque limiter (not shown in the figure) in series with an actuator at joint R and a bi-directional
force limiter at joint P . The prismatic joint is not actuated and does not contribute to the
motion of the robot in normal use. It is only passively triggered if the threshold fmax of the
force limiter is exceeded, as shown in Fig. 3.6, similarly for the torque limiter, with a threshold

y

x

τ

f −f

e Force Limiter

r

P
R

�
F

Figure 3.6 – Architecture of a planar RP manipulator.
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of τmax in series with the actuator. For a robot with more clutches than actuators, based on
the mapping Eq.(2.43) between the end-effector force F and the input joint torque/force vector
τ , two distinct Jacobian matrices Jf and Jv are defined. For the above RP mechanism, these
matrices are written as

Jf = [Er e], (3.11)

and
Jv = [Er], (3.12)

where

E =

[
0 −1

1 0

]
, (3.13)

where r is the position vector of the end-effector point with respect to the base reference frame
and where e is a unit vector directed along the axis of the P joint. Since vectors r and e are
collinear and given the properties of matrix E, the two columns of Jf are always orthogonal.
Thus, the achievable force space determined by this mechanism is always a rectangle. The
two variables Fmin and Fmax can be obtained using Eqs.(2.47) and (2.49), which determine
the force capabilities of a robot equipped with a constant torque limiter and a constant force
limiter. The optimal approach to improve the force performance is derived from Eq.(3.4), and
thus the force and torque thresholds are chosen by the following relationship

τmax
l

= fmax (3.14)

where l is the length of the link.

In this case, since the minimum forces for both clutches are equivalent to the global maximum
isotropic force given by Eq.(2.48), the resulting arrangement is indeed an Isotropic Module,
as shown in Fig. 3.7. It is observed that the achievable force polygon is a square and the radii
of the inscribed and circumscribed circles correspond to Fmin and Fmax, respectively. For this
module, a disadvantage is that the force capabilities will be affected once the force limiter
is triggered due to the linear springs. An approach to reduce this effect is to use pre-loaded
low-stiffness springs, which also returns to their reference configuration after the external force
is removed.

Alternatively, the isotropic module can be composed of two orthogonal force limiters (i.e. PP
isotropic force module) with the same minimum force threshold. Such an arrangement leads
to a force polytope identical to the one shown in Fig. 3.7. The combination of the isotropic
modules developed above to build planar manipulators is analyzed in the following sections.

3.2 Force-limiting manipulators

As mentioned in [Lauzier and Gosselin, 2011], the concept of series clutch actuators involves
a clutch mounted in series with each actuator of a serial robot. In order to ensure an optimal
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Figure 3.7 – Force polytope for the manipulator of Fig. 3.6. In this example, the force and
torque thresholds are chosen such that an isotropic force module is obtained.

achievable force space, the maximum torque allowed at the clutches is adjusted on-line using
an auxiliary actuator [Lauzier and Gosselin, 2012]. The drawback of this approach is that
additional actuators and complex control are needed. Also, actively adjustable torque limiters
lead to complex mechanisms. Therefore, it is proposed here to use clutches with fixed limit
torques/forces by including more clutches than actuators in order to ensure a proper behaviour
throughout the workspace. To this end, the isotropic force modules developed in Section 3.1
are now used to model planar robots which operate in a horizontal plane.

3.2.1 2-Dof manipulator with three torque limiters

Description of the robot

In order to investigate the concept described above, a simple 2-dof planar robot is first studied.
Consider the planar 2-dof manipulator shown in Fig. 3.8, which has three torque limiters with
a limit torque, τmax,i, at the ith revolute joint and two actuators located at joints A and B.
The torque limiters at joints A and B are mounted in series with the actuators while joint C
is not actuated and includes only a torque limiter. In other words, l2 and l3 make up an “RR
isotropic force module” to replace a single virtual link l4. Moreover, joints B and C are arranged
such that they satisfy Eqs.(3.9) and (3.10), i.e., the conditions for isotropic force transmission.
This part of the manipulator therefore constitutes an isotropic module. Since the geometric
relationship between joints B and C is constant, the robot avoids degenerate configurations
or static singularities. In practice, the different links of the robot can be stacked on parallel
planes in order to avoid self collisions of the robot and the end-effector can be mounted in
any direction, for instance, aligned with either the link 3 or the virtual link 4. From a statics
perspective, the manipulator has 3 torque limiters, thereby a 2×3 Jacobian matrix Jf for the
static force transmission mapping 2-dimensional end-effector forces into a 3-dimensional joint
torques being established in the fixed reference frame, which is expressed as

Jf = [e1 × r1, e2 × r2, e3 × r3] = [Er1,Er2,Er3] (3.15)

36



x

y

τ1 D

A

B
l1

θ2

l2

l3

l4
E

C

τ2

θ1

α

τ3
Isotropic
Module

F

Figure 3.8 – Planar 2R manipulator with three torque limiters.

where

r1 =

[
l1cθ1 + l2sαcθ12

l1sθ1 + l2sαsθ12

]
(3.16)

r2 =

[
l2sαcθ12

l2sαsθ12

]
(3.17)

r3 =

[
l3sθ12

−l3cθ12

]
. (3.18)

However, from a kinematics standpoint, it has two degrees of freedom with link lengths l1 and
l4, as shown in Fig. 3.8, for which a Jacobian defined as the 2× 2 matrix, Jv, is shown below

Jv = [Er1,Er2]. (3.19)

Optimizing the global force polygon is an effective way to improve the static performance of
the manipulator. The minimum force threshold imposed by each torque limiter can be given
by Eq.(2.47). Since links 2 and 3 constitute an isotropic force module, they define a square in
the force space at the tool centre point. Therefore, for the global force space, the best approach
is to constrain the third pair of lines associated with joint one to lie between the inscribed and
the circumscribed circles of the square. Given that the global maximum isotropic force Fmin
and the maximum force Fmax are constrained by

Fmin = Fmin,2 = Fmin,3 (3.20)

Fmax =
√

2Fmin (3.21)
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the first limit torque at the base should satisfy the following inequalities

τmax,1
‖r1,max‖

> Fmin (3.22)

τmax,1
‖r1,min‖

6 Fmax (3.23)

where, referring to Fig. 3.8, one has

‖r1,max‖ = AE

‖r1,min‖ = AD.

For a given value of θ1, the trajectory of the end-effector is represented by the dashed circle
in Fig. 3.8 and the nearest and the furthest positions of the end-effector with respect to the
base are at points D and E, respectively. For instance, setting the equality in Eqs.(6.1) and
(3.23), at the tool centre point, the achievable force polygons are always limited between the
circumscribed circle and the inscribed circle defined by the isotropic module as shown in Fig.
3.9, which presents different poses. From Fig. 3.9, it can be observed that the ability of this
manipulator to apply force to its environment is improved when compared to the original
two-link robot and that it is free from ill-conditioned configurations.

It may be argued that since torque limiters at joints B and C provide an isotropic force
transmission behaviour, the torque limiter at joint A may not be required. However, the
latter is useful in order to provide safety in case of collisions with link l1 which is the subject
of the next subsection.

Contact force along the robot links

The above derivations assume that the contacts between the robot and its environment occur at
the end-effector. However, during physical human-robot interaction and cooperation, various
unforeseen collisions can occur, including on the links of the robot. It is thus necessary to
consider various points of physical human-robot contact in order to avoid potential risks of
injury.

Since the first link only rotates about a fixed axis on the base, only the normal component
of the contact force can be computed. Therefore, the maximum allowable force on link 1 is
simply limited based on the distance to the torque limiter (τmax,1), that is

F1,max =
τmax,1
L1

, 0 < L1 ≤ l1. (3.24)

The maximum force applied on the other links can be obtained by Eq.(2.49). It should be
pointed out that Eq.(2.49) yields the maximum magnitude of the force in all directions at a
given contact point. For instance, if the contact occurs at joint C in a direction, we can get a
force which triggers one of the torque limiters at joints A and B whose force threshold is first
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(a) θ2 = 45◦ (b) θ2 = 110◦

(c) θ2 = 180◦ (d) θ2 = 230◦

(e) θ2 = 315◦ (f) θ2 = 360◦

Figure 3.9 – Achievable force polygons in some configurations of the manipulator with three
torque limiters (where ρ =

√
2

2 , γ = 1, τmax,1 = Fmin‖r1,max‖, l1 = (1 +
√

2)2l4).

reached. Especially, if the contact force is applied on a line passing through joint A, the force
should be that activating the torque limiter at joint B. After the forces are obtained in all
directions, the largest among them is the maximum force that the robot can sustain at joint
C.

However, assuming that the surface of the robot is smooth and that its links are straight
without any bends, the most important possibility of the direction in which a collision occurs
is perpendicular to the links as shown in Fig. 3.10. Hence, the maximum force at a contact
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Figure 3.10 – Contact force perpendicular to the links.

point of the jth link can be written as:

Fj,max = min
1≤i≤j

(
τmax,i
dij

)
(3.25)

where dij is the length of the lever arm from the ith torque limiter to the force vector normal
to the link at the point of application, as shown in Fig. 3.10.

Fig. 3.11 shows the maximum contact force for the whole manipulator in both cases (orthog-
onal force and maximum force). Considering the robot arms straight out, the value of L in
Fig. 3.11 represents the distance from the base to the contact point. Hence, the length of
each link is actually the domain of Fi,max. From Fig. 3.11(a), it is observed that F2,max is
large due to the ill-conditioned (close to singularity) configurations which occur for a planar
2-dof manipulator. In order to optimize the achievable force space on link 2 while ensuring
the optimal force polygons at the tool centre point simultaneously, a manipulator with four
joints is proposed in the next section.

3.2.2 2-Dof manipulator with four torque limiters

Description of the robot

Although the achievable force space is improved to a certain extent by the robot with one
RR isotropic force module described in the preceding subsection, the first torque limiter has
no influence on the gap between Fmax and Fmin, which is determined only by the isotropic
force module. One way to further improve the behaviour of the robot is to add one more
torque limiter into the manipulator by replacing the first link with another RR isotropic force
module as shown in Fig. 3.12. Thus, the robot has two torque limiters mounted in series with
actuators located at joint A and joint C and two additional torque limiters located at joint B
and joint D, respectively. According to the law of cosines, one has l5 =

√
l21 + l22 − 2l1l2cα1

and l6 =
√
l23 + l24 − 2l3l4cα2. Without losing generality, letting θ1 = 0 and then denoting

h1 = l1l2sα1/l5, h2 = l3l4sα2/l6, the two Jacobian matrices Jf and Jv at the tool centre point

40



0 0.5 1 1.5 2

10
2

10
3

10
4

F
m
ax
(N

)

L(m)

F
1,max

F
2,max

F
3,max

5× 104

(a) In all directions

0 0.5 1 1.5 2

10
2

10
3

F
m
ax
(N

)

L(m)

F
1,max

F
2,max

F
3,max

(b) Normal to the links

Figure 3.11 – The maximum forces for all links (where ρ =
√

2
2 , γ = 1, τmax,1 = Fmin‖r1,max‖,

l1 = (1 +
√

2)2l4, l3 = 0.25, τmax,3 = 10).

expressed in the reference frame shown in Fig. 3.12 can be written respectively as

Jf = [Er1,Er2,Er3,Er4] (3.26)
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Figure 3.12 – Manipulator with four torque limiters.

Jv = [Er1,Er3] (3.27)

where

r1 =

[
l5 + l6cθ2

l6sθ2

]
, (3.28)

r2 =

[ √
l22 − h2

1 + l6cθ2

−h1 + l6sθ2

]
, (3.29)

r3 =

[
l6cθ2

l6sθ2

]
, (3.30)

r4 =

[ √
l24 − h2

2cθ2 − h2sθ2√
l24 − h2

2sθ2 + h2cθ2

]
. (3.31)

The force space determined by the distal RR isotropic module composed of l3 and l4 acting
on the end-effector is always square regardless of the configuration of the robot. In order to
optimize the whole achievable force space throughout the workspace, the magnitude of the
displacement vectors ri,max and ri,min (i = 1, 2) should be as uniform as possible. The best
case is also to limit the boundaries of the whole force polytope between the inscribed and the
circumscribed circles of the square. Hence one writes

Fmin = Fmin,3 = Fmin,4 (3.32)

Fmax =
√

2Fmin (3.33)
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which can be accomplished by the following operations:

τmax,1
‖r1,max‖

> Fmin,
τmax,2
‖r2,max‖

> Fmin, (3.34)

τmax,1
‖r1,min‖

6 Fmax,
τmax,2
‖r2,min‖

6 Fmax, (3.35)

where

‖r1,max‖ = l5 + l6, ‖r1,min‖ = l5 − l6,
‖r2,max‖ = l2 + l6, ‖r2,min‖ = l2 − l6.

Fig. 3.13 shows some of the force polytopes obtained, for different configurations, with a
planar manipulator comprising two isotropic modules and whose design is based on setting
the equality in Eqs.(3.34) and (3.35). The two circles represented on the figure correspond
to the values of Fmin and Fmax, respectively. For this manipulator, there are no degenerated
configurations in the whole workspace. The minimum force threshold Fmin can be set to a
value that is high for a given maximum threshold Fmax, which leads to the ability to apply
adequate forces in all directions.

With two additional torque limiters, the ratio between the maximum and minimum force
thresholds at the tool centre point can be significantly improved for the whole workspace.
However, as the robot moves, collisions may occur anywhere along the robot links. In order
to guarantee safety, it is required to calculate the maximum contact force at all points of the
manipulator, which is addressed in the following subsection.

Contact forces along the robot links

In the direction perpendicular to the links, the maximum forces at different contact points
are expressed by Eq.(3.25). Moreover, when a collision occurs on link 1, the maximum force
can be obtained by Eq.(3.24). On the other links, the maximum forces in all directions are
given by Eq.(2.49) by adjusting the Jacobian matrices to the point of application of the force.
Specifically, on link 2, the Jacobian matrix is expressed as, with θ1 = 0 and θ2 = π + α1,

Jl2 =

[
L2sα1 L2sα1

l1 − L2cα1 −L2cα1

]
, 0 < L2 ≤ l2. (3.36)

On link 3, the Jacobian matrix is given by:

Jl3 = [Er1,Er2,Er3] 0 < L3 ≤ l3 (3.37)
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(a) θ2 = 45◦ (b) θ2 = 135◦

(c) θ2 = 180◦ (d) θ2 = 250◦

(e) θ2 = 315◦ (f) θ2 = 360◦

Figure 3.13 – End-effector force polytopes for an example case (where ρ =
√

2
2 , γ = 1, τmax,1 =

τmax,2 = Fmin‖r1,max‖, l2 = (1 +
√

2)2l4, l1 =
√

2l2).

where

r1 =

[
l5 + L3cθ

′
2

L3sθ
′
2

]
, (3.38)

r2 =

[ √
l22 − h2

1 + L3cθ
′
2

−h1 + L3sθ
′
2

]
, (3.39)

r3 =

[
L3cθ

′
2

L3sθ
′
2

]
. (3.40)
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Figure 3.14 – The maximum force at all points of the 4-link manipulator with the scale
τmax,4/l4 = 60.

On link 4, the Jacobian matrix Jl4 can be given by Eq.(3.26).

Fig. 3.14 presents an example of the maximum forces that can be applied on all links of the
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same robot as that in Fig. 3.13. In the vicinity of joints A and B, the maximum forces are
large because of the small distance to the torque limiters. In practice, these links are located
near the base of the robot and can be difficult to access, thereby making collisions unlikely.
In Fig. 3.14 (a), Fmax on link 3 remains relatively constant, which corresponds to the fact
that the torque limiter located at joint C exerts almost no influence on the force space. Then,
there is a marked downtrend on link 4 due to the effective participation of the torque limiter
at joint D into the whole force space. We can find a critical contact point A on link 4 as shown
in Fig. 3.14 (a), which corresponds to a configuration in which one has:

Fmin,4 = Fmax (3.41)

and after this point the maximum force decreases up to the end-effector.

A reliable way of guaranteeing that the robot is safe for human-robot interactions everywhere
in the whole workspace — not only at its tool centre point — is to maintain the maximum
Fmax threshold to 150 [N], as stated in the standards. This can be achieved with the proposed
architecture, as illustrated in Fig. 3.14.

According to the static analysis, when compared with the 3-link manipulator, there are some
advantages to use the 4-link robot. Firstly, its achievable force polygons are optimized for
more configurations than the 3-link manipulator either at the tool centre point or along the
links. Secondly, for the contact points on the links except for the vicinity of joints A and B,
the maximum forces either in all directions or only in the direction normal to the links are
smaller and more balanced. This manipulator clearly leads to a higher minimum threshold
thus increasing the ability of the manipulator to perform tasks. Thirdly, to optimize the
achievable force polygon of the end-effector, which is the most critical and the most dangerous
contact point during human-robot collaborations, the geometry of the manipulator must satisfy
some tight constraints. The 4-link manipulator is comparatively more compact than the
3-link manipulator for similar force constraints. Finally, the serial modules of the 4-link
manipulator with two additional torque limiters are flexible enough to accommodate arbitrary
robot architectures by scaling their geometry.

Robot power

The preceding derivation focuses only on the static analysis in order to determine the maximum
forces that the manipulator can apply to its environment. However, since the safety standard
also states a maximum dynamic power (80[W]), it is also of interest to determine the power
involved in a potential contact or collision, not only at the tool centre point of the end-effector
but also along all the robot links.

For the 4-link manipulator composed of two RR isotropic force modules as shown in Fig. 3.12,
the end-effector output velocity and the input joint-rate limits can be written as v = [vx, vy]

T

and θ̇ = [θ̇1, θ̇2]T , respectively. The maximum power at the end-effector can be computed
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Figure 3.15 – The maximum power at the end-effector (where θ̇max,1 = 0.5rad/s, θ̇max,3 =
1.2rad/s).

by Eq.(2.57), in which the Jacobian matrix describing the static forces transmission and the
one transforming the joint rates into the end-effector velocities are given as Eqs.(3.26) and
(3.27). Setting θ1 = 0, Fig. 3.15 shows the distribution of maximum power Pmax acting on
the end-effector for all configurations. Achievable force polygons are shown in Fig. 3.16 for
some of the configurations.

In addition to the maximum power at the end-effector, Pmax at the robot links should also be
given some attention. For link 1, it is derived from Eq.(2.56), namely

P1,max = τmax,1θ̇max,1. (3.42)

For link 2, one has
P2,max = max

(
τTmax,12J

−1
l2
Jv,1θ̇max,1

)
(3.43)

where Jl2 is expressed as Eq.(3.36) and Jv,1 is the first column of Jv. For link 3, it yields

P3,max = max
1≤i,j≤3

(
τTmax,ijJ

−1
l3,ij

Jvθ̇max

)
(3.44)

where Jl3 is given by Eq.(3.37). The calculation of the maximum power P4,max at link 4 is
similar to that at the end-effector, which can be obtain by Eq.(2.57) as well, with Jl4 instead
of Jf . Fig. 3.17 presents Pmax along the links of the whole manipulator, each contact point
on which the maximum value in all configurations is treated as the corresponding Pmax.

It can be observed, from Fig. 3.15 and Fig. 3.17, that with reasonable velocity limits, the
effective power at the contact points along the robot is limited. Also, because of the geometric
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Figure 3.16 – Force polygons corresponding to the points marked in Fig. 3.15.

arrangement of the torque limiters, the power does not vary much along the links, which is a
desirable characteristic.

3.2.3 2-Dof robot with RP and PP isotopic force modules

Consider a planar 2R robot with two torque limiters mounted in series with its joints. The
ability of this robot to apply forces to its environment is configuration dependent. In order
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to alleviate the drawbacks of ill-conditioned force performances near the singularities of the
robot, a synthesis approach using RR isotropic force modules to construct the serial robots
with more torque limiting clutches than actuators was proposed in the preceding subsections
and solutions with effective end-effector force spaces were obtained. In this subsection, another
proper structure for the design of planar serial manipulators with the combination of torque
and force limiting mechanisms, i.e., RP and PP isotropic force modules, is proposed.

Robot architecture

Fig. 3.18 shows a 2R planar robot comprising two isotropic force modules. The first isotropic
module (i.e., PP isotropic force module) is composed of two orthogonal force limiters FL1

and FL2 mounted on the first link of the robot while the second module (i.e., RP isotropic
force module) comprises a torque limiter at joint R2 and a force limiter FL3 mounted on the
second link of the robot. The robot has two degrees of freedom with actuators at R1 and R2,
unless the prescribed thresholds of clutches (force limiters and torque limiter) are exceeded.
Therefore, its kinematic Jacobian matrix is a 2× 2 matrix which can be written as

Jv = [Er1 Er2] (3.45)

where ri is the position vector from the ith revolute joint to the end-effector point. The
Jacobian matrix associated with the force and torque limiters is a 2× 4 matrix which can be
written as

Jf = [e1 e2 Er2 e3] (3.46)
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Figure 3.18 – Planar 2-dof manipulator with torque and force limiters.

where ei is the unit vector defined along the axis of the ith force limiter.

Considering that the manipulator operates in a horizontal plane and assuming symmetrical
torque and force limits, for the manipulator of Fig. 3.18, the static force that can be applied to
the end-effector has to satisfy inequalities Eq.(2.45), using Γmax = [f1,max, f2,max, τ1,max, f3,max]T

instead of τmax. Thus, its achievable force space is limited by a zonotope with at most four
pairs of sides. Denoting Γmax,i as the ith component of the clutch-limiting vector Γmax, the
global minimum force threshold Fmin and the maximum force threshold Fmax can be deter-
mined by Eq.(2.48) and Eq.(2.49), respectively. The objective of using additional clutches is
to optimize the force performance, i.e., making Fmin as close as possible to Fmax. The best
case appears clearly when the minimum force threshold is the same for all clutches. One has

Fmin = Fmin,i =
Γmax,i
‖jf,i‖

, ∀i ∈ {1, · · · , 4}. (3.47)

The limit torque and limit forces can thus be prescribed respectively as

τ1,max = Fmin‖jf,3‖ (3.48)

and
fi,max = Fmin, ∀i ∈ {1, 2, 3}. (3.49)

For instance, with prescribed thresholds for the limiters, at the tool centre point of the end-
effector, the achievable force space is always located between the small circle (Fmin) and the
large circle (Fmax) as shown in Fig. 3.19, which presents different poses of the robot. From
Fig. 3.19, it can be observed that the ability of the robot to apply force to its environment
is determined by two superimposed squares and that this ability is free from degenerated
configurations even in kinematically singular configurations of the robot. From the perspective
of safety, another advantage of using the force limiter instead of the torque limiter is that the
force magnitude imposed by the force limiter is independent from the point of application and
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Figure 3.19 – Achievable force polygons for some configurations of the 2-dof planar manipulator
of Fig. 3.18.

the direction of the exerting force. However, in some real applications, it would be preferable
to use the torque limiter if the mechanism of the torque limiter is much simpler and more
feasible than that of the force limiter. For instance, it maybe designed with a torsional spring
which can be physically mounted in series with the revolute joints. Therefore, the combined
use of both clutches would be beneficial in many cases.

Since the determination of the external force space is based on the manipulator’s configuration,
it is important to use an objective index that provides information on the force capability of
the manipulator. The ratio between Fmin and Fmax can be used as a performance index. Since
Fmin is associated with the ability of the manipulator to perform tasks and Fmax is related to
its safety, the following performance-to-safety index, noted µ, is used [Lauzier and Gosselin,
2012]

µ =
Fmin
Fmax

. (3.50)

This index has a clear physical interpretation because it directly compares the minimum and
maximum force thresholds of the manipulator. As for the best optimal case, Fmax is imposed
by the safety considerations and Fmin is controlled by the manipulator’s architecture and the
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limit torque and forces. Referring to Fig. 3.19, it can be observed that index µ represents
the ratio of the radii of the inner and outer circles. Specifically, it is simple to obtain the
expression of µ for the robot studied here, namely

µ =


cos( θ22 − π

4 ), (0 ≤ θ2 ≤ π
4 ,

3π
4 ≤ θ2 ≤ π)

cos( θ22 ), (π4 ≤ θ2 ≤ π
2 )

sin( θ22 ), (π2 ≤ θ2 ≤ 3π
4 ).

(3.51)

This index is plotted as a function of θ2 in Fig. 3.20. From the figure, it can be observed
that the index is not differentiable everywhere, since the calculation of Fmax yields the same
results for more than one combination of limiters in some configurations. For instance, θ2 = 0,
θ2 = π/2 and θ2 = π. The manipulator locates at these configurations for which the force
space of RP module overlaps that of PP module. Nevertheless, it can also be observed that
the index is always above 0.7, which is excellent.

Contact force along the robot links

During physical human-robot collaboration, safety must be ensured for human beings. How-
ever, when allowing robots and humans to share common workspaces, unpredictable collisions
may possibly occur at any point of the robot, which poses potential risks of injury to hu-
mans. Therefore, based on the results of the preceding subsection, it is necessary to control
the maximum thresholds of contact forces at potential contact points along the robot links.

Since the clutches are mounted on the robot structure, the static force analysis along the links
is divided into several parts of respective length L1, L2(L′2), · · · , L5, as shown in Fig. 3.21.
In case of people injured by collisions taking place on segment L1, it is required to equip the
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first actuated joint with an additional torque-limiting device having a limit torque τp in series
with the base actuator. In order not to impact on the static force applied at the end-effector,
the limit torque must satisfy

τp,max
‖jv,1‖

≥ Fmin. (3.52)

For collisions along L1, only the normal component of the contact force is considered and is
computed using

FL1 =
τp,max
l1

, 0 < l1 ≤ L1 (3.53)

where l1 is the lever arm of the contact force, i.e., the distance between the contact point and
the base joint.

Also, due to the additional torque limiter fixed on the base, the expression Eq.(3.46) is rewrit-
ten as

Jf = [Er1 e1 e2 Er2 e3]. (3.54)

When considering the collisions in other parts of the links, the clutches successively take part
in the force performance. Fig. 3.22 provides representations of the force limits when collisions
happen at different points along the robot links. The maximum force FLk

applied on the
different parts Lk (∀k ∈ {2, . . . , 5}) of the robot can be obtained by Eq.(2.49) with JLk

and
ΓLk

, instead of Jf and Γmax . Specifically, one has

JLk
= [jf,1, · · · , jf,k] (3.55)

and
ΓLk

= [Γmax,1, · · · ,Γmax,k]. (3.56)

The maximum force along the links is an important variable which deserves serious attention.
Only if the latter satisfies the safety standard can humans be protected from injury. Fig.
3.23 shows an example of the determination of the maximum contact force (max(FLk

), ∀k ∈

L1

L2

L′
2

L3

L4

L5

x

y τp τ1
θ1

θ2

r1

r2

FLk

Figure 3.21 – Distribution of contact forces along the robot links.
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{2, . . . , 5}) for the whole manipulator in all directions (θ1 = 0 while θ2 ranging from 0 to 2π),
except for the orthogonal force along L1. It can be observed from Fig. 3.23 that the maximum
force is constant over segments L3, L4 and L5. It is possible to adjust the limiters such that
this force is below the safety threshold. Also, it should be mentioned that although the forces
are larger on segments L1 and L2(L′2), the maximum velocity of these segments is smaller,
which reduces the dangerosity of the contacts on these segments.

τp,maxjf,1
‖jf,1‖2

θ1 fx

fy

(a) Along L1

−f1,max

θ1 fx

fy

(b) Along L2

τp,maxjf,1
‖jf,1‖2

−f1,max

θ1
fx

fy

(c) Along L′2

−f2,max

θ1 fx

fy

(d) Along L3

τ1,maxjf,4
‖jf,4‖2

θ1
fx
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θ2
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θ1 fx

fy

θ2
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Figure 3.22 – Contact force spaces at the different points of robot links.
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Figure 3.23 – Maximum forces in all directions contacting along the links (where τp,max =
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Power analysis

For the manipulator of Fig. 3.18 with torque and force limiters, the maximum power at
the contact point along the links where the collision happens should be considered, which is
specifically expressed as

PLk
= max

i,j

(
ΓTLK ,ij

J−1
Lk,ij

vLk

)
, ∀k ∈ {2, · · · , 5} (3.57)

subject to
−ΓLk

� JTLk

(
J−TLk,ij

ΓLk,ij

)
� ΓLk

(3.58)

where

vLk
= Jk,Lk

θ̇max,Lk
=

{
[Er1]θ̇1,max, ∀k ∈ {2, 3}
[Er1,Er2] θ̇max, ∀k ∈ {4, 5}

(3.59)

and where ΓLK
and JLk

can be obtained from Eqs.(3.55) and (3.56), respectively.

For contacts on segment L1, based on the orthogonal force and velocity of the link, the
maximum power is calculated by

PL1 = τp,maxθ̇1,max. (3.60)

The above derivation of PLk
provides the maximum power in one pose of the manipulator.

Fig. 3.24 presents the worst situation (max(PLk
)) for all configurations with θ1 = 0 and

0 ≤ θ2 ≤ 2π. Similarly, the maximum power at the end-effector can be obtained from Eq.(3.57)
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as well, whose distribution is shown in Fig. 3.25. This variable is the most important, because
the possibility of an unexpected contact or collision is the highest at the tool centre point of
the end-effector.
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Alternative architecture for the robot

Fig. 3.26 shows another type of force limiting module with a prismatic joint composed of a
rack and pinion instead of linear springs, placing a torque limiter at the gear. Therefore, the
minimum external forces applied at the tool centre point and imposed by the thresholds of
the two limiters can be expressed as follows:

Fmin,1 =
τ1,max

a
(3.61)

Fmin,2 =
τ2,max

r
. (3.62)

Moreover, the achievable force space at the distal position of this architecture is always a
rectangle. This arrangement can be used as an alternative RP isotropic module by prescribing

Fmin,1 = Fmin,2. (3.63)

Fig. 3.27 presents an alternative type of 2-dof planar serial robot, whose passive prismatic
clutches are replaced by rack and pinion joints. Actually, it possesses identical force perfor-
mances at the end-effector as that of Fig. 3.18. The difference is that the Jacobian matrix
of Eq.(3.46) mapping the end-effector forces and the joint rates is changed. Based on DH
parameters, Jf can be specifically given by

Jf =

[
−r1sθ1 r2cθ1 −a2sθ12 −r3cθ12

r1cθ1 r2sθ1 a2cθ12 −r3sθ12

]
(3.64)

where parameters a2, r1, r2 and r3 are defined in Fig. 3.27 (ri is the radius of the ith gear). If
an additional torque limiter whose torque threshold is τ∗max is mounted in series with the base
actuator to prevent large contact forces near the base, the static force Jacobian Jf should be
expressed as

Jf =

[
(−a1sθ1 − a2sθ12) −r1sθ1 r2cθ1 −a2sθ12 −r3cθ12

(a1cθ1 + a2cθ12) r1cθ1 r2sθ1 a2cθ12 −r3sθ12

]
(3.65)

a

τ1

τ2

r

Figure 3.26 – Rack and pinion architecture of force limiter.
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Figure 3.27 – Alternative type of 2-dof planar manipulator with four clutches.

and the limit torque vector becomes τmax = [τ∗max, τ1,max, τ2,max, τ3,max, τ4,max]T for the
achievable force space at the tool center point (end-effector) of Fig. 3.27.

3.3 Conclusions

In this chapter, a synthesis approach for the design of planar serial robots with torque and
force limiting mechanisms was proposed. The torque limiter and force limiter can be triggered
and slip when a prescribed torque is exceeded so that the maximum force and the maximum
power that robot can apply to its environment are limited. Some planar isotropic modules was
developed in order to construct planar manipulators with more force-limiting clutches than
actuators that optimize the achievable force polytopes and minimize the variations of the poly-
topes with the change of robot configuration. Then, including the isotropic modules into serial
manipulators, solutions with effective end-effector force spaces were obtained. Compared with
previously proposed approaches [Lauzier and Gosselin, 2011], the design proposed here uses
simple constant torque/force limiting devices, thereby greatly reducing the mechanical and
control complexity. Furthermore, since collisions maybe occur anywhere on the manipulator
and not only at the end-effector, the force thresholds along the links of the robot were also
analyzed. Also, a power analysis demonstrated the effectiveness of the approach.
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Chapter 4

Intrinsically safe robots based on
spatial isotropic force module (SIFM)

In this chapter, the concept of isotropic force limiting device is extended to the design of
spatial manipulators. First, possible architectures of spatial isotropic force module (SIFM) are
proposed based on the standard DH parameters and the conditions required to ensure isotropy
of the forces are derived. Then, a three-degree-of-freedom (3-dof) spatial robot including a
SIFM is designed to demonstrate the effectiveness of the concept. Finally, the forces that can
be applied either at the end-effector or by the robot along its links are also analyzed as well
as the power analysis of potential risks (collisions).

4.1 Geometric modelling of SIFMs

Spatial serial 3-dof kinematic architectures are considered in this section in order to develop
isotropic force modules. The geometry of the mechanisms’ architecture is described using the
standard Denavit and Hartenberg (DH) parameters described in Section 2.1, which include
four parameters per joint, namely ai, bi, αi, θi. In articulated kinematic chains, parameter
θi is normally associated with joint motion. Here, it is associated with the clutch motion.
Therefore, in normal operation, when the clutches do not move, all four parameters are fixed.
Moreover, there is no relative motion between the three joints of a SIFM— in normal operation
— which means that the Jacobian matrix of the SIFM is constant and can be determined at
the design stage. Although the DH parameters can take a broad range of values, some values
do not correspond to physically meaningful architectures and should be avoided. For example,
parameter a3 cannot be equal to zero, since this would correspond to the last joint having
no effect on the position of the end-effector point of the 3R kinematic structure. Hence,
non-dimensional kinematic parameters are obtained by dividing parameters ai and bi by a3,
namely

59



ai3 =
ai
a3
, i = 1, 2 (4.1)

bi3 =
bi
a3
, i = 1, 2, 3. (4.2)

The position vector ai given in Eq.(2.9) and rotation matrix Qi given in Eq.(2.4) allowing to
determine the relationship between the ith and (i+1)st reference frames can then be rewritten
as follows:

ai =

 ai3 cos θi

ai3 sin θi

bi3

 (4.3)

and

Qi =

 cos θi − cosαi sin θi sinαi sin θi

sin θi cosαi cos θi − sinαi cos θi

0 sinαi cosαi

 . (4.4)

The Jacobian matrix mapping the joint rates into the Cartesian velocities of the end-effector
point can then be given as

J =
[

e1 × r1, e2 × r2, e3 × r3

]
. (4.5)

In order to simplify the algebra, these quantities can be expressed here in the second reference
frame F2, yielding

[e1]2 = QT
1 e, [e2]2 = e, [e3]2 = Q2e (4.6)

where
e = [0 0 1]T (4.7)

and

[r1]2 = QT
1 a1 + a2 + Q2a3 (4.8)

[r2]2 = a2 + Q2a3 (4.9)

[r3]2 = Q2a3. (4.10)

Neglecting gravity and assuming symmetrical limit torques at each of the joints and thresholds
of

τmax =
[
τmax,1 τmax,2 τmax,3]T (4.11)

on the joint torques, the external static force f applied at the reference point of the end-effector
satisfies inequalities Eqs.(2.45) and (2.46). The magnitudes of the global minimum force Fmin
and the maximum force Fmax can then be obtained by Eqs.(2.48) and (2.52), respectively.

For a spatial serial kinematic chain comprising three torque limiters, in order to achieve a
regular force polyhedron (cube) in the space of the end-effector forces, the columns of the
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Jacobian matrix must be orthogonal and the magnitude of the minimum forces imposed by
each of the torque limiters must be equal, namely

jTi jj = 0, i 6= j, i, j = 1, 2, 3 (4.12)

and

Fmin,i = Fmin,j = Fmin, i, j = 1, 2, 3. (4.13)

It is pointed out that it is not required that the Jacobian matrix be a multiple of an orthogonal
matrix but only that its columns be orthogonal. Indeed, the magnitude of the columns can
be different since the latter are scaled using the torque limits, according to Eq.(2.47).

Thus a SIFM produces a force polytope of cubic shape in the space of the end-effector forces
and the maximum force that can be applied in any direction at the end-effector point while
guaranteeing that no torque limit is exceeded is equal to Fmin. Another critical variable in the
design of a safe robot is the maximum force that can be applied at the contact point without
activating any of the torque limiters. Obviously, for a SIFM, the maximum force is attained
when three thresholds are reached simultaneously, namely

Fmax =
√

3Fmin (4.14)

which corresponds to a vertex of the cubic force polytope. In the above derivation, it must be
ensured that the magnitude of the columns of the Jacobian matrix does not vanish, in which
case the torque limits τmax,i also remain finite and nonzero. The ratios between the joint
torque limits are then denoted as

β =
τmax,1
τmax,3

(4.15)

γ =
τmax,2
τmax,3

. (4.16)

Clearly, there exists infinitely many design parameters (DH parameters and torque limits) that
can satisfy Eqs.(4.12) and (4.13). However, in order to obtain simple and intuitive designs,
the relative orientation of the axes of the successive torque limiters in the SIFM is chosen
such that αi ∈ {0, π/2}, i = 1, 2. Hence, four design cases are considered in F2 coordinates as
follows (Appendix A describes their expressions in the base frame F1).

4.1.1 Case 1: α1 = 0, α2 = 0

In this case, the mechanism is equivalent to a planar redundant serial mechanism, which
cannot generate a cubic force space. This architecture is therefore eliminated.
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Figure 4.1 – Locus of isotropic solutions in the design space for θ3 = π, a23 = 0, b33 = 1.

4.1.2 Case 2: α1 = 0, α2 = π/2

Based on the conditions for an isotropic module given in Eqs.(4.12) and (4.13), it can be
inferred that if α1 = 0 and α2 = π/2, then one must have

a13 6= 0

sin θ3 = 0

cos θ3 = ±1

. (4.17)

Substituting the latter conditions into Eq.(4.5), the Jacobian matrix can then be rewritten as

J =

 −(a23 + c3)s2 + b33c2 −(a23 + c3)s2 + b33c2 0

a13 + (a23 + c3)c2 + b33s2 (a23 + c3)c2 + b33s2 0

0 0 c3

 (4.18)

where si and ci stand for sin θi and cos θi, respectively. The condition on the orthogonality of
the first two columns then leads to

jT1 j2 = (a23 + c3)(a23 + c3 + a13c2) + a13b33s2 + b233 = 0. (4.19)

Four design variables appear in Eq.(4.19), namely θ2, a13, a23, b33 while c3 must be equal to
±1. Eq.(4.13) must also be satisfied. Two additional design variables appear in the latter
equation, namely β and γ. Therefore, there are infinitely many solutions to these equations.
Instead of searching the design space for optimal solutions, the design approach used here
consists in manipulating the equations in order to find simple and intuitive combinations of
design variables. For instance, if two of the design variables are prescribed, relationships can
be established between the other design variables using Eqs.(4.19) and (4.13). An example
is shown in Fig. 4.1 where θ3 = π, a23 = 0 and b33 = 1 are prescribed. Using Eq.(4.19),
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Figure 4.2 – A module at singularity A where
θ2 = −π/4.

i ai3 bi3 αi θi
1
√

2 0 0 θ1

2 0 0 π/2 −π/4
3 1 1 π/2 π

Table 4.1 – DH parameters of the module
of Fig. 4.2.

variable a13 is then plotted as a function of angle θ2 in Fig. 4.1(a). Similarly, torque ratios
β and γ are plotted as a function of θ2 in Fig. 4.1(b), using Eq.(4.13). It can be observed
in Fig. 4.1(b) that θ2 = −π/4 is in fact a singular design because it would lead to one of
the torque ratios being equal to zero. This design corresponds to point A in Fig. 4.1, whose
configuration and the corresponding DH parameters are shown in Fig. 4.2 and Tab. 4.1,
respectively. Indeed, the closer the maximum torques are to each other, the more practical
the module will be. On the other hand, point B represents a good design. With θ2 = 0, the
same torque ratio of β = γ =

√
2 is derived from Eq.(4.13) as displayed in Fig. 4.1(b). The

architectures corresponding to point B are depicted in Fig. 4.3 and its DH parameters are
presents in Tab. 4.2.

z1 z2

z3z4

x3x2

x4

2a

a

a

Figure 4.3 – An isotropic module at point B
where θ2 = 0.

i ai3 bi3 αi θi
1 2 0 0 θ1

2 0 0 π/2 0
3 1 1 0 π

Table 4.2 – DH parameters of the module
of Fig. 4.3.

4.1.3 Case 3: α1 = π/2, α2 = 0

In this case, the Jacobian matrix given by Eq.(4.5) can be expressed in the second reference
frame as follows:

J =

 b23 + b33 −a23s2 − s23 −s23

0 a23c2 + c23 c23

−a13 − a23c2 − c23 0 0

 (4.20)

where s23 and c23 stand for sin(θ2 + θ3) and cos(θ2 + θ3), respectively. Due to the condition
given in Eq.(4.12), the columns of the Jacobian matrix must be orthogonal to each other.
Substituting ji into Eq.(4.12), it can be observed, by inspection, that one arrives at the
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following conditions, namely

{
b23 = −b33

a23 = − sec θ3, θ3 ∈ [−π,−π/2[ or ]π/2, π].
(4.21)

Moreover, the other isotropic condition given in Eq.(4.13) also has to be satisfied. Based on
the results given in Eq.(4.21), the two torque ratios β and γ are readily determined since they
can be written in terms of variables θ2, θ3 and a13. If two of these three design parameters are
prescribed, the torque thresholds, derived from Eq.(4.13), can be easily written as functions
of the other one. For example, with the given values θ2 = 0 and a13 = 1, Fig. 4.4 shows
the evolution of the torque ratios with respect to θ3. It can be observed in Fig. 4.4 that γ is
equal to zero at θ3 = ±π, which corresponds to singular architectures (i.e., the end-effector
is co-located at the base or the joint). Besides, one design of SIFM taken as an example is
displayed in Fig. 4.5 and its DH parameters are given in Tab. 4.3 where β = 2.5 and γ =

√
3,

corresponding to θ3 = 2π/3 in Fig. 4.4.

z1
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a
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x3
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z4

x4

2a
a θ3

6
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A
AK

Figure 4.5 – An isotropic module at point B
where θ2 = 0.

i ai3 bi3 αi θi
1 1 0 π/2 θ1

2 2 0 0 0
3 1 0 0 2π/3

Table 4.3 – DH parameters of the module
of Fig. 4.5.
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4.1.4 Case 4: α1 = π/2, α2 = π/2

Upon substitution of α1 = π/2 and α2 = π/2 into Eq.(4.5), one obtains

J =

 b23 + s3 −(a23 + c3)s2 + b33c2 −c2s3

0 (a23 + c3)c2 + b33s2 −s2s3

−a13 − (a23 + c3)c2 − b33s2 0 c3

 . (4.22)

Then, condition of Eq.(4.12) is applied to the expression of the Jacobian matrix given in
Eq.(4.22). The expressions for jT1 j2 and jT1 j3 are rather complicated and involve many variables.
However, the last condition can be simply written as

jT2 j3 = −b33s3 = 0. (4.23)

In order to simplify the combinations of design parameters, two subcases can be derived from
Eq.(4.23) as follows.

(a) b33 = 0.

Since the norm of each column of the Jacobian matrix cannot be zero as an implicit condition
from Eq.(4.13), based on jT1 j2 = 0, one has

sin θ2 = 0 or b23 + sin θ3 = 0. (4.24)

However, for sin θ2 = 0, four singular configurations exist at a23 = 0, θ2 = 0(or π) and
θ3 = −π/2(or π/2), two of which appear in Fig. 4.6 as hollow dots. In the absence of
singularities, the design space of a SIMF can be readily described using two variables, as
shown in Fig. 4.6. Taking the configuration at point A (θ3 = 2π/3) as an example, the
corresponding SIFM architecture is presented in Fig. 4.7 as well as its DH parameters in Tab.
4.4.

(b) sin θ3 = 0.

In the domain of θ3 from −π to π, this subcase leads to θ3 = 0 and θ3 = π. Using the
conditions of spatial isotropic modules, we obtain that b23 cannot be zero. Meanwhile, the
relationships between each of the two design parameters are uniquely established with the
others known, as illustrated in Fig. 4.8. Based on the foregoing solutions, Fig. 4.9 presents
an example design of a SIFM with θ2 = −π/2 whose corresponding DH parameters are given
in Tab. 4.5.

4.2 3-Dof spatial manipulator with a SIFM

A SIFM is a unit in which there is no relative motion between the three moving bodies: it
has in fact only one degree of freedom provided the proximal revolute joint. The other two
joints are rigid unless excessive force exerted on the downstream links of the robot triggers
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Figure 4.7 – A SIFM at point A of Fig. 4.6 where θ3 = 2π/3.

i ai3 bi3 αi θi
1 2 0 π/2 θ1

2 0 0 π/2 0
3 1 0 0 2π/3

Table 4.4 – DH parameters of the SIFM above in Fig. 4.7.

the torque limiter clutches, which are mounted on the joints of the module. Therefore, SIFMs
can be integrated into the structure of spatial robots to ensure the static performance while
preventing humans from injury, similarly to what was done for planar robots with isotropic
force modules(IFMs) in [Zhang and Gosselin, 2015]. A spatial 3-dof manipulator that includes
the SIFM of Fig. 4.3 and two other revolute joints is shown in Fig. 4.10. Although the
preceding section illustrates how to determine the SIFM parameters such as the lengths, the
angles and the torque thresholds, for the robot of Fig. 4.10, it is necessary to establish the
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eters of Fig.4.8 and θ2 = −π/2.

i ai3 bi3 αi θi
1 1 0 π/2 θ1

2 1 1 π/2 −π/2
3 1 1 0 π

Table 4.5 – DH parameters of the module
of Fig. 4.9.

relationships between the SIFM and the other joint variables. Hence, an effective approach is
now introduced to determine these parameters, based on the optimization of the global force
polygon at the tool centre point of the end-effector.

For this manipulator, the actuators are mounted at joints O1, O2 and O3 with the joint-
angle vector θ = [θ1, θ2, θ3]T and thus, from a kinematics standpoint, it has 3 degrees of
freedom. The DH parameters of Tab. 4.6 and the joint variables define uniquely the posture
of the manipulator. In particular, the relative position and orientation of the (i+ 1)st frame
Fi+1 with respect to the ith frame Fi is given by matrix Qi of Eq.(2.4) and vector ai of
Eq.(2.9), respectively. However, from a static standpoint, each joint is equipped in a torque
limiter (the limit-torque vector being defined as τmax = [τmax,1, . . . , τmax,5]T ) and therefore
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i ai bi αi θi
1 0 0 π/2 θ1

2 l2 l1 π/2 θ2

3 l3 0 0 θ3

4 0 0 π/2 0
5 l5 l4 0 π

Table 4.6 – DH parameters of the 3-dof spatial manipulator above in Fig. 4.10.

the manipulator has two distinct Jacobian matrices: a 3×3 matrix for the kinematics denoted
as Jk and a 3×5 matrix for the static force transmission denoted as Jf . The Jacobian matrices
can be expressed in the base coordinate frame F1 respectively as

Jk = [e1 × r1, e2 × r2, e3 × r3] (4.25)

Jf = [e1 × r1, e2 × r2, e3 × r3, e4 × r4, e5 × r5] (4.26)

where
e1 = [0 0 1]T

ei = Q1Q2 . . .Qi−1e1, i = 2, . . . , 5

ri =
5∑
i

Q1Q2 . . .Qi−1ai.

(4.27)

It is desired to include a SIFM in the structure of the manipulator to avoid degenerate con-
figurations for which the achievable force space becomes ill-conditioned. As the configuration
of the robot changes, the torque limiting devices placed at joints O1 and O2 have a different
impact on the force space, but their influence can be made favorable as long as the link lengths
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and torque thresholds are set to appropriate values. In the above design, the motion of joints
O1 and O2 is not limited (the latter can rotate from −π to π) while the revolute joint O3

is limited from −π + δ to π − δ, where δ is an offset angle due to the movement constraints
corresponding to mechanical interferences. Another approach to avoid self collisions is to stack
the links of the manipulator in different planes parallel to each other using the revolute joints.

In order to improve the robot performance, the force boundaries imposed by the base torque
limiter should be restricted between the values of Fmin and Fmax defined by Eqs.(4.13)
and (4.14), respectively. That is to say,

Fmin ≤ Fmin,1 ≤ Fmax. (4.28)

It is noted that Fmin,i is configuration dependent, since the relationship between joint torques
and Cartesian forces depends on the statics Jacobian matrix Jf . Therefore, the inequalities
expressed in Eq.(4.28) can be more specifically rewritten as:

τmax,1
‖j1‖max

≥ Fmin (4.29)

and
τmax,1
‖j1‖min

≤ Fmax. (4.30)

With θ1 = 0, the extremes of ‖j1‖ correspond to the configurations for which

∂‖j1‖
∂θi

= 0, i = 2, 3. (4.31)

Assuming that the first two links are sufficiently long (l1, l2 > lO3O6), after some manipulations,
the following results are obtained

(θ2, θ3)ext = (±π
2
,−π

4
) or (0, arctan(

l1
l2

) +
π

4
). (4.32)

This result is consistent with common sense. By observation, the minimum extreme position
appears when the axes of joints O1 and O3 are perpendicular and line O1O2 is parallel to line
O3O6 and the end-effector is located at the same side of line O2O3 as the base. The maximum
extreme position of the tool centre point is on a line passing through the joints O1 and O3

and further from the base.

As for the second torque limiter, the force is applied in the direction defined by jf,2 which is
always the same as that defined by jf,5 (where jf,i is the ith column of Jf ). Therefore, it is
enough to guarantee that

Fmin,2 ≥ Fmin. (4.33)

The synthesis approach proposed above to determine the values of all variables for the robot
is based on maintaining the achievable force thresholds of the SIFM. In order to illustrate the
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Figure 4.11 – Achievable spatial force space for some configurations. The inner sphere and
the outer half-sphere’s radii are equal to Fmin and Fmax, respectively.

approach, an example of a manipulator, whose non-dimensional parameters satisfy conditions
Eqs.(4.29), (4.30) and (4.33) are set with l1/l5 = 6.5, l2/l5 = 3, τmax,1/τmax,5 = 8.7 and
τmax,2/τmax,5 = (3 +

√
2). Examples of the achievable force polyhedra at the tool centre point

of the end-effector are depicted in Fig. 4.11.

4.3 Contact force and power along the robot links

Although the base torque limiters take part in optimization of the force performance to some
extend, their introduction does not change the magnitudes of the maximum force Fmax and
the minimum force Fmin. Therefore, the ability of the manipulator to apply forces to its
environment mostly depends on the SIFM. However, some unpredictable impacts may happen
on the different links of the robot and thus the potential risks of injury should be taken into
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account. For a spatial manipulator, since collisions may occur in any one direction, it is
necessary to consider the worst case in all directions and all configurations, and to determine
the corresponding maximum contact force. In addition, the potential dynamical risks should
also be taken into account because a manipulator moving at high velocity poses a threat to
humans even if the static force is small.

Considering the manipulator of Fig. 4.10, the input joint-rate limitation is denoted as θ̇max =

[θ̇max,1, θ̇max,2, θ̇max,3]T . The first two torque limiter clutches(τ1 and τ2) are mainly responsible
for preventing accidents which could occur on the links of length l1 and l2. Since the base
revolute joint can only overcome the external force acting on the link of length l1 in the
direction perpendicular to the lever arm, the allowable force and power are given by

F1,max =
τmax,1
L1

, 0 < L1 ≤ l1 (4.34)

P1,max = τmax,1θ̇max,1. 0 < L1 ≤ l1 (4.35)

where Li is the lever arm from the ith torque limiter to the contact point. If the external force
is applied on link l2, the robot becomes a 2-dof spatial manipulator and thus the force space
at the contact point can be represented as a parallelogram whose shape is determined by the
Jacobian matrix

J2 = [j1, j2] = [e1 × r1, e2 × r2]3×2. (4.36)

A method to determine the maximum force is now presented. Firstly, extend the Jacobian
matrix Eq.(4.36) into a 3× 3 square matrix, namely

J′2 = [j1, j2, j1 × j2]. (4.37)

Then, the four vertex vectors Fp,i, (i = 1, . . . , 4) of the force parallelogram in the base reference
frame can be obtained, according to the following expression

Fp,i = J′−T2 τ ′2, i = 1, . . . , 4 (4.38)

where τ ′2 = [±τmax,1,±τmax,2, C]T , where C is a arbitrary constant. For a given configuration,
the norm of the maximum force F2 equals half the longer diagonal of the parallelogram.
Besides, in the singular configurations at θ2 = ±π

2 , two torque limiters impose the external
force in same direction, the maximum force is given by

F2 = max
i=1,2

θ2 6=±π/2

1

2
(Fp,i+2 − Fp,i) , 0 < L2 ≤ l2 (4.39)

and the maximum power can be written as

P2,max = max
θ2 6=±π/2

(
FT

2 J2Θ̇max,12

)
, 0 < L2 ≤ l2 (4.40)
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where Θ̇max,12 = [±θ̇max,1,±θ̇max,2]T .

However, if the contact position is located on the third link, of length l3, the configurations
are singular at θ2 = ±π/2 or θ3 = arctan(l1/l2), where the force polyhedra degenerate to
polygons. On the link l4, singularities exist at the poses for which θ2 = ±π/2. In the absence
of singularities, collisions occuring on the SIFM of Fig. 4.10, the maximum forces Fn,max and
the maximum power Pn,max on the nth link of the manipulator can be computed as

F 2
n,max = max

(
(τ ′n,ijk)

TJ−1
n,ijkJ

−T
n,ijkτ

′
n,ijk

)
, n = 3, 4, 5 (4.41)

and the maximum power is

Pn,max = max
(

(τ ′n,ijk)
TJ−1

n,ijkJkΘ̇max

)
, n = 3, 4, 5 (4.42)

subject to
−τn � JTn (J−Tn,ijkτ

′
n,ijk) � τn (4.43)

where
τ ′n,ijk = [±τmax,i,±τmax,j ,±τmax,k]T

Jn,ijk = [jf,i jf,j jf,k], ∀(i, j, k) ∈ {1, . . . , n}

Θ̇max = [±θ̇max,1,±θ̇max,2,±θ̇max,3]T

and
τn = [τmax,1, τmax,2, . . . , τmax,n]T .

Finally, setting l5 = 1(m) and τmax,5 = 50(N/m), the maximum forces Fmax applied along
the robot links are presented in Fig. 4.12. It is obvious from the Fig. 4.12 that the largest
Fmax is around 100 times more than the smallest. F1,max reaching infinity nearby the base
joint is inevitable because of the small lever arm, while the reason for which F2,max, F3,max

and F4,max are so large arises from the configurations close to the singularities. Fmax, infinity
in singularities, only stands for the worst cases (an offset δ away from the singularities) in all
configurations, which can be reduced by prescribing the workspace of the robot. For instance,
Fig. 4.13 and Fig. 4.14 illustrate the distributions of the maximum forces exerted on some
different points of the links l2 and l3. The further away robot moves from the singular poses,
i.e.,the larger offset δ, the smaller F2,max and F3,max will be.

The joint rates prescribed as θ̇max = [0.1, 0.1, 0.2]T (rad), the maximum power Pi,max corre-
sponding to the ith link are plotted in Fig. 4.15. It is worthwhile to note that the maximum
powers would be to maintain under the safety standard (80W as stated in [ISO10218, 2006])
everywhere of the manipulator. Especially for the most critical point—the tool centre of the
end-effector, its power is depicted in Fig. 4.16 symmetrically with respect to θ2 = 0. It can
also be observed in Fig. 4.16 that the maximum power appears around θ3 ∈ (0, π2 ), which
makes sense significantly in practice.
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Figure 4.12 – Fmax along the robot links.
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4.4 Alternative 3-dof spatial robot with SIFM and force
limiters

In the preceding discussions, a 3-dof spatial manipulator which comprises the SIFM and two
torque limiters in series with each of the revolute joints has been analyzed. The study outlined
above pertains to the geometry of the manipulator, for it involves the optimal force space of
the end-effector. Besides geometry, the statics and kinematics of the manipulator determine
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Figure 4.15 – Pmax along the robot links.

the posture of the potential collisions risks. In this section, we study another architecture of
spatial mechanism obtained by mounting the force limiters nearby the actuated joints at O1

and O2 instead of using torque limiters, as shown in Fig. 4.17. The two force limiters are
placed close to the joints O1 and O2, in order to guarantee more safety for the humans when
the collisions occur on the first two links. Supposing the limiter is set up further away from the
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Figure 4.16 – The maximum power at the tool centre point of the end-effector with respect to
θ2 and θ3.

base, the humans will be in danger when the robot hits the people on the first link. Besides,
the distal part of the spatial manipulator is set up as a SIFM at joint O3 as well, mainly
preserving the isotropic force space at the tool centre point. The manipulator architecture is
fully defined by its 4n DH parameters, given in Tab. 4.7, including the three joint coordinates,
namely θ1, θ2 and θ3. Except for the joint variables, the other parameters remain constant,
especially the ones associated with the force/torque limiters. In this regard, the two distinct
Jacobian matrices which are equivalent to these of Eqs.(4.25) and (4.26) are written here as

Jk = [e1 × r1, e3 × r3, e5 × r5] (4.44)

Jf = [ e2, e4, e5 × r5, e6 × r6, e7 × r7]. (4.45)

Then, the maximum contact force and the maximum power of this manipulator, either at the
end-effector or along the links, can be readily determined by means of derivations similar to
those presented in the preceding section with the same architecture of SIFM. For the force
limiters, in order to optimize significantly the force performance of the end-effector, we can
prescribe their force thresholds to be identical to the global minimum force Fmin, namely

f1,max = f2,max = Fmin. (4.46)
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Figure 4.17 – Alternative 3-dof spatial robot combining force limiters with SIFM.

i ai bi αi θi
1 a 0 π/2 θ1

2 0 −b π/2 π/2
3 c l1 π/2 θ2

4 l2 −d 0 0
5 l3 0 0 θ3

6 0 0 π/2 0
7 l5 l4 0 π

Table 4.7 – DH parameters for the manipulator of Fig. 4.17.

Besides, the other geometric parameters can be set rather freely. For instance, Fig. 4.18 and
Fig. 4.19 presents the contact force and power along the robot links with l1 = l2 = 2(m) and
a = b = c = d = 0.2(m).

Furthermore, it is noteworthy that the singular poses for contacts on l3 are given by sin θ2 cos θ3 =

0, which is the reason why F3,max and P3,max go beyond the stated standards (150N for the
force and 80W for the power), as decipted in Fig. 4.18 and Fig. 4.19, respectively. In addition,
F3,max and P3,max are computed with an offset δ = π/20 away from the singular postures,
thereby choosing a larger offset, reduces the maximum force and power. Taking the contact
point A at L3 = 0.5(m) of Fig. 4.19 as an example, the magnitude of the maximum power
at A is given by the maximum value in all configurations shown in Fig. 4.20. If we constrain
the joint O3 to the domain of θ3 ∈ {3π

4 ,
5π
4 }, P3,max at point A will be reduced to the safe

standard. Finally and most importantly, the tool centre point of the end-effector is definitely
safe for the person carrying out the task at hand, as shown in Fig. 4.21.

An advantage of using force limiters instead of torque limiters is that, so long as Eq.(4.46) is
satisfied, the architecture of the manipulator tends to be more compact. Moreover, compared
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with Fig. 4.12, it can be observed from Fig. 4.18 that F1,max and F2,max imposed by the force
limiters are much smaller, regardless of the joint orientation.

4.5 Conclusions

This chapter presented the synthesis approach for the design of mechanically safe robots based
on the concept of spatial isotropic force modules. SIFMs were proposed in order to ensure
that the feasible force space at the end-effector of the robot remains well-conditioned for any
configuration of the robot, thereby alleviating the configuration dependent transformation
between articular torques and Cartesian forces. The conditions required to ensure isotropy
of the forces at the end-effector were derived and some examples of SIFMs either decoupled
or coupled modules were illustrated with good capabilities of achievable force spaces. The
3-dof spatial manipulator including a SIFM was designed with appropriate link lengths and
torque thresholds and optimal end-effector force spaces were obtained. Besides the contact
force at the end-effector, the forces applied on the robot links were studied as well as the
power involved in potential collisions. Although the exerted force at the end-effector is below
the stated force limit of 150(N), the maximum forces along the links can be rather large, but
can be decreased by restricting the robot work space.
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Figure 4.18 – The maximum forces acting along the robot links.
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Chapter 5

Design of force limiters

The preceding study of intrinsically safe manipulators is based on the concept that the ma-
nipulator is stiff under a certain torque/force level and compliant when the limit is exceeded.
Recently, some mechanisms have been proposed in [Park et al., 2008a] and [Lauzier et al.,
2009], which are passive and thus free from the lack of reliability of electronic controllers. For
these reasons, using this type of nonlinear compliant mechanisms is a very promising approach
to create safe robots while optimizing their force performances under normal conditions.

This chapter presents some designs based on the concept proposed in [Lauzier et al., 2009]
that are stiff under a certain force level and compliant otherwise. For conciseness, this type of
mechanisms will be called uniform force limiter (UFL). The behaviour of the UFL combined
into a spatial manipulator with a planar mechanism is demonstrated as a passive prismatic
joint. Then, a mechanism of no-return UFL is proposed. A PIFM and a SIFM built using this
device are exposed and their experimental results are presented. Finally, some mechanisms
of elastic return force limiters are developed, which can bring the robot links back to their
original positions after an applied excessive force is removed.

5.1 Concept of uniform force limiter

Fig. 5.1 presents a simple force limiter to be used to construct the vertical displacement part
of a robot. It consists of a four-bar parallelogram linkage in which one of the rotating joints is
replaced with a torque limiter (lower base joint, dark in the figure). Under normal conditions,
the torque limiter prevents the mechanism from moving. However, when a sufficient force
is applied on the effector, the torque limiter exceeds its activation threshold, allowing the
mechanism to move. Thus, the effector is free to move relative to the base of the robot and
the body involved in the collision perceives only the inertia of the end-effector, which can
be significantly lower than that of the entire robot. In the figure, the force analysis of the
mechanism is also shown. Applying a normal force F at the effector, according to the principle
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Figure 5.1 – Schematic representation of the uniform force limiter.

of static equilibrium, one has
−fxa sin θ + fya cos θ + τ = 0

fxa sin θ − f ′a cos θ = 0

f ′ + F = fy

fxb = Fl

(5.1)

which leads to
F = − τ

a cos θ
(5.2)

where the negative sign represents a force in a direction opposite that of the torque.

It can be observed, from Eq.(5.2), that the torque τ is independent from l. Indeed, one of the
advantages of such a parallelogram architecture is that the torque transmitted to the clutch
depends only on the force applied on the end-link and not on its location on the effector.
This allows a uniform activation threshold over the entire surface of the effector. However,
the parallelogram mechanism reacts only to the force component normal to the end-link. If
the contact force applied is not normal to the link, there is another more limiter integrated to
sustain the other component of force, which will be mentioned in the planar prototypes later.

5.2 Spatial safety mechanism combining UFL with PIFMs

The behaviour of the UFL and the planar 4-link manipulator of Fig. 3.12 can be combined into
a spatial architecture as shown in Fig. 5.2. This architecture cannot only keep the optimal
force polygons at the end effector but the UFL can compensate for the weight of the 4-link
planar manipulator as well.

The external static force that can be imposed at the links of the robot in the vertical direction
Fz must satisfy the following inequality

Fza cos θ ≤ τmax − τg (5.3)

where τmax is the activation torque threshold of the UFL and τg is the torque transmitted from
the gravity of the 4-link manipulator. However, when the external force is applied opposite to
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Figure 5.2 – Spatial 3-dof manipulator combining a uniform force limiter and the planar 2-dof
4-link manipulator of Fig. 3.12 with two PIFMs. A vertical prismatic joint at the base provides
the vertical motion while the 2-dof planar manipulator provides the horizontal motion.

the gravitational direction, the inequality becomes

Fza cos θ ≤ τmax + τg. (5.4)

Therefore, the maximum force Fz in the gravitational direction is smaller than that in the op-
posite direction due to the weight of the planar manipulator. However, although the achievable
force in the vertical direction is not symmetrical, as shown in Fig. 5.3, it is decoupled, which
simplifies the control. Moreover, the torque limiter could be designed such that its activa-
tion torque is not the same in both directions, which could then make the achievable force
symmetric.

Since collisions may occur in combined directions, for the spatial force space, the optimal case
is that the maximum Fz circumscribes the sphere of radius Fmin expressed in Eq.(3.32), that
is,

Fzmax = Fmin (5.5)

Achievable
Force

Fzmax

Gg

fx

fz

Figure 5.3 – The achievable force in the vertical direction (Gg is the weight of the 4-link
manipulator).
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Figure 5.4 – Achievable spatial force space for some configurations limited between a sphere
and a half-sphere whose centre is at [0,0,−Gg] and radii are equal to Fmin and Fmax (computed
from Eq.(2.52)), respectively.

Some examples of the spatial force space are presented in Fig. 5.4. It can be observed that it
is not difficult to adjust the limit torque on the uniform force limiter in order to obtain a well
balanced force distribution.

5.3 Isotropic prototypes based on no-return UFLs

5.3.1 Mechanical design of no-return UFLs

Based on the parallelogram transmision of Section 5.1, a uniform force limiter is designed as
shown in Fig. 5.5(a). The clutch, i.e., UFL, is locked by the extended spring, unless the
external force F produces a force level beyond the force required to overcome the preload of
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(a) Locked

-F

A
B

(b) Unlocked

Figure 5.5 – Force limiter, based on a parallelogram linkage (A video of no-return force limiter
and its force capability are shown in “Single no-return limiter.avi”).

the spring as shown in Fig. 5.5(b). When the force limit is exceeded, the pin on which the
pre-loaded spring is attached slides along the circular arcs, as shown in Fig. 5.5(b). Since
the arcs are centred respectively on joints A and B, this motion does not further extend
the spring. Hence, once the clutch is triggered, the resisting force drops drastically. Also,
the mechanism does not return to its original configuration if the external load is removed.
Due to this behaviour, such a limiter is referred to as a no-return limiter. By contrast, the
linear-spring force limiter shown in Fig. 3.6 is referred to as an elastic return limiter since
it returns to its reference configuration when the external load is removed. However, when
the threshold force of an elastic return limiter is exceeded, the resisting force continues to
increase. Each type of limiter has its own advantages. Returning to the UFL of Fig. 5.5, due
to its symmetrical structure, this mechanism provides a two-way no-return force clutch with
a single extension spring. The design is compact and simple.

Referring to Eq.(5.2) and to Fig. 5.5, it can be noted that the force required to trigger the
limiter is only dependent on the limit torque and not on the location of the applied force,
which is indeed the requirement for a force limiter. Compared with the low-stiffness linear-
spring force limiter (elastic return limiter) shown in Fig. 3.6, the force limiter of Fig. 5.5
possesses different force capabilities. In the latter design, if the force threshold is exceeded,
the centre pin on which the spring is attached slides on the arc and the force threshold goes
down to almost zero, as shown in Fig. 5.6. Fig. 5.6 compares the behaviour of elastic return
limiters and no-return limiters. As mentioned above, each of the two types of limiters have
their advantages. In the context of this project, no-return clutch have the advantage that it is
easy to measure precisely the external force or torque that triggers them using a dynamometer.
Indeed, in order to quantify the performance of the uniform force limiter, a planar isotropic
module built by mounting two force limiters orthogonally on a link and a spatial one built
using three force limiters will be introduced in the following sections.
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Figure 5.6 – Force behaviour for different limiter designs.

5.3.2 Prototype of PP isotropic force module

Based on the architecture of UFL proposed in the preceding section, Fig. 5.7 presents a
prototype of PP isotropic force module, its link being composed of two orthogonal UFLs.
The components are built out of ABS (Acrylonitrile Butadiene Styrene) using 3D printing
except for the springs and pins. Each UFL is actually a two-way force clutch, limiting the
force in both directions of f1 and f2 for the first force limiter (or f3 and f4 for the second
limiter), as shown in Fig. 5.7. Each clutch is calibrated by applying a force measured with
a dynamometer several times, and by computing their mean values as the reference force

fx

F

η

fyf1

f2

f3f4

Base

End-effector

Figure 5.7 – The PP isotropic module composed of two orthogonal force limiters.

i fi1 fi2 fi3 fi4 fi5 fi6 fi,max(N)

1 4.76 4.54 4.78 4.80 4.82 4.86 4.76
2 4.64 4.72 4.72 4.60 4.58 4.62 4.65
3 4.78 4.78 4.64 4.78 4.70 4.60 4.71
4 4.40 4.32 4.46 4.50 4.38 4.54 4.43

Table 5.1 – The reference force thresholds measured and the computed average for each clutch
direction.
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thresholds, as depicted in Tab. 5.1, namely

fi,max =
1

6

6∑
j=1

fij , i = 1, . . . , 4. (5.6)

The reference force thresholds for each clutch are obtained experimentally and plotted as
the straight lines in Fig. 5.8. Due to the errors from many factors such as manufacturing,
assembly, and measurement, the force thresholds of the clutch cannot be absolutely identical,
but as close to each other as possible. Therefore, the force space in Fig. 5.8 is not exactly
square and not exactly centred at the origin.

The mechanism is then assembled, fixed on the base and forces are applied at the end-effector
using a dynamometer in different directions of angle η, referring to the end-effector frame.
The testing angle η is measured with a protractor by steps of π/12 and for each step, the
force magnitudes (fη1, . . . , fη6) are measured and the corresponding unlocked clutch direction
is noted. Finally the mean values are computed as the experimental forces, namely

fη =
1

6

6∑
i=1

fηi. (5.7)

Tab. 5.2 shows the experimental results and it can be observed that two clutches are triggered
at the same time in some directions (η = 45◦ and η = 315◦) which are coincident with
the intersections of the isotropic force space. The experimental forces at the end-effector for
different directions are presented as the stars in Fig. 5.8. It can be observed that the results
closely match the expected isotropic behaviour.

5.3.3 Prototype of SIFM with UFLs

Similarly to the PP isotropic mechanism, a spatial isotropic force module composed of three
force limiters orthogonal to each other is constructed as shown in Fig. 5.9. Each clutch, using
a single spring, produces a bi-directional limiting behaviour in one axis of the end-effector
reference frame, namely f1 and f2 in fy axis, f3 and f4 in fx axis, f5 and f6 in fz axis. By
the same calibration and measurement technique as that exposed in the preceding subsection,
the force thresholds of the clutches are determined experimentally, as shown in Tab. 5.3. For
the mechanism of Fig. 5.9, the force F is exerted at the end-effector using a dynamometer in
different directions of two angles ψ and σ, as illustrated in Fig. 5.9.

In the experiments, ψ is increased by steps of π/12 for each angle value of σ. The achievable
force space obtained experimentally with the spatial prototype is presented in Fig. 5.10(a),
where σ varies from 0 to 5π/6 by steps of π/6 and the corresponding experimental data points
are marked by small circles. The results are superimposed with the reference force limits of
the clutches, the gap between them shown by a cylinder in Fig. 5.10(a). It can be observed
that the experimental results match the reference limits very closely and that proper force
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η fη1 fη2 fη3 fη4 fη5 fη6 fη(N) unlockedfi
15◦ 4.76 4.60 4.46 4.66 4.80 4.94 4.70 f3

30◦ 5.24 5.22 5.50 5.08 5.36 5.36 5.29 f3

45◦ 6.38 6.48 6.32 6.52 6.52 6.30 6.42 f3 or f1

60◦ 5.38 5.30 5.46 5.42 5.38 5.36 5.38 f1

75◦ 4.72 4.84 4.92 4.94 4.92 4.88 4.87 f1

90◦ 4.48 4.70 4.52 4.62 4.62 4.72 4.61 f1

105◦ 4.96 4.82 4.78 4.88 4.82 4.84 4.85 f1

120◦ 5.38 5.58 5.64 5.24 5.68 5.58 5.52 f1

135◦ 6.44 6.40 6.52 6.60 6.44 6.30 6.45 f4

150◦ 5.64 5.46 5.34 5.24 5.24 5.50 5.40 f4

165◦ 4.76 4.52 4.80 4.78 4.62 4.74 4.70 f4

180◦ 4.52 4.46 4.72 4.56 4.44 4.64 4.56 f4

195◦ 4.54 4.62 4.64 4.66 4.60 4.60 4.61 f4

210◦ 4.90 5.06 5.26 5.12 5.24 5.38 5.16 f4

225◦ 6.20 6.10 6.06 5.90 6.06 5.08 6.02 f4

240◦ 5.30 5.14 5.18 5.40 4.98 4.90 5.15 f2

255◦ 4.64 4.70 4.70 4.68 4.74 4.72 4.70 f2

270◦ 4.44 4.58 4.64 4.58 4.68 4.60 4.59 f2

285◦ 4.66 4.72 4.72 4.68 4.74 4.70 4.70 f2

300◦ 5.14 5.06 5.14 4.88 5.40 5.12 5.12 f2

315◦ 6.40 6.40 6.28 6.50 6.30 6.46 6.39 f2 or f3

330◦ 5.50 5.56 5.40 5.36 5.22 5.30 5.39 f3

345◦ 4.80 4.96 4.62 4.72 4.68 4.56 4.72 f3

360◦ 4.50 4.50 4.52 4.54 4.56 4.62 4.54 f3

Table 5.2 – Limit forces measured experimentally and the corresponding clutch direction
triggered (angle η is shown in Fig. 5.7).

i fi1 fi2 fi3 fi4 fi5 fi6 fi,max(N)

1 3.10 3.14 3.10 3.20 3.18 3.14 3.14
2 2.96 3.04 2.98 2.96 3.06 2.94 2.99
3 3.36 3.42 3.26 3.36 3.26 3.40 3.34
4 3.18 3.28 3.22 3.20 3.14 3.22 3.21
5 3.22 3.16 3.30 3.22 3.14 3.18 3.20
6 3.82 4.06 3.94 4.12 4.00 3.90 3.97

Table 5.3 – The reference force thresholds measured and then computed for each clutch direc-
tion.

transmission capabilities are obtained for the spatial isotropic module. Furthermore, in order
to quantify the force performance of the prototype, a relative error is defined between the
tested force, ftest, and the corresponding expected force limit (i.e., the ith force threshold
fi,max in the unlocked clutch direction) as follows

ξ =
ftest − fi,max

fi,max
. (5.8)
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Figure 5.8 – Limit forces measured experimentally and expected force thresholds for an
isotropic module comprising two orthogonal force limiters.
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Figure 5.9 – A spatial isotropic module comprising three orthogonal force limiters (A video of
the prototype and its force testing in each direction as shown in “PPP isotropic module.avi” .)

This ratio has a clear experimental interpretation since it directly compares the experimental
and theoretical force thresholds that activate a force limiter. Fig. 5.10(b) illustrates its
evolution for the experiments of the spatial isotropic prototype and it can be observed that
the locus of the measurement error is mostly between the ranges ±10%. Also, the constant
limit forces typically change in some tolerance ranges due to some factors (over time and
temperature for instance). However, since the achievable forces vary linearly with the limit
forces of the clutches, variations of the latter with time will have a limited impact on the
achievable force space, which is deemed reasonable.
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Figure 5.10 – Limit forces measured experimentally and the reference force thresholds for the
spatial isotropic module of Fig. 5.9.
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5.4 Mechanical design of elastic return force limiters

With the no-return force limiter designed in the preceding section, if a robot collides with its
environment and the acting force reaches the threshold imposed by the clutch, the force limiter
will be triggered and its resisting force will rapidly drop to almost zero. In order to protect
humans, one approach to detect the disturbance is that a simple and small magnetic sensor
(Hall effect sensor for instance) can be placed on the passive force limiter, which does not much
increase the complexity. A possible behaviour would be that when a collision is detected, the
robot stops working. Alternatively, another effective approach is to design the elastic return
force limiter which can handle a maximum force. So long as the elastic return limiter works
well and is not broken by an overload, it always returns to the original configuration (and the
robot can keep working) once the overload is removed. Similarly to the no-return force limiter
design, some mechanisms of elastic return UFL are proposed in this section.

5.4.1 Prototype of elastic return UFL

Fig. 5.11 presents an elastic return architecture of force limiter, locked by a single extended
spring and unlocked when the spring preload is exceeded by the collision force F . Compared
with the no-return force limiter, once the clutch is triggered, the centre pin moves with the
component, remaining in the grooves of the component instead of sliding on the guide, as
shown in Fig. 5.11(b). When the external force is removed, the force limiter is brought back
to its reference position (i.e., the pose of Fig. 5.11(a)) by the spring. Hence, if the limiter is
triggered and rotates with an angle ϑ, the length of the spring is extended from l0 to ls.

In order to understand clearly the geometrical relationships in the force limiter, a schematic
representation is presented in Fig. 5.12. After the limiter is unlocked by an angle ϑ, the centre

l0

b/2

a

(a) Locked.

-F

ls
ϑ

(b) Unlocked.

Figure 5.11 – A design of elastic return force limiter.
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Figure 5.12 – Schematic of the mechanism of Fig. 5.11.

pin on which the spring is attached moves from the point P to P ′. Hence, one has

lOP ≡ l0

lOP ′ ≡ ls

and
lOA = lPB = lP ′B =

b

2
.

In Fig. 5.12(b), some auxiliary lines are added. The line OD is parallel to AB intersecting
with P ′B at point D. Line AC is perpendicular to OD at point C. Thus, it is easy to obtain
that lOC = b

2 sinϑ, lDB = lCA = b
2 cosϑ, and lCD = lAB = l0. Then,

lOD = lOC + lCD =
b

2
sinϑ+ l0 (5.9)

lDP ′ = lP ′B − lDB =
b

2
− b

2
cosϑ. (5.10)

In triangle ODP ′, substituting Eqs.(5.9) and (5.10) into lOP ′ =
√
l2OD + l2P ′D, the length of

extended spring can be given by

ls =
b

2

√
(1− cosϑ)2 + (

2l0
b

+ sinϑ)2. (5.11)

The increase of the spring extension after the force limiter is triggered can be defined as follows

∆l = ls − l0 (5.12)

One advantage of the elastic return force limiters integrated in the design of robotic links is
that the robot can make a “detour” around the blocks or humans during the collision and then
go on working. Thus, the fundamental safety for humans is preserved during the collision. As
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Figure 5.13 – Alternative design of elastic return force limiter.

mentioned above, the force threshold of the clutch is affected mainly by the spring and its
increase of the force can be approximately given by

∆fmax ≈
∆lkb

2a
(5.13)

where k is the stiffness of the spring and a is one side length of the force limiter, as shown in
Fig. 5.11(a). In order to protect humans from injury even during the collision, the less the
force increases, the better it can keep the force capabilities of the clutch for all postures. It
can be observed from Eq.(5.13) that the increase of the spring force can be effectively lessened
by reducing k (using a low-stiffness spring for instance) and ∆l.

5.4.2 Alternative mechanism of elastic return UFL

In order to avoid having the spring extension increasing drastically during the collision, an
alternative elastic return force limiter is proposed as shown in Fig. 5.13. Similarly to the
no-return force limiter, its inner parts are symmetrically designed using arcs on which the
centre pin is sliding once unlocked. However, each part is composed of two arcs whose radii
are R1 and R2 centred at O1 and O2 respectively, and the distances between the pivot of
the parallelogram limiter and the geometric centre of the arcs are defined as x1 and x2, as
constructed in Fig. 5.13(a). When the force limit is exceeded by the external force F , the
pin on which the pre-loaded spring is attached slides along the circular arcs as shown in Fig.
5.13(b). Since the arcs are centred beside the pivot O, it produces a resisting torque during the
collision. This torque brings the mechanism back to its original configuration of Fig. 5.13(a),
once the external load is removed.

The geometrical schematic of this elastic return force limiter is shown as Fig. 5.14. At the
original posture of Fig. 5.14(a), the centre pin is located in the intersection of the arcs. Hence,
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Figure 5.14 – The schematic designs of optimal elastic return force limiter with small force
increase during the collision.

one has lO1P = R1, lO2P = R2 and lMN = x1 + x2. From the right triangle O2NP , we can
obtain

lNP =
√
l2O2P

− l2O2N
=

√
R2

2 −
(
b

2

)2

. (5.14)

Therefore, the radius R1 can be expressed as a function of R2, namely

R1 ≡ lO1P =
√
l2O1M

+ l2MP =

√√√√√
√R2

2 −
(
b

2

)2

+ (x1 + x2)

2

+

(
b

2

)2

. (5.15)

At the locked pose of Fig. 5.14(a), the length of the spring can be defined as l0 which equals

l0 ≡ lAP = lAN + lNP = x2 +

√
R2

2 −
(
b

2

)2

. (5.16)

When the mechanism is triggered by the external overload with an angle ϑ, the centre pin
slides from point P to point P ′. At the unlocked configuration depicted in Fig. 5.14(b), based
on the law of cosines, the length of the spring, denoted as ls, can be obtained step by step as
follows:

Step.1 In triangle ∆O′1O1O2, we know lO′
1O1

= b, lO1O2 = (x1 + x2), ∠O′1O1O2 = (π/2− ϑ)

and hence the length of O′1O2 can be computed as

lO′
1O2

=
√
l2
O′

1O1
+ l2O1O2

− 2lO′
1O1

lO1O2 cos(∠O′1O1O2)

=
√
b2 + (x1 + x2)2 − 2b(x1 + x2) cos(π/2− ϑ)

(5.17)
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and then the angle ∠O′1O2O1 is expressed as

∠O′1O2O1 = arccos

(
l2O1O2

+l2
O′
1O2
−l2

O′
1O1

2lO1O2
lO′

1O2

)
= arccos

(
(x1+x2)2+l2

O′
1O2
−b2

2(x1+x2)lO′
1O2

)
;

(5.18)

Step.2 In triangle ∆O′1O2P
′, lO′

1P
′ = R1, lO2P ′ = R2 and the length of O′1O2 is given by

Eq.(5.17) of Step.1. Hence, the angles can be obtained by

∠O′1O2P
′ = arccos

(
l2
O′
1O2

+l2
O2P

′−l2O′
1P

′

2lO′
1O2

lO2P
′

)
= arccos

(
l2
O′
1O2

+R2
2−R2

1

2lO′
1O2

R2

) (5.19)

∠O′1P
′O2 = arccos

(
l2
O′
1P

′+l
2
O2P

′−l2O′
1O2

2lO′
1P

′ lO2P
′

)
= arccos

(
R2

1+R2
2−l2O′

1O2

2R1R2

)
;

(5.20)

Step.3 In triangle ∆OO2P
′, lOO2 = x2, lO2P ′ = R2 and ∠OO2P

′ = ∠O′1O2O1 + ∠O′1O2P
′,

the length of OP ′ is computed by

lOP ′ =
√
l2OO2

+ l2O2P ′ − 2lOO2 lO2P ′ cos(∠OO2P ′)

=
√
x2

2 +R2
2 − 2x2R2 cos(∠OO2P ′)

(5.21)

and using Eq.(5.21), the angles can be given by

∠O2OP
′ = arccos

(
l2OO2

+l2
OP ′−l2O2P

′
2lOO2

lOP ′

)
= arccos

(
x22+l2

OP ′−R2
2

2x2lOP ′

) (5.22)

∠OP ′O2 = π − ∠O2OP
′ − ∠OO2P

′; (5.23)

Step.4 In triangle ∆AOP ′, lAO = b/2, ∠AOP ′ = (π/2 − ϑ − ∠O2OP
′), and the length of

OP ′ is obtained by Eq.(5.21) in Step 3. The length of AP ′ which is indeed the length
of spring ls can then be computed as

ls ≡ lAP ′ =
√
l2AO + l2OP ′ − 2lAOlOP ′ cos(∠AOP ′)

=

√(
b
2

)2
+ l2OP ′ − blOP ′ cos(π/2− ϑ− ∠O2OP ′)

(5.24)

and then
∠AP ′O = arccos

(
l2
AP ′+l

2
OP ′−l2AO

2lAP ′ lOP ′

)
= arccos

(
l2s+l2

OP ′−(b/2)2

2lslOP ′

)
.

(5.25)
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Figure 5.15 – The spring extension increase with respect to angle ϑ, where b = 60(mm),
x2 = 10(mm), and R2 = 30(mm).

The increase of spring length can also be given by Eq.(5.12). Compared to the mechanism
of Fig. 5.11, The spring length increases more slowly, as illustrated in Fig. 5.15. It can be
observed from Fig. 5.15 that the closer the arc centre O1(O′1) is located to the revolute joint
O(O′), the slower the spring extends, which is consistent with intuition.

5.4.3 Force capabilities of the proposed elastic return UFLs

Both architectures of elastic return force limiters proposed in the preceding subsections are
built using 3D printing and then assembled. They both possess the fundamental function that
the limiter can physically return its original configuration after collisions. Now, the attention
is turned to their force capabilities.

For the mechanism of Fig. 5.11, the maximum force imposed by such clutch increases as shown
Eq.(5.13). On the other hand, the force threshold of the force limiter of Fig. 5.13 after it is
unlocked can be computed as follows.

Due to the two different arcs on which the spring force is applied and neglecting friction,
the spring force can be divided into two force components passing through the corresponding
centres of the arcs. The force distribution can be presented as shown in Fig. 5.16. The
increase of spring force is defined as ∆Fs. If the stiffness of spring is k, ∆Fs = ∆lk. Its two
components are defined as ∆Fs1 and ∆Fs2 , respectively. Referring to Fig. 5.16, the forces can
be described by the following equations

∆Fs1 sinα1 = ∆Fs2 sinα2

∆Fs = ∆Fs1 cosα1 + ∆Fs2 cosα2

(5.26)
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Figure 5.16 – Force distribution for the clutch of Fig. 5.13 when it is unlocked.

which yields
∆Fs1 = ∆Fs sinα2

sin(α1+α2)

∆Fs2 = ∆Fs sinα1
sin(α1+α2)

(5.27)

where, referring to Fig. 5.14,

α1 = ∠O′1P
′O2 − α2 (5.28)

α2 = ∠AP ′O + ∠OP ′O2 (5.29)

and ∠AP ′O, ∠OP ′O2 and ∠O′1P
′O2 are respectively given by Eqs.(5.25), (5.23) and (5.20).

The resisting torque, denoted as τ , deriving from these two force components can be given by

∆τ = ∆Fs1d1 + ∆Fs2d2 (5.30)

where d1 and d2 are the lever arms of the two force components about their revolute joints
O′ and O respectively, as shown in Fig. 5.16. In triangle ∆OO′P ′, know lOP ′ , ∠AOP ′ given
in Step 3 and Step 4 of the preceding subsection and lOO′ = b, which makes it possible to
compute the length of O′P ′, namely

lO′P ′ =
√
l2OO′ + l2OP ′ − 2lOO′ lOP ′ cos(∠AOP ′). (5.31)

Then, in ∆O′1O
′P ′ and referring to Fig. 5.16, one has

∠O′O′1E ≡ ∠O′O′1P
′ = arccos

(
l2
O′
1O

′+l
2
O′
1P

′−l2O′P ′

2lO′
1O

′ lO′
1P

′

)
= arccos

(
x21+R2

1−l2O′P ′
2x1R1

) (5.32)
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Figure 5.17 – The increase of force with respect to angle ϑ, where b = 60(mm), x2 = 10(mm),
R2 = 30(mm), a = 70(mm) and k = 1(N/mm).

and in ∆OHO2,
∠OO2H = π − ∠OO2P

′ (5.33)

where ∠OO2P
′ has been obtained in Step 3 of Subsection 5.4.2. Hence,

d1 ≡ lO′E = lO′
1O

′ sin(∠O′O′1E) = x1 sin(∠O′O′1E) (5.34)

d2 ≡ lOH = lOO2 sin(∠OO2H) = x2 sin(π − ∠OO2P
′). (5.35)

Substituting Eqs.(5.34) and (5.35) into Eq.(5.30) yields

∆τ = ∆Fs1x1 sin(∠O′O′1E) + ∆Fs2x2 sin(π − ∠OO2P
′). (5.36)

Finally, the increase of force threshold can be computed by

∆fmax =
∆τ

a cosϑ
(5.37)

where a = lO′Q as shown in Fig. 5.16.

The maximum forces that can be applied by the proposed clutches (elastic return UFLs) are
plotted in Fig. 5.17. From this figure, it can be observed that the force of the advanced
mechanism of Fig. 5.13 increases more slowly than that of Fig. 5.11 after they are triggered,
as expected.

Supposing the same triggering force threshold, fmax, for both mechanisms of elastic return
UFL, their whole force performances, from locked to unlocked, are presented in Fig. 5.18.
This figure just presents a visual representation of the force capabilities of both return force
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limiters, based on the results of Fig. 5.17 instead of tracing from experimental data. It can be
observed that, from Fig. 5.18, the mechanism of Fig. 5.11 possesses the same force capability
as the linear-spring force limiter, whose force threshold keeps increasing after it is unlocked.
However, for the design of Fig. 5.13, once it is triggered, its force drops drastically from
fmax to f0 and then increases slowly according to the way presented in Fig.5.17. The force
spike fmax required to unlock the clutch is due to not only the extended spring but also the
notch in the corresponding cam profile. That is to say, the value of fmax can be changed by
designing the different grades for the notch. The gentler the cam profile is, the smaller fmax
will be. While f0 is a value only related to the preloaded spring. If the initial length of the
spring is defined as l∗, f0 can be computed using the procedure that led to Eq.(5.37), where
Fs = (l0 − l∗) instead of ∆Fs and ϑ is given by a small value (2◦ − 4◦ for instance). The best
case is that f0 is a little smaller than fmax. Thus, the elastic return mechanism of Fig. 5.13
has the expected force performance, maintaining the constant force threshold (as stated by
safety standards) when it is locked and not to be exceeded after it is unlocked, which indeed
ensures the safety for humans. In addition, in order to improve the force performance, the
design of Fig. 5.11 has to use a low-stiffness spring attached on the pin, while for that of Fig.
5.13, good performance can be obtained regardless of the stiffness of the spring (i.e., both
high- and low-stiffness springs can be used). Furthermore, suppose the robot collides with a
human and the various limiters engage. When the human starts moving away from the robot,
the force that the elastic return limiters impact on the person would be same as they start to
disengage from the robot, i.e., the force changes with respect to the displacement decrease as
shown in Fig. 5.18, but flat returning to f0 instead of the spike force fmax for the design of
Fig. 5.13.

From the prototype of the elastic return limiter, it can be observed that there is limited
mechanical displacement of the limiter. Therefore, it is still necessary to use a sensor to
indicate that a collision is taking place even if the limiters do engage so that the robot stops
working immediately. Thus, the case in which the robot keeps pushing into the humans when
the limiter reaches its mechanical limit can be avoided.

5.5 Conclusions

This chapter presented two mechanical designs of force limiters, a no-return mechanism and
an elastic return mechanism. Both limiters were similarly designed to be bi-directional with a
single extension spring. Since the two arcs supporting the pin on which the spring is attached
are centred at the revolute joints of the force limiter, the resisting torque of the no-return
force limiter drops drastically when the limiter is triggered. The no-return limiter is easily
used to measure the external force that activates it using a dynamometer. Therefore, passive
prototypes of planar and spatial isotropic modules equipped with only no-return force limiters
were built and tested experimentally. The experimental results obtained closely match the
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Figure 5.18 – Force capabilities of the proposed mechanisms of elastic return force limiter (A
video of both types of elastic return force limiters and their force performance as shown in
“Elastic return limiter.avi”).

expected force limiting properties. In order to reduce the effect of potential collisions on task
performance, an elastic return limiter was proposed by changing the shape of the two arcs.
The resisting torque of elastic return limiters would not be zero even if the external load is
removed so that the clutch can return to its original position. Two architectures of elastic
return force limiter were built to demonstrate the feasibility of the design concept and their
force performance were studied as well.
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Chapter 6

Design of torque limiters

In the concept of Series Clutch Actuator(SCA) [Lauzier and Gosselin, 2011], torque limiters are
mounted on the joints of a serial robot. Its clutches are based on the multi-disc friction clutches
and the torque threshold of each of the joints is adjustable in real time by the controller.
However, the mechanical design is rather complex. In this work and as presented in the first
chapters of this thesis, instead of using on-line adjustable torque-limiting devices, no-return
torque limiters with constant thresholds are proposed, which greatly simplifies the mechanisms.
The latter are mounted on the robot structure and not necessarily at the actuated joints.
Then, the torque limiters are used to construct planar and spatial isotropic modules. Due
to the distinctive design of the torque limiters, the modules can be compactly built. Using
this approach and combining force limiters proposed in the previous chapter, it is shown
that appropriate force limitation behaviour can be obtained. Furthermore, the experimental
measurements are provided to illustrate the effectiveness of the proposed approach and design.
Finally, elastic return design of torque limiters is also developed for rounding the collision and
keeping on the original movements.

6.1 Design of no-return torque limiters

The design concept of the clutch is illustrated in Fig. 6.1. In this schematic representation,
it is assumed that one of the joints includes a preloaded bi-directional torsional spring. The
latter is in fact replaced by a single extension spring in the actual design as it will be shown
below. When a force F applied on the distal link exceeds the prescribed limit, the mechanism
unlocks and undergoes some motion. Referring to Fig. 6.1, the force transmission of this
mechanism can be described by the following equations obtained from the free-body diagrams
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Figure 6.1 – Design principle of the torque limiter.

of the different components
fxa sinφ+ fya cosφ = τ

fxa sinφ = f ′ya cosφ

f ′y + F = fy

fxb = Fl

(6.1)

which yields

F =
bτ

a(b cosφ+ 2l sinφ)
. (6.2)

Obviously, for a given preload τ , the force required to trigger the motion decreases with an
increase of the distance l between the point of application and the device. Furthermore, it
can be noted that if angle φ is set to zero, the force required to trigger the limiter is only
dependent on the limit torque and not on the location of the applied force, which is indeed
the requirement for the no-return force limiter given in Eq.(5.2).

Based on the transmission of Eq.(6.2), a torque limiter is designed as shown in Fig. 6.2(a).
The clutch is locked by a single extended spring, unless the external force F produces a torque
beyond the torque limit as shown in Fig. 6.2(b). When the torque limit is exceeded, the pin
on which the pre-loaded spring is attached slides along the circular arcs, as shown in Fig.
6.2(b). Since the arcs are centred respectively on joints A and B, this motion does not further
extend the spring and two components of the spring force acting on the arcs indeed pass
through the centres A and B. Hence, once the limiter is triggered, the resisting torque drops
drastically. Also, the mechanism does not return to its original configuration if the external
load is removed. Due to this behaviour, such a limiter is referred to as a no-return torque
limiter. And due to its symmetrical structure, this mechanism provides a two-way no-return
torque limiter with a single extension spring. The design is compact and simple. Moreover,
the centre of rotation is located as indicated in Fig. 6.1, which means that the device does
not have to be physically co-located with an actuated joint even if a maximum torque at an
actuated joint is desired.

102



(a) Locked

F

A B

-

(b) Unlocked

Figure 6.2 – Torque limiter (A video of single no-return torque limiter and its force capability
in “Single no-return limiter.avi” .

For this clutch, it is easy to measure precisely the external force fi that triggers it using a
dynamometer applied at different points of a lever, as shown in Fig. 6.3. At each point,
the force required to trigger the device is measured several times, as recorded in Tab. 6.1.
Then, a reference maximum torque at the virtual centre, denoted as τref , can be obtained
experimentally by determining the mean value of several tests and the corresponding lever
arm li, namely,

fi =
1

6

6∑
j=1

fij . (6.3)

From the static equilibrium equation, one then has

τref =
1

n

n∑
i=1

fili (6.4)

where n (here, n = 15) is the numbers of measurement along the distal link. The experimental
data and computed reference curve of the torque limiter are given in Fig. 6.4. It can be
observed that the expected behaviour is closely reproduced.

6.2 Compact prototype of isotropic modules with torque
limiters

For the isotropic modules comprising only torque limiters—either the planar module or the
spatial module proposed in preceding chapters—due to the isotropic conditions, the mecha-
nisms tend to produce “elbows” that may be cumbersome during the operation of the robot.
In order to alleviate significantly this problem, the design of the torque limiter of Fig. 6.2 can
be integrated into the construction of the isotropic modules.
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i fi1 fi2 fi3 fi4 fi5 fi6 fi(N) li(cm)

1 2.90 2.92 2.88 2.90 2.94 2.90 2.91 9.2
2 2.50 2.54 2.52 2.56 2.52 2.54 2.53 10.2
3 2.32 2.26 2.34 2.30 2.32 2.28 2.30 11.2
4 2.14 2.12 2.10 2.14 2.10 2.12 2.12 12.2
5 1.96 1.96 1.96 1.98 2.00 1.98 1.97 13.2
6 1.88 1.86 1.82 1.84 1.82 1.86 1.85 14.2
7 1.74 1.72 1.72 1.76 1.74 1.70 1.73 15.2
8 1.64 1.64 1.62 1.66 1.68 1.62 1.64 16.2
9 1.56 1.52 1.54 1.52 1.52 1.54 1.53 17.2
10 1.42 1.44 1.44 1.46 1.42 1.44 1.44 18.2
11 1.40 1.38 1.38 1.38 1.36 1.38 1.38 19.2
12 1.32 1.32 1.34 1.34 1.30 1.32 1.32 20.2
13 1.26 1.26 1.26 1.28 1.24 1.26 1.26 21.2
14 1.20 1.22 1.20 1.22 1.22 1.20 1.21 22.2
15 1.12 1.14 1.14 1.16 1.12 1.14 1.14 23

Table 6.1 – Limit forces measured experimentally and the corresponding lever arm of the
torque limiter.

6.2.1 Planar isotropic prototype

It can be observed that, from the architecture of the torque limiter of Fig. 6.1 and Fig.
6.3, the rotation centre of the clutch is determined by its two sloping components, referred
to as the supporting wings. Hence, the position of the virtual centre can be changed by
modifying the angle between the supporting wings, which means that the rotation centre of
the torque limiter can be freely located, rather than being placed in series with the actuated
joint. Based on this interesting feature, Fig. 6.5 presents two different structures of planar
isotropic modules equipped with torque limiters. From this figure, it can be observed that
the rotation centre of the clutch can be co-located on the actuator of the base as shown in
Fig. 6.5(a), but also mounted freely away from the actuator as indicated in Fig. 6.5(b). Both
arrangement are rather compact and can be integrated in a link having a standard shape.
Most importantly, in order to maintain the isotropic force performance at the end-effector,

li

fi

τref

Figure 6.3 – Measurement module of the torque limiter.
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Figure 6.4 – Limit force as a function of the lever arm li for the torque limiter.

the reference limit torques τ1(τ ′1), τ2(τ ′2) produced at the centres A, B respectively and the
virtual lengths between the centres and the end-effector a1, a2, as shown in Fig. 6.5, must
satisfy the isotropic conditions given in Eqs.(3.9) and (3.10).

As for the prototype of RR isotropic module built in Fig. 6.5(a), each clutch is calibrated by
changing the spring and applying a force measured with a dynamometer so that it satisfies
the isotropic conditions at the end-effector as closely as possible. In order to demonstrate
the force capabilities of the isotropic module, forces are then applied with a dynamometer at
the end-effector in different directions measured with a protractor. When one of the clutches
is triggered, the force in this direction drops down to zero quickly. Thus, the dynamometer
records the peak force, i.e. the triggering force. This procedure is repeated for different
values of angle ε, and the experimental results are recorded and plotted in Fig. 6.6. It can
be observed that the experimental forces closely match the reference force thresholds. In the
experiments, it is worthwhile to note that the reference force thresholds derive from computing
the mean values of the testing forces at the end-effector in the corresponding directions where
ε = {0, π/2, π, 3π/2}, instead of complex measurements and computations of the reference
torque at the rotation centres for each clutch.

6.2.2 Spatial isotropic prototype

Similarly to the planar isotropic mechanisms, Fig. 6.7 presents a prototype of spatial serial
manipulator composed of three torque limiters, individually imposing the force space in three
orthogonal directions. Actually, considering each clutch with bi-directional torque thresholds
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(a) One rotation centre of the torque limiters is fixed on the base (A video of this module
and its force testing in each planar direction as shown in “RR isotropic module.avi”).
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(b) Both rotation centres of the torque limiters are located away the base.

Figure 6.5 – RR isotropic modules compactly constructed using two torque limiters.

at its rotation centre, the prototype can be treated as the module shown in Fig. 6.8 whose DH
parameters are given in Tab. 6.2. In theory, if its geometry and the limit torques satisfy the
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Figure 6.6 – Limit forces measured experimentally at the end-effector and the expected force
thresholds for the RR isotropic module of Fig. 6.5(a).

SIFM conditions given in Eqs.(4.12) and (4.13), a SIFM is developed. It can be observed that,
from the DH parameters in Tab. 6.2, this manipulator belongs to Case 3 in Section 4.1, where
α1 = π/2, α2 = 0. Experimentally, by the same calibration and measurement as these used
for planar modules, the mechanism of Fig. 6.7 readily produces an isotropic force polytope at
the end-effector, which is indeed a SIFM. The architecture of Fig. 6.7 is much more compact
than that of Fig. 6.8 without any “elbows”, due to the virtual rotation centres detached from
the clutches.

6.3 Experiment on robot links equipped with torque and force
limiters

Fig. 6.9 presents a prototype of robot links comprising isotropic modules forming a planar
two-dof robot, based on the architecture proposed in Section 3.2.2. The first link includes two
orthogonal force limiters while the second link is composed of a torque limiter (with centre
of rotation at the joint) and a force limiter with its axis along the second link. Force and
torque limiters are distributed along the structure of the robot in order to ensure that the
forces applied at any point of contact along the links are bounded. Each clutch is calibrated by
applying a force measured with a dynamometer, thereby computing the reference force thresh-
olds. In order to obtain an ideal force performance, it is preferable to adjust the thresholds
of the clutches to be close. The mechanism is then assembled and forces are applied at the
end-effector using a dynamometer in different directions measured with a protractor. This pro-
cedure is repeated for different values of angle θ2, corresponding to different configurations of
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Figure 6.7 – A SIFM with torque limiters.
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Figure 6.8 – Equivalent architecture of the
mechanism of Fig. 6.7.

i ai bi αi θi
1 l1 0 π/2 θ1

2 l2 0 0 θ2

3 l3 0 0 θ3

Table 6.2 – DH parameters of the module
of Fig.6.8.

the two-dof robot. Some examples of the achievable force space obtained experimentally with
the prototype are presented in Fig. 6.10. The results are superimposed with the theoretical
force limits corresponding to the force and torque limiters. It can be observed that the exper-
imental results match the theoretical limits very closely and that proper force transmission
capabilities are obtained for all configurations of the robot.

6.4 Mechanical design of elastic return torque limiters

In human-robot collaboration, there is no doubt that safety is the first priority when designing
robots. It is preferable to ensure human safety but not to disturb their work as well. An
effective and reliable way of reaching this goal is to introduce flexible and intrinsically safe
clutches in the robot links. Hence, it is of great interest to design such clutches, by which the
external force imposed is limited by prescribed thresholds during the collision and which can
bring the robot links back to the reference configurations after the external force is removed.
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The elastic force limiter proposed in Section 5.4 is indeed this kind of clutch. Besides, similar
mechanical designs for torque limiters, i.e., elastic return torque limiters, are proposed in this
section.

6.4.1 Architecture of an elastic return torque limiter

The design concept of the elastic return torque limiter is illustrated in Fig. 6.11, including
the locked and unlocked postures. In this schematic representation, the clutch is designed to
be a bi-directional elastic return torque limiter with a single extended spring, similarly to the
no-return torque limiter. Compared to the no-return torque limiter, the supporting wings are
changed so that the clutch produces the return torque that brings the mechanism back to its
locked posture.

In the locked configuration of Fig. 6.11(a), the length of the preloaded spring is defined as l0,
namely

l0 ≡ lAP . (6.5)

Once the limiter is activated by the external overload with an angle of rotation ϑ, the spring
is extended from point P to P ′, as shown in Fig. 6.11(b). Now, the length of spring is defined

fx

fy

f1

f ′
1

f ′
2

f2

τ

τ ′

f ′
3

f3

End-effector

Base

θ2

θ1

Figure 6.9 – Robot links with two isotropic modules (A video of the 2-dof planar prototype
and its achievable force space as shown in “2-Dof planar robot.avi”).
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Figure 6.10 – Examples of the experimental force spaces at the end-effector with θ1 = 0.
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Figure 6.11 – The mechanical description of an elastic return torque limiter.

as ls, which can be computed by the following equation

ls ≡ lAP ′ =
√
l2O′A + l2O′P ′ − 2lO′AlO′P ′ cos(∠AO′P ′) (6.6)

where

lO′A =
b

2
− a sinφ

∠AO′P ′ = ∠AO′P + ϑ = arctan(
l0
lO′A

) + ϑ

where a, b and φ are defined in Fig. 6.11. Hence, the extension increase of the spring can be
defined as

∆l = ls − l0. (6.7)

6.4.2 Increase of the applied maximum force

When a external force F applied on the distal link exceeds the prescribed limit, the mechanism
unlocks and undergoes some motion, for which the force distribution is presented in Fig. 6.12.
Assuming that the two supporting wings rotate with a same angle (actually the angle is almost
the same if ϑ < π/9), σ = (φ− ϑ). Then, denoting ω = (φ+ ϑ), the force transmission of this
mechanism can be described by the following equations obtained from the free-body diagrams
of the different components

fxa sinσ = −fya cosσ

F sinβ + fx = f ′x
F cosβ + f ′y = fy

fxb cosβ + fyb sinβ = Fl

τ + f ′ya cosω = f ′xa sinω

(6.8)
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Figure 6.12 – The force transmission of the proposed mechanism of Fig. 6.11.

which yields

F =
Qτ

a [l(sinω + tanσ cosω) +Q cos(β − ω)]
(6.9)

where

Q = b (cosβ − tanσ sinβ)

β = arccos

(
l2CD − l2BC − b2
−2blBC

)
lBC = a(sinω + cosω tanσ) + (b− 2a sinφ)

lCD = a− a cosω

cosσ

where a, b are defined in Fig. 6.11(a) and τ is the equivalent return torque deriving from the
extended spring. Denoting the spring force as Fs in the direction of

−−→
P ′A, the return torque

can be obtained by

τ = FslOH = Fs(
b

2
− a sinφ) cosϑ (6.10)

where lOH is the lever arm of the spring force with respect to joint O, as shown in Fig. 6.12.
Substituting Eq.(6.10) into Eq.(6.9) leads to

F =
QFs(

b
2 − a sinφ) cosϑ

a [l(sinω + tanσ cosω) +Q cos(β − ω)]
. (6.11)

Thus, the relationship between the spring force and the force applied at the distal link is
established.

During a collision, the length increase of the spring is given by Eq.(6.7). If the stiffness of the
spring is defined by k, the spring force increases in terms of ∆Fs = ∆lk. Thus, the return
torque is increased by

∆τ = ∆Fs(
b

2
− a sinφ) cosϑ. (6.12)
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Figure 6.13 – Alternative design of elastic return force limiter.

Then, substituting Eq.(6.12) into Eq.(6.9), the maximum force at the clutch increases as

∆Fmax =
Q∆Fs(

b
2 − a sinφ) cosϑ

a [l(sinω + tanσ cosω) +Q cos(β − ω)]
. (6.13)

6.4.3 Alternative mechanism

Using the same design concept as for the elastic return UFL of Fig. 5.13, an improved elastic
return mechanism for torque limiter is proposed in Fig. 6.13, presenting the locked and
unlocked poses. Each of its supporting wings is composed of two arcs whose radii are R1 and
R2, centred at O1 and O2, respectively. The geometric centres of the two arcs are located on
the side line, at distances x1 and x2 away from the revolute joint O, as shown in Fig. 6.13(a).

In order to show clearly the relationships between the lengths, the schematic representation
of the mechanism of Fig. 6.13 is presented in Fig. 6.14. For the purpose of computing the
spring extension in the locked configuration of Fig. 6.14(a), the following variables are given:

lO2P = R2

lAN = x2 cosφ

lOA =
b

2
− a sinφ

lO1M = lOA − x1 sinφ

lO2N = lOA + x2 sinφ

lMN = (x1 + x2) cosφ.

Then, with lNP =
√
l2O2P

− l2O2N
, R1, and l0 can be computed, namely

R1 ≡ lO1P =
√
l2O1M

+ (lMN + lNP )2 (6.14)

l0 ≡ lAP = lAN + lNP . (6.15)
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Figure 6.14 – Schematic representation of the mechanism of Fig. 6.13.

Both are expressed as functions of x1, x2, a, b, R2 and φ which are defined in Fig. 6.14(a).

When the passive torque limiter is activated, the pin with the spring slides from position P
to position P ′, as shown in Fig. 6.14(b). The corresponding spring length is extended to ls,
i.e., lAP ′ . Referring to Fig. 6.14(b) and assuming that the two supporting wings move with
the same angle ϑ, we can obtain ∠OO′O′1 = π/2− (φ+ ϑ) and ∠O1OO

′ = π/2− (φ− ϑ). In
∆OO′O′1, one has lOO′ = (b− 2a sinφ), lO′O′

1
= x1 and then using the law of cosines one has

lO′
1O

=
√
l2OO′ + l2

O′O′
1
− 2lOO′ lO′O′

1
cos(∠OO′O′1) (6.16)

∠O′1OO
′ = arccos

(
l2O′

1O
+ l2OO′ − l2O′O′

1

2lO′
1O
lOO′

)
. (6.17)

In triangle ∆O′1O1O, using Eqs.(6.16) and (6.17) leads to

lO′
1O1

=
√
l2O1O

+ l2
O′

1O
− 2lO1OlO′

1O
cos(∠O1OO′ − ∠O′1OO

′) (6.18)

∠O′1O1O2 ≡ ∠O′1O1O = arccos

(
l2O′

1O1
+ l2O1O

− l2O′
1O

2lO′
1O1

lO1O

)
(6.19)

where lO1O = x1. Then, ls can be computed using the procedure presented in the preced-
ing chapter for the computation of the spring extension of the elastic return UFL of Fig.
5.13(b). However, in Step 4, ∠AOP ′ should be equal to [π/2 + (φ− ϑ)− ∠O2OP

′], instead of
∠AOP ′ = (π/2−ϑ−∠O2OP

′). Finally, the increase of spring length ∆l of the mechanism of
Fig. 6.13 is also given by Eq.(6.7), which is plotted in Fig. 6.15 for different locations of the
arc centre O1(O′1) as well as for the mechanism of Fig. 6.11. It is obvious that the optimized
mechanism leads to a smaller spring extension during a collision or an excessive external force.
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Figure 6.15 – The spring extension increase with respect to angle ϑ, where a = 60(mm),
b = 80(mm), x2 = 10(mm), R2 = 30(mm) and φ = π/9.

6.4.4 Force capalilities

The spring force transmission of the optimized elastic return torque limiter is presented in
Fig. 6.16. The spring force increase ∆Fs can be decomposed into ∆Fs1 and ∆Fs2 which are
exerted on the two arcs passing through their geometric centres O′1 and O2 respectively. The
return torque is defined as ∆τ , then substituted into Eq.(6.9) to compute the increase of the
maximum force, ∆Fmax, namely

∆Fmax =
Q∆τ

a [l(sinω + tanσ cosω) +Q cos(β − ω)]
(6.20)

where
∆τ = ∆Fs1d1 + ∆Fs2d2 (6.21)

which can be computed by the procedure given in Eqs.(5.26) to Eq.(5.36).

Fig. 6.17 describes the force increase for both proposed elastic return mechanisms. From the
figures, it can be observed that the increase of the maximum force that can be applied by the
clutch to its environment is decreased greatly. Thus, the two elastic return torque limiters
have the force capabilities shown in Fig. 5.18.

6.5 Conclusions

In this chapter, some mechanical designs for the torque limiters were proposed including the
no-return and the elastic return clutches. No-return limiters have the advantage that it is easy
to measure precisely the external force or torque that triggers them using a dynamometer.
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Figure 6.16 – The spring force transmission of the mechanism represented schematically in
Fig. 6.14(b).

Hence, based on the no-return torque limiter, prototypes of planar and spatial isotropic force
modules were built to illustrate a possible practical implementation of the concept. Due to
the adjustable position of the centre of rotation, the clutch does not have to be physically
co-located with an actuated joint. Thus, the links of the isotropic modules can be constructed
compactly to include the torque limiters without any cumbersome “elbows”. Experiments on
the planar prototype are conducted and the results obtained closely match the expected force
limiting properties.

As for the elastic return torque limiter, it returns to its reference configuration (locked posture)
when the external force is removed. Thus, a robot equipped with elastic return clutches can
keep working after a collision or a force overload. Two elastic return mechanisms of torque
limiters are proposed. One is returned to its neutral position by a spring force and after the
force threshold is exceeded, the force continues to increase during the unlocked configurations.
The force capability of the improved mechanism is optimized and its force threshold can be
ensured to remain under the safety standards once the clutch is triggered.
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Conclusions

Principal contributions

The contributions presented in this thesis are original, to the best of the author’s knowledge,
in the context of safety in the physical human-robot interaction. Some of these results will
be published in the proceedings of an international conference [Zhang et al., 2015] and in a
scientific journal [Zhang and Gosselin, 2015]. A third paper is also submitted to international
journal [Zhang et al.]. This section presents a brief review of the contributions of the thesis.

Based on the force transmission of serial robotic manipulators equipped with clutches at the
joints, we define two variables to describe the quality of the relationship between limit torques
and Cartesian forces thresholds. One is the minimum force Fmin that can be applied in
any direction at the end-effector while guaranteeing that no clutch is activated. The other
one is the maximum force Fmax in Cartesian force space of the end-effector, which can be
applied by the robot in one direction without triggering any of the clutches. However, both
vary with the manipulator’s architecture and configuration. The force space becomes ill-
conditioned especially close to singularities, which leads to unsafe maximum force or to very
small minimum force for prescribed force thresholds. In order to ensure the safety for humans
and optimize the Cartesian forces, it is proposed to use more passive clutches than actuated
joints.

A planar isotropic force module is proposed to minimize the variation of the Cartesian forces
for different robot poses. Since the relative pose of the module does not change and the
isotropic condition is maintained, the isotropic module always remains unaffected during the
movement unless an excessive force exerted on it triggers the passive clutches. Thus, the
Cartesian force space imposed by the isotropic module at the end-effector is a square. The
isotropic module as a unit is integrated in the design of the robotic links which operate in a
horizontal plane regardless of gravity. The performance to safety index remains excellent for
all configurations of the manipulator. Considering that collisions can occur not only at the
end-effector but on the robot links as well, the force and the power along the links of the robot
are then studied. This analysis provides an assessment of which parts of a manipulator are
dangerous for humans.
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The concept of isotropic force space is extended from the planar module to the spatial module.
The spatial conditions required to ensure isotropy of the forces are obtained for different cases.
In the absence of gravity, an isotropic module is constructed in three-degree-of-freedom spatial
serial robots to illustrate the capabilities of achievable force spaces at the tool centre point of
the end-effector. The forces that can be applied by the robot along its links are also analyzed
as well as the power of potential collisions to demonstrate the effectiveness of the concept.

Then, mechanical designs of force/torque limiters are presented to illustrate a possible practical
implementation of the concept. The limiter is designed as a bi-directional clutch by a single
extension spring attached on a centre pin. The centre pin slides along two circular arcs of the
supporting components once the limiter is activated. If the arcs are centred at the revolute
joints of the mechanism, the limiter does not return to its original position after the external
force is removed. Such a device is referred to as a no-return clutch. By contrast, limiters
in which the centres of the arcs are not located at the joints are referred to as elastic return
clutches, since they produce a torque that can return the mechanism back to its original
pose after the external force is removed. The elastic return clutch is very useful, not only
to protect humans but also to alleviate the drawback of stopping and restarting the machine
during the tasks. Prototypes of these two types of clutches are built by 3D printing and tested
experimentally. It is shown that they possess the properties of the limiters, the force limiter
only depending on the resisting torque while the torque limiter is also affected by the position
of the acting force.

Finally, prototypes of the planar and spatial isotropic modules are built based on no-return
force/torque limiters and tested using a dynamometer. The experimental results closely match
the expected force thresholds of the module. Furthermore, due to the special architecture of
the designed torque limiter, its centre of rotation does not have to be physically co-located
with the actuated joint. Hence, the isotropic modules composed of torque limiters can be
compactly constructed in a link without any cumbersome “elbows”.

Discussion on the proposed approach

Based on the approach proposed in the thesis, ideal solutions with optimal Cartesian force
spaces are obtained by using the isotropic force modules in the construction of the robot.
However, the approach has its own advantages and disadvantages in practical applications.

One of the advantages is that, compared to the adjustable series clutch actuators [Lauzier and
Gosselin, 2011], the isotropic force modules with constant force/torque limits are much simpler
since they do not involve additional actuators and complex control strategies. Especially for
the torque limiter, its centre of rotation does not have to be placed in series with the joint
even if a clutch actuator is desired.
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Another advantage is that prototypes of constant force/torque limiters are lightweight since
they are essentially part of the structure of the robot and they do not required additional
actuators. In this project, all prototypes are built by 3D printing using ABS (Acrylonitrile
Butadiene Styrene) as a material. The mechanisms of isotropic modules equipped with these
clutches are compact and implemented on a serial structure to experimentally validate the
safety gains that can be obtained with such devices.

To follow the safety standard, the static force thresholds for the whole manipulator including
the robot links were analyzed. The exerted force at the distal part close to the end-effector are
below the safety standard. If human beings cooperate with the robot around the tool centre
point of the end-effector, they are indeed safe. However, the maximum force along the robot
links further away from the end-effector can be large (unsafe) for humans due to the singular
configurations, but from the results of static analysis, it can be observed that the force can be
decreased by restricting the robot workspace. Additionally, human beings know the danger
positions so that they can keep away to protect themselves, although it is not a good approach
to safety because people make mistakes.

From a safety standpoint, the static forces were considered in this method, and the maximum
power as well. However, the power was analyzed based on all actuated joints set with constant
rates. Generally, dynamic collisions are more dangerous than static forces and power applied
by the robot. For dynamic collisions, not only the velocity of the manipulator should be
considered, but also the position of placing the clutch, the inertia of the links and their
characteristics such as the mass and stiffness. Considering dynamic collisions, a more complex
model is required and its optimal force spaces would probably be different.

Another limitation of the proposed approach is that gravity is neglected in the static force
analysis. The planar robot can be operated in a horizontal plane, so that the weight of the
links does not have to be considered. However, it is unrealistic for most applications, such as
for a spatial robot. Indeed, the weight of the links produces articular torques that affect the
ability of the manipulator to exert forces. The corresponding Cartesian force space becomes
asymmetric due to gravity. A possible solution would be to use clutches that have asymmetric
force thresholds. In this thesis, only symmetrical designs of clutches are shown, although
they are not absolutely symmetric due to some factors such as friction, manufacturing and
assembly errors. However, this asymmetry is very small, which can alleviate the gravity effect
of light links, but which is not sufficient for heavy links. Alternatively, using counterweights
or springs to compensate for gravity like in [Baradat et al., 2008], the approach proposed here
can be used directly. However, balancing serial manipulators with multiple DOFs can be very
complex, even impossible for some mechanisms.
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Directions for future work

Several intrinsically safe isotropic modules equipped with passive clutches are proposed in this
thesis. These modules are used in the construction of serial robots and static solutions with
effective force spaces at the tool centre point are obtained. This concept of using the passive
force/torque limiters to improve the manipulator’s safety can be extended to parallel robots
in the future, such as tripteron, quadrupteron and delta robot.

Throughout the thesis, in order to simplify the analysis, assumptions are used, including the
absence of gravity. Some symmetrical designs of clutches with force/torque thresholds are
also developed to determine the validity of the results obtained with this method. Future
works include adapting the proposed methods to manipulators and designing asymmetric
clutches, for which gravity cannot be neglected. Considering gravity, the limit torques and
the transformed force polytopes are no longer symmetric, which leads to a somewhat more
complicated static analysis. Moreover, many clutch technologies do not allow asymmetric
clutches and therefore the mechanical design of such devices might be complex and should be
addressed.

Then, in the safety standards, the dynamic analysis of the force capability can be developed,
involving not only gravity but inertia as well. The dynamics of the manipulator play an
important role especially in achieving high-speed performance.

For some applications, a manipulator might require the ability to apply large forces in certain
directions. The proposed approach with constant limiters, which optimize the force space
for all directions, might not be appropriate in this case. The design of non-isotropic systems
should be considered in the future.

Finally, many questions remain as to the best use we can make of passive clutches to improve
safety during physical human-robot interaction. It is also essential to consider implementation
strategies for given proposed approaches, in order to lead to a real application.

122



Appendix A

Geometric modelling of SIMF in the
base reference frame

Referencing to the first joint (i.e., the base) as Cartesian coordinate, the Jacobian matrix
mapping between the joint torques and the end-effector forces is given:

J =
[

[e1]1 × [r1]1, [e2]1 × [r2]1, [e3]1 × [r3]1

]
(A.1)

where

[e1]1 = [0 0 1]T , [e2]1 = Q1e1, [e3]1 = Q1Q2e1

and

[r1]1 = a1 + Q1a2 + Q1Q2a3

[r2]1 = Q1a2 + Q1Q2a3

[r3]1 = Q1Q2a3.

In order to achieve a SIFM, two conditions must be satisfied, namely

jTi jj = 0, i 6= j, i, j = 1, 2, 3 (A.2)

and

Fmin,i = Fmin,j = Fmin, i 6= j, i, j = 1, 2, 3. (A.3)

Without the generality, letting θ1 = 0, it leads to

jT2 j3 = −b33 sin θ3 sinα2 + (a23 cos θ3 + 1) cosα2. (A.4)

If only consider αi ∈ {0, π/2}, there will be four suitable cases presented in Tab. A.1 which
provides a good synthesis method to build an 3-dof isotropic spatial robot.
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Case jT2 j3 = 0
jT1 j3 jT1 j2

cosα1 sinα1 cosα1 sinα1

1 b33 = 0, α2 = π/2 A B C D

2 b33 = 0, α2 = 0, a23 cos θ3 + 1 = 0 E F G H

3 b33 6= 0, α2 = π/2, sin θ3 = 0 I J K L

4 b33 6= 0, α2 = 0, a23 cos θ3 + 1 = 0 M N O P

Table A.1 – Cases for 3-dof isotropic robot expressed in the base reference.

where
A = −a13 sin θ2 sin θ3;

B = −[a13 cos θ3 + cos θ2(a23 cos θ3 + 1 + b23 sin θ3)];

C = (a23 + cos θ3)(a23 + cos θ3 + a13 cos θ2);

D = −(b23 + sin θ3)(a23 + cos θ3) sin θ2;

E = a13 cos(θ2 + θ3);

F = −b23 sin(θ2 + θ3);

G = a2
23 − 1 + a13a23 cos θ2 + a13 cos(θ2 + θ3);

H = −b23[a23 sin θ2 + sin(θ2 + θ3)];

I = 0;

J = −[a13 + a23 cos θ2 + cos θ2 cos θ3 + b33 sin θ2] cos θ3;

K = (a23 + cos θ3)(a23 + cos θ3 + a13 cos θ2) + a13b33 sin θ2 + b233;

L = −b23[(a23 + cos θ3) sin θ2 − b33 cos θ2];

M = a13 cos(θ2 + θ3);

N = −(b23 + b33) sin(θ2 + θ3);

O = a2
23 − 1 + a13a23 cos θ2 + a13 cos(θ2 + θ3);

P = −(b23 + b33)[a23 sin θ2 + sin(θ2 + θ3)].

They are the coefficients of sinα1 and cosα1. For instance, the construction of the manipulator
is subject to case 1, thus it has

jT1 j3 = A cosα1 +B sinα1 (A.5)

jT1 j2 = C cosα1 +D sinα1. (A.6)

Fig. A.1 presents a 3-dof spatial robot to demonstrate how to set up an istropic module.
According to its DH parameters in Tab. A.2 and the isotropic condition (A.2), we can obtain

jT2 j3 = a23 cos θ3 + 1 = 0 (A.7)

which yields

a23 =
l2
l3

= − sec θ3, ∀θ3 ∈ (
π

2
,
3π

2
). (A.8)
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Figure A.1 – An example of designing 3-dof isotropic manipulators.

i ai bi αi θi
1 0 0 π/2 θ1

2 l2 0 0 θ2

3 l3 0 0 θ3

Table A.2 – DH parameters of the manipulator of Fig. A.1.

It is obvious that the structure of this manipulator belongs to Case 2 in Tab. A.1, and it also
satisfies

jT1 j3 = E cosα1 + F sinα1 = 0 (A.9)

and
jT1 j2 = G cosα1 +H sinα1 = 0. (A.10)

Therefore, Jacobian matrix of the robot is an orthogonal matrix and the geometry of Fig. A.1
is indeed established.

Make the same denotation of the ratios between the joint limit torques as

β =
τmax,1
τmax,3

(A.11)

γ =
τmax,2
τmax,3

. (A.12)

Substituting Eq.(A.8) into the second condition Eq.(A.3), the torque thresholds can be given
with respect to the geometry of the manipulator, namely{

γ = |tan θ3|
β = |− cos θ2 sec θ3 + cos(θ2 + θ3)|

(A.13)

which expressed in the absolute form as the torques must be positive. Finally, the SIFM
can be determined by Eqs.(A.8) and (A.13). Fig.A.2 shows two designs of SIFM and their
achievable spatial force spaces at the tool centre point of the end-effector.
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(a) θ2 = −π/4

(b) θ2 = 3π/4

Figure A.2 – Achievable force cubes of the isotropic robots where ρ = 0.707, γ = 1 and β = 1
with respect to θ3 = 3π/4.
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