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Résumé

L’estimation de l’orientation d’un corps rigide en mouvement dans l’espace joue un rôle indis-

pensable dans les technologies de navigation, par exemple, les systèmes militaires de missiles,

les avions civils, les systèmes de navigation chirurgicale, la cartographie faite par des robots,

les véhicules autonomes et les contrôleurs de jeux. Cette technique est maintenant utilisée

dans certaines applications qui nous touchent directement, notamment dans les contrôleurs de

jeux tels que la Wii-mote. Dans cette veine, la recherche présentée ici porte sur l’estimation de

l’orientation d’un corps rigide à partir des mesures de capteurs inertiels et magnétiques peu

coûteux.

Comme les capteurs inertiels permettent de mesurer les dérivées temporelles de l’orientation,

il est naturel de commencer par l’estimation de la vitesse angulaire. Par conséquent, nous

présentons d’abord une nouvelle façon de déterminer la vitesse angulaire d’un corps rigide

à partir d’accéléromètres. Ensuite, afin d’estimer l’orientation, nous proposons une nouvelle

méthode d’estimation de l’orientation d’un corps rigide dans le plan vertical à partir des me-

sures d’accéléromètres, en discernant ses composantes inertielle et gravitationnelle. Mais, ce

n’est sûrement pas suffisant d’estimer l’orientation dans le plan vertical, parce que la plupart

des applications se produisent dans l’espace tridimensionnel. Pour estimer les rotations dans

l’espace, nous présentons d’abord la conception d’un contrôleur de jeu, dans lequel tous les

capteurs nécessaires sont installés. Ensuite, ces capteurs sont étalonnés pour déterminer leurs

facteurs d’échelle et leurs zéros, de manière à améliorer leurs exactitudes. Ensuite, nous déve-

loppons une nouvelle méthode d’estimation de l’orientation d’un corps rigide se déplaçant dans

l’espace, encore en discernant les composantes gravitationnelle et inertielle des accélérations.

Finalement, pour imiter le contrôleur de jeu Wii, nous créons une interface usager simple de

sorte qu’une représentation virtuelle du contrôleur de jeu puisse suivre chaque mouvement du

contrôleur de jeu conçu (réalité virtuelle). L’interface usager conçue montre que l’algorithme

proposé est suffisamment précis pour donner à l’usager un contrôle fidèle de l’orientation du

contrôleur de jeu virtuel.
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Abstract

Estimating the orientation of a rigid-body moving in space is an indispensable component of

navigation technology, e.g., military missile systems, civil aircrafts, surgical navigation sys-

tems, robot mapping, autonomous vehicles and game controllers. It has now come directly

into some aspects of our lives, notoriously in game controllers, such as the Wiimote. In this

vein, this research focuses on the development of new algorithms to estimate the rigid-body

orientation from common inexpensive inertial and magnetic sensors.

As inertial sensors measure the time derivatives of the orientation, it is natural to start with

the estimation of the angular velocity. More precisely, we present a novel way of determining

the angular velocity of a rigid body from accelerometer measurements. This method finds ap-

plication in crashworthiness and motion analysis in sports, for example, where impacts forbid

the use of mechanical gyroscopes. Secondly, in an attempt to estimate the orientation in a

simplified setting, we propose a novel method of estimating the orientation of a rigid body in

the vertical plane from point-acceleration measurements, by discerning its gravitational and

inertial components. Thirdly, it is surely not enough to estimate the orientation in the vertical

plane, because most applications take place in three dimensions. For estimating rotations in

space, we first present the game controller design, in which all necessary sensors are installed.

Then, these sensors are calibrated to determine their scale factors and offsets so as to improve

their performances. Thence, we develop a novel method of estimating the orientation of a rigid

body moving in space from inertial sensors, also by discerning the gravitational and inertial

components of the acceleration.

Finally, in order to imitate the game controller Wii, we create a simple user interface in

which a virtual representative of the game controller follows every orientation of the true

game controller (virtual reality). The user interface shows that the proposed algorithm is

sufficiently accurate to give the user a transparent control of the orientation of the virtual

game controller.
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â m/s2 The accelerometer measurement

a m/s2 The true acceleration component along the

accelerometer sensitive direction

b m The position vector of pointB with respect

to point O

B The moving frame

c̈ m/s2 The combined inertial and gravitational

acceleration

e The unit vector representing the sensitive

direction of the accelerometer

F The fixed frame

g m/s2 The gravitational acceleration

Kd,b,Kd,v s−1 The tuning parameters for position in the

interface

m̂ T The magnetometer measurement

m T The true magnetic North

M The magnetometer frame

O The frame defined by the Optitrack

p m The position vector of the accelerometer

with respect to fixed point O

qM The quaternion representing rotations

Q The rotation matrix from the fixed frame

F to the moving frame B
r m The position vector of the accelerometer

with respect to reference point B

RBO The rotation matrix from frame O to

frame B
v V The voltage output of the accelerometer

v V The vector of sensor output voltage

xv



w The weighting factor for estimating the an-

gular velocity

α rad/s2 The vector of the angular acceleration

α rad/s2 One component of the angular acceleration

β m/s3 The time rate of the inertial acceleration

γ rad/s3 The time rate of the angular acceleration

α, a.k.a. angular jerk

δa m/s2 The accelerometer measurement noise

δa m/s2 The vector of accelerometer measurement

noise

∆t s The sampling time

δα rad/s2 The angular acceleration error

δω rad/s The angular velocity error

η m/s2 The offset of the accelerometer

θ deg The pitch angle

µ m/s2

V The scale factor of the accelerometer

ρ The weighting factor in the MSE method

σ2a

(
m/s2

)2
The measurement noise variance of a single

accelerometer

σ2b m2 The variance of the position noise

σ2m T2 The variance of the magnetometer mea-

surement noise

σ2β

(
m/s3

)2
The variance of one component of β

σ2γ

(
rad/s3

)2
The variance of γ

σ2φ deg2 The variance of the angle φ

Σω (rad/s)2 The covariance matrix of ω̂

φ deg The roll angle

φ̃ deg The estimated orientation in the vertical

plane from the time-integration method

φ deg The estimated orientation in the vertical

plane from the tilt-sensor method

φ̂ deg The estimated orientation in the vertical

plane from the MSE method

φX , φY , φZ deg The rotation angles

ψ deg The azimuth angle

ω rad/s One component of the angular velocity

ω rad/s The vector of the angular velocity

xvi



ω̂ rad/s The estimated angular velocity or gyro-

scope measurement

xvii





Pas à pas, on va loin.

France et Chine

xix





Acknowledgements

Life should be colorful, and four years and a half of living with the research and the thesis

is a part of my colorful life. Some people say that the Ph.D. life is boring and some others

disagree with this. In my opinion, whether it is boring or interesting, Ph.D gives us a way of

thinking, creating and proposing our own methods. This is of much importance in our future

life.

During these four years, I would say that the most interesting and fortunate thing is working

with many gracious, amiable, creative and lovely people. Foremost, I would like to show great

gratitude to my supervisor Prof. Philippe Cardou. His patience, diligence and intelligence left

me a deep impression. Everytime when I got in difficulty in research, his opening mind and

creative thinking always made me out of it, which is like the light at the end of the tunnel. In

addition, his comprehensive expertise in robotics and navigation systems in such a young age

always inspired me to go forward.

Meanwhile, I want to thank my co-supervisor Prof. André Desbiens for his tremendous help

in my research. His technical and experimental support helped me save much time, especially

the laboratory and the Optitrack system. His outstanding knowledge of electrical engineering

and control systems was also of much help in the development of new algorithms. In addition,

special thanks are also due to Prof. Eric Gagnon who is from Defence Research and Develop-

ment Canada (DRDC). In the supervisor group, his constructive suggestions always pushed

my research into further and deeper steps.

Moreover, I am also grateful to members of my thesis defence committee, Prof. Yves St-Amant

and Prof. Lionel Birglen. Thank you for your valuable time to read my thesis and give your

significant comments and suggestions. This will help improve much for my thesis.

The support of all the members in the Laboratoire de robotique is dutifully acknowledged.

Special thanks are given to Boris Mayer-St-Onge, Simon Foucault, Thierry Laliberté and

xxi



Marc-Antoine Lacasse. Thanks for their great help with the installation of software and their

technical support. Particularly, Michel Dominique from the Department of Mechanical En-

gineering and Guillaume Chauvet from École Centrale de Nantes are also acknowledged, as

their significant help on design of PCB and game controller allowed to validate my sensor

calibration method and the final human-machine interface. Thank you very much.

Last but not least, I sincerely want to thank my parents who are far away in China. Regardless

of the distance, their encouragement and support forever make me positive, energetic and

confident.

xxii



Foreword

This thesis consists of six chapters, which are the introduction, four chapters with algorithm

development and sensor calibration, and the conclusion. Among them, the first five chapters

are almost entirely drawn from scientific journal or conference articles already published by

the author. In these chapters, some of the contents have been reorganized for the sake of

rationality and logic. In particular, the literature reviews of the articles are collected into

one chapter at the beginning of the thesis so that one can get a better overview of the field

before going through each particular method. This also allows to avoid some repetitions and

facilitates the explanation of the interconnections between each topic. In addition to those

in the published papers, some more texts and figures, e.g., new simulation and experimental

results, have been added in the thesis. Here, we detail the contributions of the author of this

thesis to the published articles, and compare them to those of his coauthors.

The first journal paper (P. He and P. Cardou. Estimating the angular velocity from body-

fixed accelerometers. J. Dyn. Sys., Meas., Control, 134(6): 061015-1-061015-10, Nov., 2012.),

shown in Fig. 1, focuses on the estimation of the angular velocity of a rigid body using an

accelerometer-array. This accelerometer-array was designed by two former members of the

robotics laboratory in Université Laval, Guillaume Fournier and Philippe Gagnon. The gen-

eral idea behind the method of the mean squared error using a weighting factor was suggested

by Professor Philippe Cardou. The mathematics and computer code necessary to make the

method work were developed by the author of this thesis. The same performed all the associ-

ated experiments, analysed their results and wrote the associated journal article. The paper

was reviewed by Professor Philippe Cardou before the initial submission.

The conference paper (P. He, P. Cardou, and A. Desbiens. Estimating the orientation of a

game controller moving in the vertical plane using inertial sensors. In ASME International

Design Engineering Technical Conferences, Chicago, Illinois, USA, 2012.), shown in Fig. 2, is

devoted to the estimation of the orientation of a rigid body moving in the vertical plane. The

initial idea was proposed by the author of this thesis, while the use of the Kalman filter was

suggested by Professor André Desbiens. The trajectory models of random walk and ∞ were
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Figure 1: J. Dyn. Sys., Meas., Control, 2012

proposed after the discussion with Professors Philippe Cardou and André Desbiens. All the

simulations were implemented in Matlab and Simulink by the author of this thesis, in addition

to the following analysis and conclusions. The paper was reviewed by Professors as well before

its submission.

The second journal paper (P. He, P. Cardou, A. Desbiens, and E. Gagnon. Estimating the

xxiv



Figure 2: ASME International Design Engineering Technical Conferences, 2012

orientation of a rigid body moving in space using inertial sensors. Multibody System Dynam-

ics, 2014. DOI 10.1007/s11044-014-9425-8.), shown in Fig. 3, proposed a novel method for

estimating the orientation of a game controller moving in space, using inertial and magnetic

sensors. Similarly, the initial idea was proposed by the author of this thesis, with the help of

Professor Philippe Cardou. The game controller used in the paper was designed by an intern

Guillaume Chauvet and a technician Michel Dominique from the Department of Mechanical

Engineering. The target-pointing trajectory was suggested by Professor Eric Gagnon. All the

xxv



Figure 3: Multibody System Dynamics, 2014

simulations were performed by the author of this thesis. In addition, all the experiments were

conducted in the lab of Optitrack provided by Professor André Desbiens. Before the submis-

sion, Professors Philippe Cardou, André Desbiens and Eric Gagnon reviewed the manuscript

prepared by the author of this thesis and gave many important suggestions and comments.
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Chapter 1

Introduction

Where there is a will, there is a way.

In this chapter, we first give a general introduction of game-controllers and of the inertial

sensors they may contain, such as accelerometers and gyroscopes, which may be used. From

that, the objective of our project is put forward and the milestones are listed. Finally, regarding

to each milestone, the corresponding detailed literature review is presented.

General introduction

A good human-machine interface is one that allows for quick intuitive information exchanges

between a machine and its user. Such devices have a variety of applications, from cell phones,

to control panels for industrial robots, and from video games to process control in nuclear

power plants, that is to say, from daily life to advanced science. In principle, a human-machine

interface should be accessible, logical, easy and pleasant to use. Therefore, human-machine

interface bears a great importance in the modern world.

Game controllers are used to govern the playable body or control the events in computer or

video games. A wide variety of such devices are available, such as light guns, gaming keypads,

paddles and so on. The Wii remote [1], is perhaps the most revolutionary of game controllers,

as it can track the trajectory of a human limb in the screen. It has become the daily enter-

tainment in many families, thus playing a very important role.

To this day, human-machine interface based on inertial measurements utilize classical IMUs

(Inertial Measurement Units), which consist of a triaxial accelerometer and a triaxial gyro-

scope, shown in Fig. 1.1(a). These latter sensors offer a good accuracy, but also entail some

drawbacks, such as a relatively high cost compared with that of accelerometers, and poor
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robustness under high acceleration. For example, the Wii Remote relies on a triaxial ac-

celerometer alone to estimate its motion. However, in order to obtain more accurate estimates

and to take the sensing gameplay movements to a higher level of interaction, Nintendo sells an

add-on called the Wii MotionPlus. This device is nothing but a gyroscope, which effectively

turns the Wii Remote into a classical IMU.

To explain this, notice that an accelerometer alone can only measure point acceleration with-

out rotation about the X, Y, and Z axes. When the accelerations to be measured are known

to be small, one can use the triaxial accelerometer to measure the direction of the gravita-

tional acceleration. In this case, the accelerometer is used as a tilt sensor, but is limited to

accelerations that are below 1g. Gyroscopes measuring rotation directly as mentioned above

are capable of compensating this shortcoming. For example, the particular chip—IDG-600

gyroscope is used as the Wii MotionPlus, shown in Fig. 1.1(b), owning two sensor elements

with novel vibrating dual-mass bulk silicon configurations which sense the rotation rate about

X and Y axes. It can measure up to 1500 degrees per second and provide full-range motion,

which is accurate enough for Wii Remote.

(a) A MEMS gyroscope (b) Wii-Remote controller with Wii MotionPlus

Figure 1.1: Gyroscope and accelerometer-array

However, there are some problems with gyroscopes and classical IMUs which currently limit

the development of game controllers. First, gyroscopes are approximately 10 times as expen-

sive as accelerometers, and also comsume about 50 times more power, for the same number of

sensitive axes. Because game controllers are a kind of mass product, maintaining a low price

is of first importance. Furthermore, gyroscopes do not generally perform well when subjected

to high accelerations. Hence, there is room for improvement in applications where the game

controller undergoes high accelerations or even impacts.
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In order to solve these problems, the proposed solution is to use accelerometer arrays instead

of gyroscopes. Accelerometer arrays are a class of inertial measurement units, compared to

the classical IMU, which allows the estimation of the acceleration field of an object, i.e., accel-

erations of some or all of its points. It consists of an array of accelerometers that are located

at a constellation of points of a rigid body. From these accelerometer measurements, one can

estimate the acceleration field of the rigid body, and, in turn, the complete trajectory. To

this day, accelerometer arrays have been preferred to gyroscope-based inertial measurement

units in certain niche applications such as crashworthiness [2, 3, 4, 5, 6, 7, 8], projectile guid-

ance [9, 10] and gait analysis [11, 12, 13], for instance.

An example of an accelerometer array is shown in Fig. 1.2. Such a device is capable of pro-

viding stable estimates of the angular velocity. Because they consist only of accelerometers,

they are not plagued by the high cost and poor robustness of mechanical gyroscopes under

high accelerations.

Figure 1.2: An accelerometer array

Nevertheless, to be fair, accelerometer arrays also bear some disadvantages. One is that the

performance of an accelerometer array is mainly determined by its geometry. Hence an optimal

geometry from the perspective of sensing is not always practical in a given application. Several

accelerometer-array geometries have been proposed over the years: Grammatikos, 1965 [14];

Padgaonkar et al., 1975 [15]; Huijser, 1992 [16]; Chen et al., 1994 [17]; Genin et al., 1997 [18];

Parsa et al., 2003 [19]; Parsa et al., 2005 [20]. For instance, the accelerometer array in Fig. 1.2

is called Plato, which was devised and prototyped at McGill University’s Robotic Mechanical

Systems Laboratory [19]. This accelerometer array is composed of four triaxial accelerometers

located at the vertices of a tetrahedron. In this project, we will investigate this problem

of geometry and finally design a stable, compact, accurate and high-speed response game
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controller based on an array of accelerometers.

Objective and milestones of the project

As mentioned above, the objective is to estimate more accurately the orientation of a game

controller by relying only on low-cost sensors that do not require external references other

than those that are naturally in place, i.e., the gravitational and magnetic fields of the Earth.

To this end, we will devise and implement an accelerometer-based game controller that allows

for transparent interaction between user and machine. We plan to fulfill this objective through

the following milestones:

a) We first estimate the angular velocity in the plane, i.e., in 2D. In this case, we will have

four unknowns, i.e., angular acceleration, inertial acceleration and squared angular velocity, to

solve for. Therefore, for the plane, the accelerometer array only needs four uniaxial accelerom-

eters. Thus, we can use two biaxial accelerometers for measuring planar displacements. For

3D displacements, however, when we install two triaxial accelerometers at each end of a bar,

we cannot estimate the angular velocity about its longitudinal axis. If this quantity is needed,

a more elaborate accelerometer array geometry should be designed, e.g., a cross shape or a

T-shape.

b) Angular velocity, however, is not the final goal: it is the orientation. Hence, the next step

is to estimate the game-controller orientation from the angular velocity. However, it is known

that time-integrating directly the angular velocity to compute the orientation is an unstable

process. In order to solve this problem, we combine the angular velocity estimates with gravi-

tational orientation estimates, i.e., we use the array in inertial mode and in a tilt sensor mode

at the same time. Furthermore, we use a prototype to demonstrate this estimation method.

c) As a matter of fact, game controllers are played in the 3D world. Therefore, we need to

generalize the research in 2D to 3D. It is more complicated to solve the 3D problem, the most

challenging diffculty being that the azimuth angle cannot be determined from gravitational

measurements. Accordingly, we are forced to propose a method or find a simple sensor to

estimate this angle. In this thesis, a magnetometer is used for this purpose.

d) As for the 2D case, demonstration by prototyping the game controller is indispensable in

3D. Given the final objective, we will integrate it to a simple virtual environment to allow for a

qualitative evaluation of its capabilities. The most important problem here may be the design

of this prototype. For example, we could make it similar to the Wii remote bar, compact, but
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with a different geometry.

Such a device finds application in the video game industry, but also in robot teleoperation

and biomechanics, for instance. In this thesis, milestone a) is presented in chapter 1, while

the milestone b) is introduced in detail in chapter 2. Milestones c) and d) are reported in

chapter 4. Prior to that, the calibration of sensors has been done in chapter 3 for the further

experimental work in chapter 4.

Literature review

When using an accelerometer array to estimate the displacements of the hand of the user of a

human-machine interface, physics dictate that we start from acceleration measurements and

work our way to position measurements. Other authors have reported on the various steps

in this process. We review here the most important results by starting from the acceleration

measurements in sequence down to the orientation and position measurements.

1.0.1 Overview of the accelerometer-array technology

In biomechanics, anthropomorphic test devices (ATDs) are typically instrumented with arrays

of accelerometers in order to estimate the trajectory of the head after an impact [2]. This

was proposed by Mertz in 1967, who showed that an accelerometer array could be used to

measure not only point accelerations, but also rigid-body rotations [14]. Many biomechanics

researchers went further in this direction, e.g., Padgaonkar and King [15], Sinha (1976) [3],

Mital and King (1979) [4], Linder et al. (2002) [21], Anderson et al. (2003) [6], Cappa et al.

(2005) [22], Baron et al. (2009) [23].

Accelerometer arrays were also used in other biomechanics applications, such as gait analy-

sis [13, 11, 12]. Morris (1973) and Hayes et al. (1983) used accelerometers to track the motions

of the human shank. Impact accelerations measured by accelerometer arrays are widely used,

like in the assessment of protective equipment, etc. Other biomechanics applications including

the assessment of appropriate head protection with helmets for various human activities (e.g.,

aircrew helmets, American-football helmets, bicycling helmets) have also been studied [24].

Furthermore, accelerometer arrays were also proposed in other fields, such as robotics [25,

26, 27], vehicle guidance and control (Miles, 1986 [28]; Subramanian and Vendhan, 1993 [29];

Mostov et al., 1997 [30]; Peng and Golnaraghi, 2004 [31]; Franck and Nicolas, 2004 [32];

Sankaranaraynan et al., 2008 [33]) and inertial navigation systems (INS) (E. Edwan, 2009 [34]).

Optical motion capture such as the Vicon [35] or even high-speed cameras are also commonly

used in biomechanics to measure the limb displacements. Optical and inertial systems such as
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accelerometer arrays may be seen as complementary. Indeed, optical motion capture generally

offers accurate pose estimates, but suffers from occlusion, lighting and portability problems.

On the other hand, inertial systems do not rely on any external reference, and, therefore,

provide reliable displacement-rate estimates, while the displacement estimates they provide

are plagued by drift. Moreover, analyzing the motion that results from impacts requires high

sampling rates, which generally impact more the price of optical systems than that of inertial

ones. Indeed, optical systems generally involve more data acquisition and processing in a given

iteration, which makes them more sensitive to a step-length reduction.

1.0.2 Estimating the angular-velocity

Existing methods

From these accelerometer-array designs, one can generally estimate the parameters of the

rigid-body acceleration field, i.e., the acceleration of any of its points, its angular acceleration,

and the quadratic powers of the components of its angular velocity. Several methods were

proposed for estimating the angular velocity. These methods may be filed into two main cat-

egories which we call TI and PR, and which will be introduced in detail as follows.

There are currently two main methods for computing the angular velocity from accelerometer-

array measurements. The first one uses the time-integration of the angular acceleration

acquired from tangential acceleration measurements; We call it the Time Integration (TI)

method. Use of this method is reported in the works of Chen et al. (1994) [17], Mostov et

al. (1997) [30] and Kourosh Parsa et al. (2005) [20]. In the second method, the angular

velocity is obtained from the quadratic forms of the angular velocity components; We call

it the Polynomial Roots (PR) method. Schuler (1965) [36], Grammatikos (1965) [14], Parsa

(2003), Peng and Golnaraghi (2004) [31] have all reported on this method.

However, the TI method is plagued by an important disadvantage. As mentioned above, the

rigid-body angular velocity has to be calculated through a time-integration of the angular

acceleration, a process that is unstable. This results in an error build-up, or drift, in the

estimates, a phenomenon that was noted by Mital and King (1979) [4], among others. This

behaviour can also be observed from the well known 3-2-2-2 accelerometer-array geometry [15],

which is always coupled with the TI method. The inevitable consequence of this drift problem

is that the angular-velocity estimates become inaccurate after less than a second, limiting the

applicability of the TI method to short experiments.

The PR method also comes with its share of problems. The quadratic forms of the angular-

velocity components, which are used in this method, are invariant to a sign change of the
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angular-velocity vector. When the values of these quadratic forms are known, this leaves

ambiguity in the solution for the angular velocity, which is generally overcome by a comparison

with the TI estimate. Moreover, the PR estimates are very sensitive to errors at low angular

velocities, as shown in [2]. This lack of robustness at low angular velocities seems to restrict

the use of the PR method to applications with high angular rates. An example of such an

application is the guidance of autonomous naval support rounds [37, 10]. However, for most

applications, its high sensitivity to errors at low angular velocities makes the PR method

unreliable.

Improvement of existing methods

From the portrait above, it is apparent that the drawbacks of the PR and TI methods are

different, which suggests that their combination would be beneficial. Parsa et al. [38] proposed

such a combination, which is described in Appendix A. However, in their method, the relative

accuracies of the TI and PR estimates are not taken into account. Alike the method proposed

in our project, the one by Parsa et al. provides an estimate ω̃ of the angular velocity from

both tangential and centripetal acceleration measurements. However, the underlying idea is

different, as it consists in using a first-order Taylor series approximation to correct the TI esti-

mate by using the quadratic products of the angular velocity that come from the PR estimate.

Cardou and Angeles [39] also proposed a combination based on extended Kalman filtering,

which minimizes the variance of the errors. However, this method was only devised for planar

motions, and, to our knowledge, it has not yet been extended to the spatial case. Perhaps

more importantly, this method was found to be difficult to use in practice. Indeed, it models

the angular jerk of the accelerometer array as white noise, and requires prior knowledge of

the variance of this “noise”. In other words, with this method, the user needs to have some

knowledge of the trajectories to be measured beforehand, which is generally not convenient.

Therefore, a simpler combination is considered in this project.

It is worth noting that because of the quadratic form of PR method and also the dispro-

portionate importance of the PR and TI method, there will be large errors at low angular

velocities, and often sign errors. Therefore, a better combination of PR and TI is necessary

to ensure that PR estimate should contribute more at high angular velocities but less at low

ones, which will be discussed more in Section 2.3.3.

1.0.3 Estimating the orientation from the angular velocity

In this section, let us first review the main elementary methods that are available for computing

the rigid-body orientation from its angular velocity. We then review more advanced methods

combining the elementary ones. Finally, from the overall analysis, we find their advantages

and, particularly, disadvantages so that our proposed method is necessary.
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Existing basic methods

In inertial navigation systems (INS), the attitude of the moving vehicle is usually obtained by

time integrating the angular velocity, which is measured directly by gyroscopes in an inertial

reference frame [40, 41] or estimated from accelerometer measurements. With this method,

however, small errors in the measurement of acceleration and angular velocity progressively

accumulate into large errors with time passing. Thus, when used alone, all INS suffer from

integration drift [42], which is why they are usually combined with other measurement systems.

Therefore, instead of being used as stand alone systems, inertial navigation systems are usually

combined with other types of navigation systems. A common complementary sensor system

is the GPS (Global Positioning System), which provides estimates of the object position from

the triangulation of Earth-orbiting satellites. In this case, the GPS provides error-bounded

low-frequency measurements to correct the unbounded-drift high-frequency measurements of

the INS [43], while an INS can compensate for a momentary loss of the GPS signal. The

GPS can provide location and time information in any type of weather, anywhere there is an

unobstructed line of sight to four or more GPS satellites. For example, Edwan et al. (2009)

[34] reported a scheme for the integration of gyro-free inertial-measurement units (IMUs) with

the GPS. The GPS [44] does not work indoors, however, which prohibits its use in game

controllers motion capture and other indoors applications. It is those applications that are

targeted in this project.

For these applications where the GPS is inaccessible, the gravitational method or tilt-sensor

method is often used to estimate the rigid-body orientation. Because, for some inertial sensors,

typically like accelerometers, there exists the influence of a constant downward gravitational

force, as we are on earth. By this approach, the gravity force is picked up by an accelerometer

as an upward acceleration of 1g [45]. When the inertial acceleration is sufficiantly small, an

accelerometer can be considered as a tilt sensor, and provides an estimate of the vertical di-

rection [46, 47, 48, 49, 50, 51]. When a tilt sensor is submitted to high inertial accelerations,

its output thus becomes contaminated with errors.

Notice, however, that using only gyroscope and accelerometers does not provide any informa-

tion regarding the orientation of the game controller about a vertical axis. An extra sensor is

needed to provide this piece of information. In the case of the Wii remote, the angle about the

vertical, or azimuth angle, is estimated from two infrared LEDs that are fixed to the ground.

The infrared light from these LEDs is measured by an infrared camera onboard the game

controller. This constrains the Wii remote to maintain a line of sight between the camera and

the LEDs.
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Improvement of existing basic methods

Accordingly, neither the tilt-sensor method nor the time-integration method is recommended

being used alone. Therefore, a combination of these two methods is necessary. Sabatini

(2006) [52] developed a quaternion-based extended Kalman filter for determining the orienta-

tion of a rigid body from the outputs of inertial sensors. This method, however, cannot dis-

tinguish the gravitational and inertial acceleration, as it assumes that the inertial acceleration

is negligible. Therefore, when there exists inertial acceleration, the variance of accelerometer

noise is set to extremely high values, so as to force the filter to rely on the magnetic informa-

tion. After that, Yun et al. (2008) [53] tried to estimate the orientation from Earth’s gravity

and magnetic field measurements, but it still suffered from motion disturbance (inertial ac-

celeration) which means that a user had to move slowly. Huyghe et al. (2009) [54] presented

the design of an orientation tracking algorithm based on 3D accelerometer and magnetometer

measurements. This algorithm uses the unscented Kalman filter and is complemented with

extra filters and parameters to reduce the influence of motion disturbance on the sensor sig-

nals. Although this is a good improvement, there is no systematic approach of choosing the

most accurate values of filter parameters for different motion disturbances or with uncertainty

for the case of large inertial acceleration. Hence, further research is still needed.

Some of other methods work very well but on the basis of one pivot point being fixed. Liu et

al. (2009) [55] proposed a new method using an accelerometer array for analyzing the relative

angles of the leg. However, their method is useful only under the assumption that the pivot

point of the hip is fixed in the global frame or only the translational acceleration on the hip

joint is considered. After that, Liu et al. (2011) [56] presented an original approach based on

accelerometers and magnetometers for ambulatory estimation and analysis of 3D knee-joint

kinematics, but under the same assumption, likewise, for Liu et al. (2011) [57]. Similarly,

O’Donovan et al. (2007) [58] presented us a method of combining three sensors—a gyroscope,

an accelerometer and a magnetometer—to estimate the joint angle of the leg, but the trunk

was required to be immobile as well. In addition, Vikas et al. (2011) [59] gave us a novel

approach to the dynamic, non-contact measurement of the inclination parameters of the rigid

links of a serial chain using the Vestibular Dynamic Inclinometer (VDI), where there are two

symmetrically-placed biaxial linear accelerometers and one single-axis gyroscope [60, 61]. This

is of huge help for manipulators connected to a fixed point on the ground, but not for those

rigid bodies moving freely in the space.

Regarding the game-controllers, on which our research is focused, human motion received much

attention, many methods being suggested for human-limb tracking. For example, Marins et

al. (2001) [62] used Gauss-Newton iteration algorithm to find the quaternion that best relates

the measurements of linear accelerations and earth magnetic field. The optimal quaternion
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and the angular rate from the gyroscope are combined with a Kalman filter. This method is

compared in Chapter 4 to those that are proposed there. Similarly, Yun et al. (2006) [63]

suggested that extended Kalman filter (EKF) algorithm be combined with the Quaternion

Estimator (QUEST) algorithm [64, 65], as the latter fuses the accelerometer and magne-

tometer measurements to produce an estimate of the rigid-body orientation represented by a

quaternion. The quaternion is then merged with the gyroscope measurements with the EKF.

This method can only work at low accelerations of the rigid body, however, as the QUEST

algorithm assumes all measured accelerations are gravitational, thereby neglecting inertial

accelerations. In addition, Ren et al. (2012) [43] used the MARG sensor to develop a pro-

totype inertial measurement unit for tracking hand-held surgical instruments and proposed

VecQua algorithm that integrates vectorized attitude mapping and EKF filtering based on

quaternion state variables. The articles mentioned above all propose algorithms which have

two stages. Thus, there is room for simplification, if we were able to trim the method to a

single Kalman filter applied on a state-space system. Moreover, the proposed methods do not

explicitly distinguish the inertial and gravitational accelerations, making them inaccurate at

high accelerations. Last but not least, as the final objective is to obtain the rotation matrix,

but not the quaternions nor the Euler angles, it is better to avoid these intermediate rotation

parameters.

Given these problems of estimating rigid-body displacements in inertial navigation and game

controllers, we set out to investigate a new way of estimating motion using an array of ac-

celerometers.

1.0.4 Calibration of accelerometers and gyroscopes

As a part of an inertial navigation system (INS), a typical inertial measurement unit(IMU) [66]

consists of accelerometers and gyroscopes which measure the linear accelerations and angular

velocities, respectively. Generally, these output signals have to be numerically integrated to

obtain either the position estimates, the orientation estimates or both [67]. As this integration

process is inherently unstable, the IMU is very sensitive to measurement errors, which can be

decreased by means of calibration.

As a matter of fact, most of accelerometers and gyroscopes are factory calibrated, allowing the

user to avoid any further calibration for most of the applications now present in the market [68].

However, nonidealities such as scale factors, cross coupling, bias, and other higher-order non-

linearities affect the output of these inertial sensors, giving rise to unwanted errors. Therefore,

in order to reach the higher accuracy requirement, further calibration procedures or algorithms

are generated by some researchers.
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The calibration of inertial sensors, especially for the gyroscope, mostly needs some velocity

standards, like a rate table [69]. An accurate rate table, however, is somewhat expensive, more

than 10000$, and even more for those that have three degree of freedom (DOF). It is evident

that, for the comsumer-grade accelerometers, this is not suitable. Schopp et al. (2010) [70]

designed well a gyroscope-free inertial measurement unit (GF-IMU) that only comprises linear

accelerometers in order to directly measure the transversal acceleration as well as the angular

acceleration and velocity. The accuracy improvements are well demonstrated after the cali-

bration. The reference motion data and the measurements, however, are collected during a

calibration run on a 3D rotation table, which is not accepted in our case. Similarly, Batista et

al. (2011) [71] presented us a calibration technique for a tri-axial accelerometer and a novel

dynamic filtering solution for the bias, which also accounts explicitly for the estimation of the

gravity in body-fixed coordinates. In the tests, however, a 3D rate table (Model 2103HT from

Ideal Aerosmith) was employed that provided ground truth signals for performance evaluation

purposes, both for offline calibration and dynamic bias and gravity estimation. Similar costly

equipment was also found in [72].

Certainly, some researches on calibration are done on one DOF rate table or less expensive

equipment [73]. However, there are some defective points for some experimental designs. Be-

cause, as a matter of fact, the calibration algorithms are mostly from the same basic equation,

which is a linear relationship between the sensor output and reference values. The principal

problem is finally on the experimental design. However, many tests are static or quasi-static

tests [74], which can not reach the full scale range of the accelerometers. Lee et al. (2011) [75]

developed a method, which consists of a novel dynamic testbed with a combination of a single-

axis rate table and an attitude change mount, to calibrate a low-quality, MEMS-based Inertial

Measurement Unit (IMU). A Fourier Transform method is proposed, compared to the com-

monly used Recursive Least Squares method. However, the rate table is rotated at a constant

angular velocity of only 10◦/s. This indicates that the associated centripetal acceleration

becomes approximately 60 µg, which can be ignored. This is quasi-static, while the sensing

range of the accelerometer is ±4g. The similar phenomenon can be seen in [76], in which the

multi-position static tests were performed to extract accelerometer scale factor error, misalign-

ment and bias. Bachmann et al. (2003) [77] conducted two types of tests, in which both the

purposes of the rotations was to allow the individual accelerometers to sense the gravity vector

in all attitudes. Thus, the sensors remained quasi-static or static. For a human-machine in-

terface, the object of this thesis, the accelerations often range beyond 1g. Hence, we prefer to

use the full range of the accelerometers. For sensors with a range exceeding 1g, the static cali-

bration relies on extrapolation, which is uncertain and at a risk of producing erroneous results.

Some other researchers have solved the range problem. For example, Nieminen et al. (2010) [67]
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used the whole dynamic range of the accelerometers and well enhanced the standard multi-

position calibration method using a one DOF rate table. The method is based on averaging

the collected data, while some defective points over a long period of time may be taken into

account when computing their mean value.

In addition to the calibration of accelerometers [78], the gyroscopes were calibrated as well,

which can be seen in [79, 80, 81]. Hwangbo et al. (2008) [81] used a calibration apparatus

called a universal right-angle iron as a rate table, but rotated by hand. The true angular

velocity, however, was unknown. Therefore, additional rotations of known amplitudes were

performed to determine the scale factor. Glueck et al. (2013) [80] reported only on offset

calibration of a gyroscope exclusively based on the redundant information of one three-axis

accelerometer. It is based on the knowledge that the output of any gyroscope equals zero if

the inertial measurement unit is in a static position.

Therefore, in order to obtain the more accurate sensor parameters, we would like to propose

new methods to calibrate the consumer-grade inertial sensors (two triaxial accelerometers and

one triaxial gyroscope) installed in game controller. Meanwhile, given the factors mentioned

above, like scale range of sensors, rate table cost, static or dynamic tests and so on, a less

expensive rate table (one DOF) was used for the dynamic calibration.

Conclusion

This chapter firstly gives a general introduction on human-machine interface and its main

applications on game-controllers. In most of these applications, inertial sensors play a vital and

indispensable role. However, they still entail some diffculties and disadvantages. In order to

solve these problems, the objectives of our project are established, as well as several milestone

leading to their fulfillment. At each step, many references are reviewed. They are discussed

and compared and the main disadvantages are mentioned so as to prepare for the presentation

of our own proposed algorithms. In the following chapter, we begin this presentation with a

method for estimating the angular velocity from accelerometer measurements.
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Chapter 2

Estimating the angular velocity

Alle Wege führen nach Rom.

The objective of the thesis is to obtain the orientation of a game controller moving in space.

Generally, for the inertial navigation system (INS), inertial sensors, i.e., accelerometers and

gyroscopes, are used. The output of these sensors are point acceleration and angular veloc-

ity, which are the second and first order derivative of position and orientation, respectively.

Moreover, estimating the angular velocity of a rigid body finds application in biomechanics,

robotics and military systems [2]. Thus, the estimation of angular velocity is preferred as the

first step. On the other hand, as mentioned in the chapter above, given the higher price, more

power consumption and unsatisfactory performance at high accelerations, e.g., in crashworthi-

ness and guided missile projectile [82], gyroscope is replaced by using accelerometer-array [2].

In this chapter, we investigate the problem of estimating the angular velocity from the mea-

surements of m accelerometers, and propose a new method, which has already been published

in [82]. In order to avoid the disadvantages and preserve the advantages of the methods men-

tioned in the chapter above, we combine the TI and PR estimates, under the assumption that

the measurement errors consist in independently identically distributed zero-mean Gaussian

white noise, as in ref. [39]. Unlike what was proposed in ref. [39], the two angular-velocity

estimates are combined through a weighted sum that minimizes the variance of the resulting

estimate. This blend preserves the robustness of the PR estimates at high angular velocities

and that of the TI estimates at low angular velocities. Furthermore, it does not require prior

knowledge of the estimated trajectory.

2.1 Accelerometer-array model

An accelerometer array is characterized by the positions and orientations of its m accelerome-

ters. Fig. 2.1 represents the model of an accelerometer array, in which a rigid body moving in
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space is equipped with m accelerometers. ei is a unit column vector representing the sensitive

direction of the ith accelerometer, while ri represents its position with respect to an arbitrary

rigid-body reference point B. Also, bk gives the position of point B at the kth time step, and

pi,k represents the position of the ith accelerometer, both with respect to O.
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· · ·

· · ·
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em
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Figure 2.1: A rigid body equipped with m accelerometers moving in space

Let us consider a single accelerometer located at Pi. The measurement âi,k of the ith ac-

celerometer can be modeled as

âi,k = ai,k + δai,k, (2.1)

where ai,k is the true acceleration component along the accelerometer sensitive direction, and

δai,k is the measurement error. In the case of perfect measurement, the acceleration is the

combination of an inertial and a gravitational component, since, per Einstein’s equivalence

principle [83], the two cannot be distinguished. Formally, this gives

ai,k = eTi p̈i,k − eTi Q
Tg (2.2)

where, Q is the rotation matrix from the fixed frame F to the moving frame B. Firstly, rotate

the rigid body around Z axis clockwise by an angle φZ . Then, rotate it around Y axis by an

angle φY , and finally, rotate it around X by an angle φX . Therefore, each rotation matrix is

QZ =




cosφZ −sinφZ 0

sinφZ cosφZ 0

0 0 1


 , (2.3)

QY =




cosφY 0 sinφY
0 1 0

−sinφY 0 cosφY


 , (2.4)

QX =




1 0 0

0 cosφX −sinφX
0 sinφX cosφX


 . (2.5)
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Then,

Q = QZQY QX

=




cosφY cosφZ −sinφZcosφX + cosφZsinφY sinφX sinφZsinφX + cosφZsinφY cosφX
sinφZcosφY cosφZcosφX + sinφZsinφY sinφX −cosφZsinφX + sinφZsinφY cosφX
−sinφY cosφY sinφX cosφY cosφX


 ,

(2.6)

and g is the vector of gravitational acceleration

g = [0 0 − g]T , (2.7)

considering that if one directs the accelerometer sensitive axis downwards, it will yield a minus

one g signal.

We assume that the measurement errors are zero-mean, identically, independently distributed

Gaussian white noise δa, i.e.,

δak ∼ N (0m, σ
2
a1m×m), (2.8)

where, δak ≡ [δa1,k · · · δam,k]
T , N represents the normal distribution, 0m is the m-

dimensional zero vector, σ2a is the measurement-error variance of a single accelerometer, and

1m×m represents the m×m identity matrix.

The validity of this error model was assessed by measuring the outputs of twelve accelerome-

ters subjected to no other accelerations than gravity. These twelve accelerometers are installed

on a rigid body made by Pultex series 1525, which is presented in detail in Section 2.3. In

order to verify whether the material is rigid and resistant enough, a finite element analysis was

performed by two former members in robotics laboratory. We apply the results here without

rewriting the process. A pressure of 0.8 MPa can only cause a deformation of 0.1 mm. Because

of the acceleration limit from human hand and the mass of the rigid body, it gives far less

than 0.8 MPa. Therefore, in our case, this material is rigid enough.

Then, three steps of tests were conducted for the mean value, autocorrelation and distribution,

respectively. Firstly, we let accelerometers immoblie on the table for more than 24 hours, while

the sampling time is 1 s. The RT-Lab is used to receive the outputs of accelerometers. Fig. 2.2

shows the error of one of the accelerometers, which is representative of all others. The fitted

line ascends from −0.1478m/s2 to −0.1450m/s2 during this long time period, which indicates

that the drift can be ignored. Meanwhile, it is evident that the mean value is small enough

compared to 1g. Thence, we can coarsely consider that the mean of accelerometer noise is null.
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Figure 2.2: Bias of one of the accelerometers

Secondly, the self correlation of the measurement noise has been tested by tracing its autocor-

relogram, which is presented in Fig. 2.3 (Fig. 2.3(b) is an enlarged map of Fig. 2.3(a)). For

an ideal random time series, lagged values of the series are completely uncorrelated and the

correlation coefficient ρ(t) = 0. We should observe that the lagged values should fall within

the confidence limits. This is consistent with Fig. 2.3. In addition, there is a strong correlation

at the beginning, which is normal because of correlation of “present on present”. Combining

the results from the first two steps, we come to the conclusion that the accelerometer noise is

white noise.

Thirdly, the distribution of the accelerometer noise was also obtained. The noise was seper-

ated into several intervals, and the probability of noise lying in each part was obtained, seen in

Fig. 2.4. In this figure, the probability density curves are close to the symmetric bell curves.

Therefore, we approximately consider that they are distributed normally, although many other

distributions are bell-shaped (such as Cauchy’s, Student’s, and logistic). Finally, we assume

that the noise of the accelerometers are Gaussian white noise.

From the rigid-body kinematics equations, the position, velocity and acceleration of the ac-
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Figure 2.4: Noise distribution of accelerometers

celerometer Pi at time-step k are

pi,k = bk + rk, (2.9)

ṗi,k = ḃk + ωk × ri, (2.10)

p̈i,k = b̈k + ω̇k × ri + ωk × (ωk × ri), (2.11)
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respectively, where ωk is the rigid-body angular-velocity vector at time step k. In the latter

equation, ω̇k × ri = −ri × ω̇k = RT
i ω̇k are the tangential accelerations, where Ri is the

cross-product matrix of ri. ωk × (ωk × ri) = ΣT
i ξk are the centripetal accelerations, where

ξk ≡ [ ω2
x,k ω

2
y,k ω

2
z,k ωy,kωz,k ωz,kωx,k ωx,kωy,k ]T and ΣT

i ≡
[
diag(ri)− ri1

T
3 sm(ri)

]T
, where

sm([x1 x2 x3]
T ) ≡ (1T3 x)(131

T
3 − 13×3) + 2diag(x) − 13x

T − x1T3 =




0 x3 x2

x3 0 x1

x2 x1 0


, sm

stands for “special matrix”, and 1n ≡ [1 · · · 1]T ∈ R
n. Therefore, upon substituting eq. (2.11)

in eq. (2.2), we obtain

ai,k = eTi b̈k + eTi (R
T
i ω̇k) + eTi Σ

T
i ξk − eTi Q

T
k g, (2.12)

which is the input-output equation of one accelerometer.

Upon stacking eq. (2.12), i = 1, ...,m, in an array, we obtain the input-output equations of an

m-accelerometer array, i.e.,

Azk = ak, (2.13)

where A ≡ [AP AT AC ] ∈ R
m×12, AP ≡ [e1 ···em]T ∈ R

m×3, AT ≡ [R1e1 ···Rmem]T ∈ R
m×3

and AC ≡ [Σ1e1 · · ·Σmem]T ∈ R
m×6, zk ≡

[
(b̈k −QT

k g)
T αT

k ξTk

]T
∈ R

12, αk = ω̇k is the

rigid-body angular acceleration vector at time step k, and ak ∈ R
m. Here, AT stands for the

tangential acceleration matrix, and AC stands for the centripetal acceleration matrix, and AP

stands for the point-acceleration matrix.

2.2 The proposed estimation method

We wish to compute the most robust estimate ω̂k of ωk under the assumptions of Section 2.1.

Since both the tangential and centripetal components of the rigid-body acceleration field

contain information regarding ωk, the strategy is to linearly combine the two estimates they

provide in a way such that the variance of the resulting estimate is minimized. Hence, we

must have

ω̂k = diag(wk)ω̂TI,k + (13×3 − diag(wk))ω̂PR,k, (2.14)

where, diag(wk) is the diagonal matrix of the weighting factors wk ∈ R
3 and 0 6 wi,k 6 1.

ω̂TI,k and ω̂PR,k, which will be described in eq. (2.15) and eq. (2.16), are estimates from

methods of time-integration and polynomial-roots, respectively. In order to minimize the

covariance matrix Σω,k of ω̂k, which amounts to minimizing the error of the estimate, we

must first determine how it relates to the error of the accelerometer-array measurements δak.

This is the goal of Section 2.2.1.
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2.2.1 The variance of ω̂k

Let us first compute the variances of the estimate ω̂k.

In eq. (2.14), the time-integration estimate is computed as

ω̂TI,k = ω̂k−1 +
1

2
∆t(α̂k−1 + α̂k), (2.15)

whereas the polynomial-roots estimate is a complicated function of ξk alone, i.e.,

ω̂PR,k = f(ξk), (2.16)

which was obtained in [2]. This function yields the solution to the equation

(Ŵs,k − tr(Ŵs,k)13×3 − 2‖ω̂PR,k‖2213×3)ω̂PR,k = 03, (2.17)

where matrix Ŵs,k may be expressed as a linear function of ξ̂k, i.e.,

Ŵs,k ≡ sm(ξ̂2,k) + diag(ξ̂1,k)− (1T3 ξ̂1,k)13×3. (2.18)

From equations (2.14,2.15,2.16), we see that the angular-velocity estimate ω̂k is a function of

ŷk, where

ŷk ≡
[
ω̂T

k−1 α̂T
k−1 α̂T

k ξ̂
T

k

]T
∈ R

15. (2.19)

In order to estimate the covariance matrix Σω,k of ω̂k, we must first estimate the statistical

distribution of ŷk. This statistical distribution is assumed to be Gaussian, i.e.,

ŷk = yk + δyk, (2.20)

where

δyk ∼ N (015,Σy,k). (2.21)

Matrix Σy,k is computed as

Σy,k ≡ E(δykδy
T
k ) (2.22)

=




E(δωk−1δω
T
k−1

) E(δωk−1δα
T
k−1

) E(δωk−1δα
T
k ) E(δωk−1δξ

T
k )

E(δαk−1δω
T
k−1

) E(δαk−1δα
T
k−1

) E(δαk−1δα
T
k ) E(δαk−1δξ

T
k )

E(δαkδω
T
k−1

) E(δαkδα
T
k−1

) E(δαkδα
T
k ) E(δαkδξ

T
k )

E(δξkδω
T
k−1

) E(δξkδα
T
k−1

) E(δξkδα
T
k ) E(δξkδξ

T
k )



,

where E(·) is the expectation of its random-variable argument. Because of the independence

or noncorrelation, some components of this matrix may be null. Let us start from this.
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Recall that E(xyT ) = 0n×n if x ∈ R
n and y ∈ R

n are independent. Since samples ak−1 and

ak are assumed to be independent, we readily have

E(δαkδω
T
k−1) = E(δαkδα

T
k−1) = 03×3,

E(δξkδω
T
k−1) = E(δξkδα

T
k−1) = 06×3,

(2.23)

Moreover, we define

E(δωk−1δω
T
k−1) ≡ Σω,k−1, (2.24)

which is assumed to be known from the previous time step.

On the other hand, eq. (2.15) and eq. (2.14) are the equations on the estimates of angu-

lar velocities. They can be also applied to the true angular velocities ωk and their errors

δωk. Therefore, the relation between δωk−1 and δαk−1 may be obtained after substituting

eq. (2.15) into eq. (2.14), which gives

δωk−1 =diag(wk−1)(δωk−2 +
1

2
∆t(δαk−2 + δαk−1))+

(13×3 − diag(wk−1))δωPR,k. (2.25)

From this equation, we obtain

δωk−1δα
T
k−1 =diag(wk−1)(δωk−2 +

1

2
∆t(δαk−2 + δαk−1))δα

T
k−1+

(13×3 − diag(wk−1))δωPR,kδα
T
k−1, (2.26)

and

E(δωk−1δα
T
k−1) = E((1/2)∆tdiag(wk−1)δαk−1δα

T
k−1),

=
1

2
∆tdiag(wk−1)E(δαk−1δα

T
k−1)

(2.27)

In turn, from eq. (2.13), zk−1 is computed as

zk−1 = A†ak−1, (2.28)

where A† ≡ (ATA)−1AT is the left Moore-Penrose pseudoinverse of A. Thus, we have

E(δzkδz
T
k ) = E(A†δakδa

T
kA

†T ),

= A†E(δakδa
T
k )A

†T ,

= σ2aA
†A†T ,

= σ2a(A
TA)−1ATA(ATA)−1,

= σ2a(A
TA)−1. (2.29)
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Let us define

B ≡ (ATA)−1. (2.30)

Then, we partition B as

B ≡




BP BPT BPC

BT
PT BT BTC

BT
PC BT

TC BC


 ,

so that

E(δzkδz
T
k ) = E






δb̈kδb̈

T
k δb̈kδα

T
k δb̈kδξ

T
k

δαkδb̈
T
k δαkδα

T
k δαkδξ

T
k

δξkδb̈
T
k δξkδα

T
k δξkδξ

T
k







=




BP BPT BPC

BT
PT BT BTC

BT
PC BT

TC BC


σ2a. (2.31)

We substitute the relation E(δαk−1δα
T
k−1

) = BTσ
2
a in eq. (2.27), which gives

E(δωk−1δα
T
k−1) =

1

2
∆tdiag(wk−1)BTσ

2
a. (2.32)

We proceed with the balance of the blocks of Σy,k as given in eq. (2.22), which yields

E(δαk−1δα
T
k−1) = E(δαkδα

T
k ) = BTσ

2
a,

E(δαkδξ
T
k ) = BTCσ

2
a, (2.33)

E(δξkδξ
T
k ) = BCσ

2
a

Hence, matrix Σy,k is completely defined by the blocks of eqs. (2.23,2.24,2.32,2.33), namely,

Σy,k =




Σω,k−1

1

2
∆tdiag(wk−1)BTσ

2
a 03×3 03×6

1

2
∆tBTdiag(wk−1)σ

2
a BTσ

2
a 03×3 03×6

03×3 03×3 BTσ
2
a BTCσ

2
a

06×3 06×3 BT
TCσ

2
a BCσ

2
a



. (2.34)

Having computed the variance of ŷk, we set out to compute the variance of the error on the

angular-velocity estimate ωk,

Σω,k = E(δωkδω
T
k ). (2.35)
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From eq. (2.14), for small errors δyk, δωk may be estimated as

δωk ≈ ∂ω̂k

∂ŷk

· δyk = diag(wk)
∂ω̂TI,k

∂ŷk

δyk + (13×3 − diag(wk))
∂ω̂PR,k

∂ŷk

δyk. (2.36)

In turn, from eq. (2.15), we have

∂ω̂TI,k

∂ŷk

=

[
13×3

1

2
∆t13×3

1

2
∆t13×3 03×6

]
, (2.37)

whereas computing ∂ω̂PR,k/∂ŷk is more difficult. However, first, notice that ω̂PR,k only

depends on ξ̂k, so that

∂ω̂PR,k

∂ŷk

=

[
03×9

∂ω̂PR,k

∂ξ̂k

]
∈ R

3×15. (2.38)

The problem now amounts to computing ∂ω̂PR,k/∂ξ̂k. To this end, we define ξ̂k ≡
[
ξ̂
T

1,k ξ̂
T

2,k

]T
,

where ξ̂1,k ≡
[
ω̂2
x,k ω̂

2
y,k ω̂

2
z,k

]T
and ξ̂2,k ≡ [ω̂y,kω̂z,k ω̂z,kω̂x,k ω̂x,kω̂y,k]

T .

From [2], the optimum angular-velocity estimate ω̂PR,k is obtained by solving the set of

equations

(Ŵs,k − tr(Ŵs,k)13×3 − 2‖ω̂PR,k‖2213×3)ω̂PR,k = 03.

Upon substituting eq. (2.18) into eq. (2.17), and differentiating both sides with respect to ξ̂k

by means of computer-assisted symbolic calculations, we obtain

Ẑk

∂ω̂PR,k

∂ξ̂k
= Ψ̂k, (2.39)

where

Ẑk ≡ −3(sm(ξ̂2,k) + diag(ξ̂1,k))−
(
ξ̂
T

1,k13

)
13×3, (2.40)

Ψ̂k ≡
[
ω̂TI,k1

T
3 + diag(ω̂TI,k) sm(ω̂PR,k)

]
. (2.41)

We compute ∂ω̂PR,k/∂ξ̂k by solving eq. (2.39) as

∂ω̂PR,k

∂ξ̂k
= Ẑ−1

k Ψ̂k

=

(
3

4

1

‖ξ̂1,k‖22 + 2‖ξ̂2,k‖22
(sm(ξ̂2,k) + diag(ξ̂1,k))−

ξ̂
T

1,k13

‖ξ̂1,k‖22 + 2‖ξ̂2,k‖22
13×3


 Ψ̂k.

(2.42)
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Upon resubstituting eq. (2.42) into eq. (2.38), we obtain

∂ω̂k

∂ŷk

≡
[
diag(wk)

1

2
∆tdiag(wk)

1

2
∆tdiag(wk) (13×3 − diag(wk))Ẑ

−1

k Ψ̂k

]
. (2.43)

We substitute this last equation into eq. (2.36), and, in turn, into eq. (2.35), which yields

Σω,k = E

(
∂ω̂k

∂ŷk

δŷk δŷ
T
k (
∂ω̂k

∂ŷk

)T
)
,

=
∂ω̂k

∂ŷk

E(δŷkδŷ
T
k )

(
∂ω̂k

∂ŷk

)T

,

=
∂ω̂k

∂ŷk

Σy,k

(
∂ω̂k

∂ŷk

)T

,

= diag(wk)Σω,k−1diag(wk)

+ σ2a
1

4
∆t2diag(wk)diag(wk−1)BTdiag(wk)

+ σ2a
1

4
∆t2diag(wk)BTdiag(wk−1)diag(wk)

+ σ2a
1

2
∆t2diag(wk)BTdiag(wk)

+
1

2
∆tσ2a(13×3 − diag(wk))Ẑ

−1

k Ψ̂kB
T
TCdiag(wk)

+
1

2
∆tσ2adiag(wk)BTCΨ̂

T

k Ẑ
−T
k (13×3 − diag(wk))

+ σ2a(13×3 − diag(wk))Ẑ
−1

k Ψ̂kBCΨ̂
T

k Ẑ
−T
k

(13×3 − diag(wk)), (2.44)

where,
∂ω̂k

∂ŷk

is given by eq. (2.43) and Σy,k, by eq. (2.34).

The resulting equation is recursive in that it requires knowledge of Σω,k from the previous time

step. In fact, eq. (2.44) is a type of Riccati equation. With the covariance matrix expressed as

a function of the accelerometer-array parameters, we are set to find best estimate ω̂k of ωk.

2.2.2 The optimum weights wk

As mentioned above, we are to choose the weighting factors wk that minimize the vari-

ance of ω̂k. By the variance of ω̂k, we refer to the sum of the variances of the entries of

ω̂k. This quantity is directly given by the trace of the covariance matrix Σω,k. Notice that

tr(diag(wk)Ddiag(wk)) = wT
k diag(diag(D))wk, where D is a square matrix, diag(diag(D)) is

a diagonal matrix whose diagonal entries are the diagonal entries of D, and tr(Ddiag(wk)) =
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wT
k diag(D). Hence, from eq. (2.44), we obtain

tr(Σω,k) = wT
k diag(diag(Σω,k−1 +

1

4
∆t2σ2a(BTdiag(wk−1)

+ diag(wk−1)BT + 2BT )))wk

+
1

2
∆tσ2atr((13×3 − diag(wk))Ẑ

−1

k Ψ̂kB
T
TCdiag(wk)

+ diag(wk)BTCΨ̂
T

k Ẑ
−T
k (13×3 − diag(wk)))

+ σ2a(13 −wk)
Tdiag(diag(Ẑ−1

k Ψ̂kBCΨ̂
T

k Ẑ
−T
k ))

(13 −wk),

= wT
k diag(diag(Σω,k−1))wk (2.45)

+wT
k diag(diag(Tk))wk

+ (wT
k diag(Mk)−wT

k diag(diag(Mk))wk)

+ (13 −wk)
Tdiag(diag(Ck))(13 −wk),

where Tk ≡ 1

4
∆t2σ2a(2BT +BTdiag(wk−1)+diag(wk−1)BT ), Ck ≡ Ẑ−1

k Ψ̂kBCΨ̂
T

k Ẑ
−T
k σ2a and

Mk ≡ ∆tσ2aẐ
−1

k Ψ̂kB
T
TC .

The variance of ω̂k is minimized whenever

∂ (tr(Σω,k)) /∂wk = 03, (2.46)

that is, when

∂ (tr(Σω,k)) /∂wk = 2diag(diag(Σω,k−1))wk

+ 2diag(diag(Tk))wk + diag(Mk)

− 2wkdiag(diag(Mk))

− 2diag(diag(Ck))(13 −wk),

= 03, (2.47)

or

wk = (2diag(diag(Σω,k−1 +Tk −Mk

+Ck)))
−1(2diag(diag(Ck))13

− diag(Mk)). (2.48)

From eq. (2.48), it is not clear whether the resulting weights should always remain within

the interval [0, 1] or not. As we will see, experiments tend to confirm this assertion, as all

the computed weights were between 0 and 1. Demonstrating that this is the case for any

accelerometer array and any set of accelerometer measurements remains an open question,
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however.

Nevertheless, the resulting expression of wk minimizes the sum of the variances of the entries

of the estimate ω̂k with respect to the true value ωk, which is the goal of this chapter.

Equation (2.48) is then substituted back in eq. (2.14), which yields the desired estimate ω̂k of

ωk.

2.2.3 Summary of the proposed method

The ensuing algorithm is summarized below. ω̂0, α̂0 and Σω,0 are assumed to be known, and

we set w0 = 13, i.e., we rely exclusively on the TI estimate for the first time step. Notice that

the computation of wk requires knowledge of the covariance matrix from the previous time

step. Hence, this matrix should be updated in real time, which is done just after computing

ω̂k, through the Riccati equation appearing as eq. (2.14).

for k = 1, ..., n,

compute ẑk from eq. (2.28) and âk,

compute ω̂TI,k from eq. (2.15),

compute ω̂PR,k from the PR algorithm proposed in [2],

compute Ẑ−1

k from eq. (2.40) and ξ̂k,

compute Ψ̂k from eq. (2.41) and ω̂TI,k,

compute wk from eq. (2.48),

compute ω̂k from eq. (2.14),

compute Σ̂ω,k from eq. (2.44).

end.

2.3 Experimental validation

We validated the proposed method by performing an experiment that reproduces the condi-

tions in which the algorithm would work in real life. While this type of validation has the

merit of testing the algorithm close to its operating condition, it also presents the drawback of

assessing its performance only in this one situation. An alternative validation approach would

consist in testing the method over a wide spectrum of trajectories, either through simulation

or experiments. This task was not achieved here, however, as the goal of this chapter is to

demonstrate the usefulness of this method in its operating conditions.
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2.3.1 Experimental testbed

In the experimental validation, six biaxial ADXL320 accelerometers [84] from Analog Devices

are mounted on a rigid body to form an accelerometer array called the Octahedral Con-

stellation of Twelve Accelerometers (OCTA), as shown in Fig. 2.5. We chose these low-end

accelerometers to illustrate the robustness of our method. This OCTA was used first because

it was available, having been designed by two former members in the robotics laboratory, in

Université Laval, for testing the accelerometer-array. Therefore, we used this OCTA for es-

timating angular velocity firstly using this accelerometer-array. Secondly, OCTA is too large

and heavy to be used as a game controller, in our case. We can use it, however, to test the

effectiveness of the accelerometer-array. If it is feasible and acceptable, we can go further in

the research. If not, we may need to find other ways for estimating the orientation. Moreover,

OCTA can be used as comparison with the designed game controller, seen in Chapter 3 and

4, on estimating results.

A crucial aspect of these devices is their bias stability, as it directly impacts the drift rate of

the TI estimate. In the case of the ADXL320, this bias stability is in the orders of 1 mg [84]. In

comparison, the bias stability of accelerometers used in cruise missiles can be as low as 0.01 mg,

whereas that of accelerometers in strategic missiles is below 1 µg [85]. Moreover, the noise

density of the ADXL320 is rated at 250 mg/
√

Hz, whereas it is in the orders of 0.01 mg/
√

Hz

for military-grade accelerometers. A TrackSTAR tracking sensor from Ascension Technology

Corporation [86], shown in Fig. 2.6, is also attached on OCTA, and will serve as a reference

in the experiments. Its static angular accuracy is 0.5◦ RMS averaged over the translational

range. Because the errors that are expected from the inertial sensor measurements are larger

than this figure, this sensor is deemed sufficiently accurate for our needs. Displacements are

produced by shaking OCTA by hand.

Figure 2.5: Photograph of OCTA

The geometry of OCTA is shown in Fig. 2.7. Its six pairs of accelerometers are located close
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Figure 2.6: TrakSTAR from Ascension Technology Corporation

to the vertices of a regular octahedron. Each pair of accelerometers is directly screwed onto

the 2 in × 2 in square tubing that composes the accelerometer array structure. Also they are

attached with dowel pins in an effort to reduce misalignments between the sensors.

e1
e2

e3

e4

e5

e6

e7

e8

e9

e10

e11
e12

X

Y

Z

B

Figure 2.7: CAD drawing of OCTA

We have the nominal sensitive directions and positions

[e1 e2 · · · e12] =




1 0 −1 0 0 0 0 1 0 1 0 0

0 0 0 1 0 1 0 0 1 0 −1 0

0 −1 0 0 −1 0 1 0 0 0 0 −1


 ,
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and




rT1

rT2

·
·

rT12



=




0.1970 0.0010 0.0060

0.1970 0.0010 0.0060

−0.0450 −0.0390 −0.0300

−0.0450 −0.0390 −0.0300

0.1120 −0.0330 −0.1210

0.1120 −0.0330 −0.1210

0.0670 0 0.1260

0.0670 0 0.1260

0.0730 0.0900 −0.0280

0.0730 0.0900 −0.0280

0.1120 −0.1640 0.0040

0.1120 −0.1640 0.0040




m,

Prior to this work, OCTA was calibrated [87], which allowed to identify the actual sensitive

directions and positions of its accelerometers, as well as their biases and scale factors.

2.3.2 Preprocessing the measurements from OCTA and the TrackSTAR

The main objective is to estimate the accuracy of the angular-velocity estimates computed

from the proposed method. In this vein, the angular-velocity measurements provided by the

TrackSTAR are regarded as a reference.

First, the output voltages vk, k = 1, . . . , n, from the twelve accelerometers, are saved. From [87],

we compute the corresponding accelerations

ai,k = µivi,k + ηi, (2.49)

where ai,k is the acceleration of the accelerometer i along direction ei at time tk, µi and

ηi are the scale factor and bias for this accelerometer, and vi,k is the voltage given by this

accelerometer at tk. Upon applying the algorithm proposed in Section 2.2.3, summarized in

Fig. 2.8, the angular velocity ω̂k of OCTA is obtained.

On the other hand, from the TrackSTAR displacement sensor, the orientation of OCTA was

measured every 0.01 s, for periods of 100 s. These orientations are returned in the form of

rotation matrices Qk that take the fixed frame onto a sensor frame. In order to compute

the corresponding angular velocity ωk, a first-order low-pass filter was first applied over the

entries of Qk. Also, to avoid the time shifts caused by the filter, we filtered the data both

in forward and backward time, and retained the average. After filtering the data, a central

difference approximation of the first derivative was used to compute Q̇k, namely,

Q̇k = (Qk+1 −Qk−1)/(2∆t). (2.50)
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Compute the variance of the 
estimate of angular velocities

Compute the weighting factors
by minimizing the variance from
step 1

Step 1:

Step 2:

Compute the estimate of angular
velocities using the weighting 
factors

Step 3:

Figure 2.8: The flowchart of the proposed method for estimating the angular velocities

The cross-product matrix Ωk of the angular velocity ωk is computed as (see [88])

Ωk = QkQ̇
T
k . (2.51)

Because of measurement errors, this matrix is generally not skew-symmetric as it should be.

We keep only the skew-symmetric component of Ωk by resorting instead to the relation

Ωk = (QkQ̇
T
k − (QkQ̇

T
k )

T )/2. (2.52)

2.3.3 Experimental results

OCTA was shaken by hand so as to produce arbitrary angular-velocity estimates. The range of

angular velocities obtained by this method are thought to be representative of those obtained

in many biomechanics experiments.

TI method [17]

The TI method [17], expressed in eq. (2.15), relies on angular-acceleration measurements. Be-

cause of the time-integration, any error in the angular acceleration estimate is accumulated,

inevitably causing a drift of the estimate ω̂TI from its exact value. This problem has not

prevented the TI method from being used successfully in biomechanics experiments lasting a

fraction of a second, e.g. in crashworthiness and sports analysis. However, this method cannot

be used alone for longer periods of time.
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This can be verified on Fig. 2.9, which shows the x-component of the angular velocity esti-

mates. These estimates were obtained from the TI method, the proposed method and the one

by Parsa et al. [38]. Clearly, the TI estimates are completely useless after just a few instants,

as they drift away from the TrackSTAR estimates.
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Figure 2.9: The first component of the angular-velocity estimates over 100 seconds

Method of Cardou et al. [2]

The PR method is best understood by its application to planar rigid-body motions. In this

case, the quadratic form is simply represented by

ζ ≡ ω2. (2.53)

ζ is easily estimated, as it is linearly related to the accelerometer measurements. ζ is al-

gebraically related to ω so that the PR method provides a stable estimate of the angular

velocity:

ω = ±
√
ζ. (2.54)

Although this method is stable through time, notice that ζ only provides information regard-

ing the absolute value of ω, none on its sign. Because of this sign ambiguity, it is generally

not advisable to use the PR method alone. This can result in sign errors, as can be seen in

Fig. 2.10, where the PR algorithm proposed in [2] picks up the wrong root between 17 s and

20 s.

Moreover, the square-root function has an infinite slope as ζ → 0, which generally results in

a large error amplification whenever ω → 0. In fact, the slope is inversely proportional to the

angular velocity itself, which seriously hinders the method in low angular-velocity applications.
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Figure 2.10: The first component of the angular-velocity estimates over ten seconds

From Fig. 2.10, the PR algorithm proposed in [2] does not seem to be affected by this problem

over a part of the generated trajectories. As shown in [2], this specific PR method becomes

singular only when all angular-velocity components are close to zero, whereas Fig. 2.10 only

reports the behavior of the first component. This component approaching zero does not

generally imply that the whole angular-velocity vector is null, which explains why the method

seems unaffected by some zero crossings, while it encounters problems in others.

Method of Parsa et al. [38]

These drawbacks explain why a combination of the TI and PR methods should be done with

care. In particular, the PR estimates should contribute less at low angular velocities, and

more at high angular velocities. This is not what is done in the method by Parsa et al. [38],

which is summarized in the Appendix A, for quick reference. In this method, the proportions

of the TI and PR estimates in the final estimate are quite arbitrary.

This gives rise to important errors from the PR estimates at low angular velocities. This

phenomenon can be observed on Fig. 2.10, which is a close-up view of the graph of Fig. 2.9. In

Fig. 2.10, the estimates from the method of Parsa et al. are seen to oscillate when the angular

velocity is close to zero. This undesired behavior, which was not observed even in the PR

estimates of [2], is due to the method of combining the two angular-velocity estimates. This

combination is done through the least-squares solution of an overdetermined linear system of

equations, as shown in eq. (A.4). This linear system, however, becomes rank-deficient whenever
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any of the angular-velocity components goes to zero. This can be verified by computing

det

((
∂ξ

∂ω

)T ( ∂ξ
∂ω

))
= 20ω2

xω
2
yω

2
z , (2.55)

which is null whenever any of the angular-velocity components is zero. Notice that this is

quite different from the PR method of [2], which only becomes singular when all angular-

velocity components are zero. When approaching zero, the full rank of the linear system

solved in eq. (A.4) is preserved, but it generally becomes ill-conditioned. Its solution is then

very sensitive to measurement errors, which results in the oscillations of Fig. 2.10. Worse, this

sometimes results in sign errors that last until the angular velocity reaches zero again.

In due fairness, we should mention, however, that this sign problem only occurs sporadically

in the experiments. To illustrate this, we compute the Euclidean norm of the errors,

δωk = ‖ω̂k − ωk‖2, (2.56)

where ω̂k is the angular-velocity of OCTA and ωk is the angular-velocity obtained from the

TrackSTAR. The resulting graphs are shown in Fig. 2.11. To these curves, we add
√

tr(Σω,k),

the square root of the variance of ω estimated through eq. (2.44).

Apparently, from Fig. 2.11(a), the proposed method, that of Parsa et al. [38], and that of

Cardou et al. [2] all provide stable results, as their error magnitudes do not grow over time. In

this graph, the large peaks coming from the methods of [38] and [2] are explained by the sign

problems described above. A closer look at the errors in Fig. 2.11(b) on the angular-velocity

vectors reveals that the proposed method is slightly more robust than those of Parsa et al.

and Cardou et al.. The time-scale of Fig. 2.11(b) corresponds to that of Fig. 2.10, which

shows that the oscillations observed in the former correspond to the peak errors obtained in

Fig. 2.11. On the other hand, the proposed method does not exhibit this undesired behavior,

mainly because it reduces the contribution of the PR estimates at low angular velocities.

Additional experiments

In order to further validate the repeatibility of the reported results, five other trajectories

of 100 s each were performed. The corresponding RMS values of the errors of the proposed

method and the one by Parsa et al. are reported in Table 2.1. These values were computed as

δωrms =

√√√√ 1

n

n∑

k=1

‖ω̂k − ωk‖22, (2.57)

where n = 10,000 is the number of samples acquired in the experiment. The observed behavior

was similar to that reported in Figs. 2.9, 2.10, 2.11, which is corroborated by the computed

RMS values. Clearly, the proposed method is more robust than the existing ones.
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Figure 2.11: Errors on the angular-velocity estimates

2.3.4 Analysis of the proposed method

The main novelty in this proposed method consists in weighting the TI and PR estimates

according to a stochastic error model. This error model takes into account factors such as the

acquisition frequency and the geometry of the accelerometer array.

Fig. 2.12 shows the time evolution of weighting factor wk, which reveals that wk is closer

to one than zero, and that it varies rapidly as the amplitude of ωk changes. Because wk is

generally close to one, from eq. (2.14), we conclude that ω̂TI,k predominates, while the small

contribution from ω̂PR,k is enough to stabilize ω̂k.
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Table 2.1: RMS values of the errors

i δωrms(rad/s)
Proposed Method Parsa et al. [38] Cardou et al. [2]

1 0.4195 2.7579 1.3577
2 0.6350 2.3780 3.2347
3 0.6781 3.1036 2.9325
4 0.6456 4.3302 3.7612
5 0.6714 5.5671 5.1620
6 0.6274 4.8877 4.8051
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Figure 2.12: Weighting factor w

In order to gain better insight on the relationship between wk and ω̂k, we trace all the three

components of the weighting factors against the corresponding components of ωk in Fig. 2.13.

Apparently, the weighting factor wk remains closer to one under high angular velocities.

One criticism that may be addressed at the method proposed here is that it requires knowl-

edge of σ2a, the variance of the accelerometer measurement errors. This parameter is not used

by Parsa et al. [38] nor by Cardou et al. [2], for instance, which is certainly one of their ad-

vantages. It may be shown, however, that the method proposed here is independent from σ2a

under mild conditions. When the initial angular velocity of an experiment is known exactly,

we choose Σω,0 = 03×3 and w0 = 13. In this case, one may verify that σ2a cancels out in the

Riccati eq. (2.44), so that wk and ω̂k remain independent from this parameter.

In summary, the weighting factor wk is used to balance the ω̂PR and ω̂TI , to preserve the
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Figure 2.13: Relationship between the weighting factor w and angular velocity

advantages of both, while mitigating their defects. The relative accuracy of the method seems

to improve at higher accelerations and higher angular velocities, as the proposed method tends

to rely more on the PR estimates, which are stable.

2.4 Conclusion

Accelerometer arrays present some advantages over gyroscopes for estimating the angular ve-

locity of a rigid body in space, such as better robustness under high accelerations. In this

chapter, a new algorithm for the estimation of the angular velocity is proposed, based on a

combination of the existing PR and TI methods. The main novelty of the proposed approach

lies in the optimally weighted sum that is used to form the angular-velocity estimate. Through

computation of the covariance of the angular velocity, a recursive form of the optimum weight-

ing factor wk is obtained.

The proposed approach is validated through experiments by manually shaking a custom-made

accelerometer array called OCTA. The new method is shown to be stable, unlike the TI meth-

ods, and to behave well at low angular velocities, unlike the methods based on the polynomial

roots of the angular-velocity terms. Furthermore, the proposed method consistently appears

to be more robust than the methods avalilable in the literature. This was explained by the

optimality of the proposed approach in terms of error propagation.

Meanwhile, we noted that the proposed method does not depend on the variance σ2a of the ac-

celerometer measurement errors whenever the initial angular velocity is known exactly. Hence,

in this case, no prior knowledge of σa is required.
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The proposed method will prove useful in applications where accelerometer arrays are already

in use (e.g., crashworthiness and motion analysis in sports) by extending the period over which

the angular velocity can be estimated accurately. It is hoped that the improved robustness will

open new fields of application for accelerometer arrays such as human-robot collaboration and

game controllers, for instance. In such applications, the error sensitivity of the accelerometer-

based methods at low angular velocities could be mitigated by fusing the estimates with those

of a low-cost gyroscope. In this fashion, one would rely more on gyroscope measurements over

smooth trajectories, and more on accelerometers for quick, high angular-rate movements.

After obtaining the angular velocity, it is time to estimate the orientation. It is noted, however,

that the angular velocity estimates we get in this chapter are not sufficiently accurate for a

stable time integration to obtain the rigid-body orientation. Meanwhile, to avoid a two-step

estimation method, we come to present a new way, in the next chapter, to estimate the

orientation directly from inertial sensor measurements.
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Chapter 3

Estimating the orientation in the

vertical plane

La difficulté ou l’obscurité d’un sujet n’est pas une raison suffisante pour la négliger.

—Alexis Carrel

This chapter presents a novel method [89] for estimating the orientation of a rigid body in

the vertical plane from point-acceleration measurements, by discerning its gravitational and

inertial components. In this method, a simple stochastic model of the human-hand motions is

used in order to distinguish between the two types of accelerations. Two mathematical models

of the rigid-body motion are formulated as distinct state-space systems, each corresponding

to a proposed method. In both cases, the output is a nonlinear function of the state, which

calls for the application of the extended Kalman filter (EKF). The proposed filter is shown to

work efficiently through two simulated trajectories, which are representative of human-hand

motions. A comparison of the orientation estimates obtained from the proposed method shows

that the filter offers more accuracy than a tilt sensor under high accelerations, and avoids the

drift obtained by the time-integration of gyroscope measurements.

3.1 Accelerometer-array model

In order to estimate the orientation in 2D, a game controller similar to the Wii-mote is de-

signed, where two biaxial accelerometers are installed at each of its ends. Fig. 3.1 represents

the model of the accelerometer array mounted on a designed game controller, which is sup-

posed to move in the vertical plane.

Similar to the accelerometer-array model described in Section 2.1, the measurement âi,k of the
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Figure 3.1: Sketch of the game controller with four accelerometers moving in a vertical plane

ith accelerometer can be also modeled as

âi,k = ai,k + δai,k, (3.1)

where

ai,k = eTi p̈i,k − eTi Q
T
k g (3.2)

is the true acceleration-component along the accelerometer sensitive direction, δai,k is the

measurement error, Qk is the rotation matrix from the fixed frame F to the moving frame B,

Qk =

[
cosφk −sinφk
sinφk cosφk

]
, (3.3)

where φk is the orientation in the vertical plane, and g is the vector of gravitational acceleration

g = [0 − g]T . (3.4)

The only difference is that it is in the vertical plane, where two biaxial accelerometers are

needed, which indicates that âk ∈ R
4.

As in eq. (2.8), the accelerometer measurement errors at the kth time step are assumed to be

zero-mean, identically, independently distributed Gaussian white noise δak, i.e.,

δak ∼ N (0m, σ
2
a1m×m). (3.5)

Meanwhile, the position, velocity and acceleration of the accelerometer Pi in frame B are

pi,k = bk + ri, (3.6)

ṗi,k = ḃk + ωkEri, (3.7)

p̈i,k = b̈k + ω̇kEri − ω2
kri, (3.8)
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where ωk is the rigid-body angular-velocity at time step k, and E =

[
0 −1

1 0

]
. Because, for

planar motion, we can write ω̇k × ri = riω̇k = riαk and ωk × (ωk × ri) = riω
2
k. Therefore,

eq. (2.12) becomes

ai,k = eTi

(
b̈k −QT

k g
)
+ eTi (riω̇k) + eTi Eriω

2
k. (3.9)

Finally, eq. (2.13), i = 1, . . . ,m, simplifies to

Azk = ak, (3.10)

where A ≡ [AP AT AC ] ∈ R
m×4, AP ≡ [e1 e2 e3 e4]

T ∈ R
m×2, AT ≡ [rT1 e1 · · · rTmem]T ∈

R
m×1 and AC ≡ [rT1 E

Te1 · · · rTmETem]T ∈ R
m×1, zk ≡

[
(b̈k − gTQk) αk ω

2
k

]T
∈ R

4, and

ak ∈ R
m. Furthermore, in the case of the proposed game controller, we have the nominal

sensitive directions and positions

[e1 e2 e3 e4] =

[
1 0 1 0

0 1 0 1

]
, (3.11)

and

[r1 r2 r3 r4] =

[
0 0 0 0

r r −r −r

]
. (3.12)

Provided that the accelerometer array is fully determined [90], the application of eq. (3.10) to

the contaminated measurements yields the least-squares estimate ẑ of z:

ẑk = (ATA)−1AT âk

= A†âk

= A†ak +A†δak

= zk + δzk.

(3.13)

Because the accelerometer measurements are assumed to be independent, as mentioned in

eq. (3.5), we have

δzk ∼ N (0m, σ
2
a(A

TA)−1). (3.14)

Having defined the model for accelerometer-array planar motion, the main steps of the re-

search can be outlined as follows:

a) Create various trajectories in Matlab for simulation.
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b) Then, present some existing algorithms for estimating the orientation from multiple ac-

celerometer or gyroscope measurements, and analyse the advantages and disadvantages.

c) Finally, propose a new method and have some tests in Matlab to justify and verify the

algorithm proposed, compared with the existing methods mentioned.

3.2 Stochastic model of human-hand motion

In order to provide a minimum of additional information on the human-hand motion to the

game controller, a coarse stochastic model is proposed for representing hand displacements.

Let us define γk, the angular jerk [91] or the time rate of the angular acceleration αk, and βk,

the jerk or the time rate of the inertial acceleration b̈k, which is expressed in the fixed frame.

We assume γk and βk to be independently, identically distributed according to the Gaussian

distribution, i.e.,

γk ∼ N (0, σ2γ), (3.15)

βk ∼ N (02, σ
2
β12×2). (3.16)

Notice that this assumption is equivalent to stating that the angular and point accelerations

undergo random walk, a.k.a. drunkard’s walk. Indeed, we have

αk+1 = αk +∆tγk, (3.17)

b̈k+1 = b̈k +∆tβk, (3.18)

where ∆t is the sample time. Through the 2nd law of Newton, this model of the human-

hand motions may be viewed as that by which the user applies moments and forces following

random-walk variations on the game controller.

3.3 Algorithms for estimating the rigid-body orientation

As mentioned in the Chapter “Introduction”, there are several existing methods for estimating

the rigid-body orientation. In this section, we introduce the detailed existing basic algorithms,

which are time-integration method and tilt-sensor method respectively, and our proposed

methods, which are mean square error method and a Kalman filter method.

3.3.1 Time integration method

For time-integration method, as the name suggests, it is to integrate the angular velocity

through time. Therefore, the orientation computed from this method may be written as

φ̃k = φ̃k−1 +
1

2
(ωk−1 + ωk)∆t, (3.19)
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where, φ̃k is the estimate of orientation from time-integration method, ωk is the angular

velocity and ∆t is the sampling time.

3.3.2 Tilt-sensor method

For the tilt-sensor method, we assume that the orientation estimate can be computed

φk = arctan

(
b̈x,k + gsinφk
b̈y,k + gcosφk

)
. (3.20)

where, the values of the entire expressions b̈x,k + gsinφk and b̈y,k + gcosφk can be computed

from eq. (3.10).

Because of the drift from the time-integration method and the error caused by the inertial

acceleration from the tilt-sensor method, it is not recommended to use any of these methods

alone. These two methods are complementary, however, and an appropriate combination may

yield robust estimates of φ. This is the idea behind the following proposed methods.

3.3.3 Method of the mean square error (MSE)

We propose to compute the orientation as a weighted average of the integration and tilt-sensor

estimates, namely,

φ̂k = ρkφ̃k + (1− ρk)φk = ρk

(
φ̂k−1 +

1

2
(ωk−1 + ωk)∆t

)
+ (1− ρk)arctan

(
b̈x,k + gsinφk
b̈y,k + gcosφk

)
,

(3.21)

where ρk is the weighting factor that minimizes the MSE of the estimate φ̂k with respect to

the true value φk.

The MSE ǫ2φ,k of φ̂k may be written as

ǫ2φ,k ≡ E
(
(φ̂k − φk)

2
)
= E

(
(δφk)

2
)
. (3.22)

The goal is to choose the weighting factor ρk so as to minimize ǫ2φ,k at time step k. To this

end, let the derivative of the MSE be zero, i.e.,

d
(
ǫ2φ,k

)

dρk
= 0, (3.23)

and solve for the weighting factor ρk. Finally, substitute the resulting value of ρk in eq. (3.21)

to obtain the estimate sought, φ̂k.
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3.3.4 Method of the Kalman filter (KF)

The Kalman filter (KF) is an efficient recursive filter that estimates the internal state of a

linear dynamic system from a series of noisy measurements [92]. The application of the KF

requires writing the model of the accelerometer array as a state space system, namely

xk+1 = Axk +Buk + ek, (3.24)

yk = Cxk + nk, (3.25)

where, xk is the state vector, yk is the measurement vector, A is the state matrix, B is the

input matrix, C is the output matrix, ek is the process noise, nk is the measurement noise,

and both are assumed to be zero-mean, identically, independently distributed Gaussian white

noise,

ek ∼ N (0m,Vk), (3.26)

nk ∼ N (0m,Rk). (3.27)

In order to find the appropriate state space system, we define the time-integration of the

angular velocity as the state equation and the inertial estimate as the output, namely

φk+1 = φk +
1

2
∆t(ω̂k+1 + ω̂k) + ek, (3.28)

φk = φk + nk, (3.29)

where ω̂k and ω̂k+1 are the input, φk from eq. (3.20) is the output, ek is the process noise

whose covariance can be gained from the algorithm estimating the angular velocity ω̂k, and

nk is the measurement noise.

A knotty problem is that of obtaining the covariance of measurement noise nk [93, 94, 95].

Therefore, different noise covariance matrices need to be tried through simulation before reach-

ing a reasonable accuracy. As a result, the filter is very sensitive to variations in its parameters

and may turn out unreliable in practice.

3.3.5 Method of the extended Kalman filter (EKF)

In this method, two mathematical models (orientation-only and complete pose) of the rigid-

body motion are formulated as distinct state-space systems, each corresponding to a proposed

method. In both cases, the output is a nonlinear function of the state, which calls for the

application of the extended Kalman filter (EKF).

Let us begin with the case where we only estimate the orientation. We first write a state-

space system, where the time-integration of the angular velocity is the state equation and the
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acceleration from the measurements is the output equation

φk+1 = φk +
1

2
∆t(ω̂k+1 + ω̂k) + ek, (3.30)

c̈k = g

[
sinφk
cosφk

]
+ b̈k + δc̈k, (3.31)

where φk is the state variable, ω̂k is an input measured here by a gyroscope, g is the gravi-

tational acceleration, c̈k is the combined inertial and gravitational acceleration which is com-

puted directly from eq. (3.10), and ek and δc̈k are the process and measurement noise, respec-

tively.

The state-space system of eq. (3.30) and eq. (3.31) cannot be solved by the regular KF, since

the output equation is nonlinear in the system state. The EKF consists in using the first-order

Taylor expansion of the nonlinear functions to linearize the state and output equations about

the current mean and covariance.

In eq. (3.31), c̈k is computed directly from eq. (3.10), but the inertial acceleration b̈k is un-

known. However, it is possible to consider it as the additional noise whose covariance could

be easily known. Although we have no deterministic way of predicting the path taken by the

rigid body, we may estimate, however coarsely, the probability of moving from one pose to

the next within one time step. This probability may be assessed by taking into account that

the rigid body, in our application, is being acted upon by a human. In particular, we may

attempt to quantify the likely accelerations of the human hand in given applications. This

additional noise b̈k added with the initial measurement noise δc̈k will be considered as the

new measurement noise in the proposed state-space system.

Therefore, the covariance matrices of the measurement and process noise, respectively, Rk

and vk can be obtained as follows. From eq. (3.14), we have the covariance matrix

E(δzkδz
T
k ) = (ATA)−1σ2a, (3.32)

where δzk =
[
δc̈Tk δαk δω

2
k

]T ∈ R
4. Therefore, E(δc̈kδc̈

T
k ) can be obtained from eq. (3.32).

Finally, the covariance matrix of the measurement noise becomes

Rk = E(b̈kb̈
T
k ) + E(δc̈kδc̈

T
k ). (3.33)

The covariance matrix vk of the process noise is obtained from the gyroscope properties, which

yields

vk = ∆t2σ2ω, (3.34)
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where σ2ω is the covariance of the error of the angular velocity estimate in the case of a planar

motion.

Finally, the orientation estimate can be obtained via a classical EKF. Additionally, the appli-

cation of an Extended Kalman Filter (EKF) requires computing the Jacobian matrix of the

output function, namely,

H(x) =
∂h

∂x

∣∣∣∣
x=φk

= g

[
cosφk
-sinφk

]
. (3.35)

Let us now turn our attention towards the second proposed method, by which we estimate

the complete rigid-body pose in the vertical plane. To this end, the rigid body is yet again

instrumented with m accelerometers whose outputs at time step k form the vector yk ∈ R
m.

These measurements are related to five parameters of the rigid-body motion, namely, the

acceleration of a reference point a, the orientation φ with respect to gravity, the angular

acceleration α and the angular velocity squared ω2. Therefore, the state-space system is

xk+1 = Fxk +Guk, (3.36)

ŷk = h(xk) + δyk, (3.37)

where xk ≡
[
φk ωk αk pk vk b̈k

]T
, pk and vk are the position and velocity of the reference

point, uk ≡ [γk βk]
T (see eq. (3.15) and eq. (3.16)) is the system input and is assumed to be

Gaussian white noise, namely

uk ∼ N (03,Σ
2
u), (3.38)

which implies a covariance matrix of the form

Σ2
u
=

[
σ2γ 0T2

02 σ2β12×2

]
. (3.39)

We also have

F =




1 ∆t (1/2)∆t2 0T2 0T2 0T2

0 1 ∆t 0T2 0T2 0T2

0 0 1 0T2 0T2 0T2

02 02 02 12×2 ∆t12×2 (1/2)∆t212×2

02 02 02 02×2 12×2 ∆t12×2

02 02 02 02×2 02×2 12×2




, (3.40)
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G =




(1/6)∆t3 0 0

(1/2)∆t2 0 0

∆t 0 0

02 02 (1/6)∆t312×2

02 02 (1/2)∆t212×2

02 02 ∆t12×2




, (3.41)

h(xk) = APQ
T
k b̈k −APgcosφk +APEgsinφk +ATαk +ACω

2
k (3.42)

where AP , AT and AC from eq. (3.10) are constant coefficients, g ∈ R
2 is the gravity vector,

and b̈k is the inertial acceleration in the fixed frame.

The covariance Vk of the process error and the covariance Rk of the measurement error are,

respectively,

Vk = GΣ2
uG

T , (3.43)

Rk = σ2a(A
TA)−1. (3.44)

The extended Kalman filter requires that we compute the output-function Jacobian matrix as

well, namely,

H(x) =
∂h

∂x

∣∣∣∣
x=xk

=
[
APΩ

T
k b̈k +APgsin φk +APEgcosφk 2ACωk AT 0m×2 0m×2 AP

]
.

(3.45)

where ΩT
k =

[
−sinφk cosφk
−cosφk −sinφk

]
is the derivative of rotation matrix Qk with respect to the

orientation φk. Finally, using the method of the EKF, the state vector xk can be estimated.

3.3.6 Method of the unscented Kalman filter (UKF)

Generally, the extended Kalman filter (EKF) is popular, as it is quite simple to use the first-

order Taylor expansion of the nonlinear functions for linearizing about the current mean and

covariance. However, this introduces errors in the a posteriori mean and covariance and thus

could make the estimate diverge if the process were modeled incorrectly or if the initial esti-

mate were unreliable. For this reason, we decided to resort instead to the unscented Kalman

filter (UKF) for the state-space system from eq. (3.30) and eq. (3.31).

At the core of the UKF is the Unscented Transformation (UT), by which one calculates the

nonlinear information of a random variable [96, 97, 98, 99]. This approximation uses a set

of sample points called sigma points (SP), which represent the mean and covariance of the
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random variables. Therefore, the first step is to determine these sigma points, the second step

is to apply the UT for each SP, and the last step is to compute the mean and covariance from

the transformed SP.

Let us assume a nonlinear discrete state-space system

xk+1 = f(xk,uk) + ek, (3.46)

yk = h(xk) + nk, (3.47)

where xk is the system state vector, uk is the input vector, yk is the system output or mea-

surement vector, and ek and nk are process noise and measurement noise respectively.

Assume that xk and Pk are the mean and the error covariance matrices of state x, and that

x̂k is the state estimate. The SP Xk is defined as follows:

X0,k = xk,

Xi,k = xk +
(√

(L+ λ)Pk

)
i
, i = 1, 2, . . . , L

Xi,k = xk −
(√

(L+ λ)Pk

)
i−L

, i = L+ 1, L+ 2, . . . , 2L

(3.48)

where L is the dimension of vector xk, λ = α̃2(L+κ)−L is a scaling parameter, α̃ determines

the spread of the PS around x and is usually given a very small positive value between 0.0001

and 1, κ = 3 − L is a secondary scaling parameter and
(√

(L+ λ)Pk

)
i

is the ith column of

the matrix square root.

For the covariance matrices of process and measurement noise, they are the same as eq. (3.33)

and eq. (3.34). As a matter of fact, when the state transition and observation models—that is,

the predict and update functions f and h—are highly non-linear, the extended Kalman filter

can give particularly poor performance. This is because the covariance is propagated through

linearization of the underlying non-linear model. However, in our case, from eq. (3.31), it is

evident that the observation model is not highly non-linear, which could indicate that the

EKF is as accurate as UKF.

3.4 Validation through simulation

3.4.1 Simulated game controller

In order to estimate the orientation in the plane, a game controller similar to the Wii-mote

is designed. In this version, two biaxial accelerometers are assumed to be at each of its ends,

forming an array of 4 accelerometers, and a gyroscope is at its midpoint. Fig. 3.2 shows the
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Figure 3.2: ProE drawing of game controlller

ProE rendering of the designed game controller. Let us introduce the details of this game

controller.

The length of the game controller is 2r = 0.3 m, where r is the half-length dimension appear-

ing in matrix A in eq. (3.10). For the simulation, all the geometric parameters used are the

same as those of this game controller. The sampling period it uses is ∆t = 0.01 s. Some other

simulation parameters are gravitational acceleration g = 9.81 m/s2, the standard deviation of

position σb = 0.3 m, the standard deviation of accelerometer noise σa = 0.3 m/s2, the standard

deviation of angular velocity from gyroscope σω = 0.6 rad/s, where the standard deviation

values are chosen to make sure that they are less than 5% of the virtual sensors’ scales in simu-

lation, the initial state (orientation) φ0 = 0o and its initial estimate error covariance P0 = 103.

3.4.2 Simulated random walk of the trajectory

In order to generate arbitrary trajectory of hand motions, we first use a random-walk model

on its pose, to which we applied a first-order low-pass filter, so as to smoothen the trajectory.

For the random walk motion, we have

bk = bk−1 +∆bk, (3.49)

φk = φk−1 +∆φk, (3.50)

where bk = [x y]T represents the position, φk represents the orientation and ∆bk and ∆φk

are assumed to be zero-mean, identically, independently distributed Gaussian white noise,

47



namely,

∆bk ∼ N (02, σ
2
b12×2), (3.51)

∆φk ∼ N (0, σ2φ). (3.52)

In order to better model the dynamic capabilities of the hand, we add a filter G(s) = 1/(τs+1)

to the noise in eq. (3.50), where τ = 1 s is the associated time constant. At first sight, this time

constant may appear larger than that of a typical human-hand movement. This value of τ was

adjusted to produce accelerations in the range 3g, approximately, which is similar to those of

the human hand. The resulting accelerations are traced over time in Fig. 3.4. It is evident

that this acceleration is not obtained from the Newton’s second law of motion, but rather from

eq. (3.49). Hence, the value of τ was chosen a posteriori, from the generated accelerations.

As the filter is expressed in frequency-domain, we need to convert equations (3.49) and (3.50)

from time-domain to frequency-domain. Thus, from eq. (3.50), we have

φ̇k =
φk − φk−1

∆t
=

1

∆t
∆φk. (3.53)

Then, we convert eq. (3.53) to a continuous-time expression, which yields, after a Laplace

transformation,

sΦ(s) =
1

∆t
∆φ. (3.54)

After this, we combine the first-order filter and the random-walk model, to obtain

Φ(s) =
1

τs+ 1

1

s∆t
∆φ =

1

τs2 + s

∆φ

∆t
. (3.55)

Reverting back to the discrete-time domain, we obtain

φk =

(
∆t

τ
− 1

)
φk−2 +

(
2− ∆t

τ

)
φk−1 +

∆t

τ
∆φk. (3.56)

A similar development yields the recursive law of the trajectory of point B, namely,

bk =

(
∆t

τ
− 1

)
bk−2 +

(
2− ∆t

τ

)
bk−1 +

∆t

τ
∆bk. (3.57)

A typical trajectory resulting from this random walk model is shown in Fig. 3.3.

In order to verify the algorithms of EKF and UKF mentioned above in Section 3.3, we need to

compute the covariance of inertial acceleration for the random walk model. From eq. (3.57), we
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Figure 3.3: Trajectory of random walk model

have its velocity expression ḃk = (bk−bk−1)/∆t and its variance E(ḃkḃ
T
k ). Then the inertial

acceleration in the fixed frame is b̈k = (ḃk − ḃk−1)/∆t, and finally, we have its covariance,

E(b̈kb̈
T
k ) =

3−∆t/τ

τ2∆t2(2−∆t/τ)
σ2b12×2. (3.58)

One component of the true and error-stained simulated accelerometer measurements resulting

from this simulation are shown in Fig. 3.4. As a result, we present the final comparison of

the orientation estimates described here in Fig. 3.5, and their corresponding errors appear in

Fig. 3.6.

In these two figures, it is shown that the time-integration estimate drifts over time, by as

much as 50o over 100 s. Clearly, the estimate from the tilt sensor is not reliable over the

simulated range of inertial accelerations. This is explained from eq. (3.20), which is exact

only when b̈k = 02. When, on the contrary, b̈k is far from being null, the error on φk is

correspondingly large. For the estimate from the EKF for orientation-only method, provided

that the covariance of noises is chosen properly, we observe that the result matches well the

true orientation. However, the estimate from the EKF for complete-pose method has an error

that is somewhat larger.

3.4.3 Simulated ∞-shaped trajectory

In order to test the proposed methods, another regular trajectory model having the shape of

the ∞ symbol is used in simulation. To follow such a trajectory, we use a Lissajous curve,
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Figure 3.4: The true and error-stained accelerometer measurements
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Figure 3.5: The proposed and already-existing orientation estimates

namely,

x = asin(ct+ δ), (3.59)

y = bsin(dt). (3.60)

where, a = 0.5 m, b = 0.25 m, c = 2π/τ , τ = 2 s, d = 2c, δ = 0, t is the time and ẋ and ẏ are

time derivative of x and y respectively. Moreover the game-controller is to remain parallel to

the velocity vector of point B, that is,

φ = arctan(ẏ/ẋ). (3.61)

The corresponding trajectory is shown in Fig. 3.7.
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Figure 3.6: Errors of the proposed and existing orientation estimates

Figure 3.7: Trajectory of ∞-shaped model

As for the simulated ∞-shaped trajectory, Fig. 3.8 presents the accelerometer measurements,

and Fig. 3.9 and Fig. 3.10 present the orientation estimates and their errors. It is seen that

the time-integration method and the tilt-sensor method exhibit the same problems as before,

namely, drift and sensitivity to inertial accelerations. Similarly, the orientation estimate from

the complete-pose method again has more error than the one from the orientation-only method.

The cause of this phenomenon is left to be explained in the discussion.
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Figure 3.8: The true and error-stained accelerometer measurements
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Figure 3.9: Comparison of orientation

3.5 Discussion

The time-integration method consists in integrating the angular velocity measured by a gyro-

scope over time, thus accumulating errors in the process and, inevitably, causing a drift. This

prevents anyone from using this method alone for long periods of time. However, it may prove

useful in some applications where estimates are required over very short time periods. It is

evident in Fig. 3.6 and Fig. 3.10 that during the first 5 seconds, the errors are small, while

they are seen to steadily increase in the following seconds.
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Figure 3.10: Errors of orientation

With the help of gravity, accelerometers are usually taken as tilt sensors for estimating the

roll and pitch angles when the rigid body is immobile. For the game controller moving in the

vertical plane, the estimate from this gravitational method, is severely affected by the inertial

acceleration (see Fig. 3.6 and Fig. 3.10). Furthermore, it oscillates constantly between differ-

ent values shown in Fig. 3.5, which can be explained by the argument of arctan in eq. (3.20),

only when both (b̈y,k + gcosφk) → 0 and (b̈x,k + gsinφk) → 0.

Meanwhile, In order to keep the clarity of Figures 3.5 and 3.9, we implement and analyse

the MSE and KF methods in a different trajectory. Fig. 3.11 presents a new game-controller

trajectory, and Fig. 3.12 shows the methods comparison. Fig. 3.12 indicates that, the final

estimates of the MSE method are so close to those of the tilt-sensor method. In principle, it

is impossible to distinguish the inertial acceleration and the gravitational one, and only their

sum can be taken into the calculation. In the event that the inertial acceleration is small

enough (smaller than 1g), the accelerometer may be considered as a tilt sensor, and the MSE

estimates as well as the gravitational estimates then become satisfactory.

As mentioned in the Section 3.3, the KF method proposed is a flawed method. The attempt

to combine the time-integration and tilt-sensor estimates via a linear Kalman filter proved

unsuccessful, as can be seen from Fig. 3.12. In this figure, the error of the KF method reaches

200◦. This may be explained by the inability of the standard Kalman filter to capture the

nonlinear relationship between the angle φ and the gravitational acceleration. This result

spurred the application of nonlinear variants of the Kalman filter to our problem. Let us now

turn our attention to these methods.
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Figure 3.11: Game controller and remote trajectory in the plane

For the orientation-only method, the orientation is estimated on the assumption that the an-

gular velocity has already been obtained from the gyroscope. With this angular velocity as

the input and its error covariance, the estimate is accurate to within 10◦, which is illustrated

in Fig. 3.6 and Fig. 3.10. The advantage of this method is that the accuracy of the gyroscope

is independent from the trajectory of the rigid body, which is not the case when one relies

solely on the accelerometers. This can be appreciated from Fig. 3.13 (using data from Fig. )3.6.

Meanwhile, the orientation-only method works well at both high and low accelerations. This

may be seen by inspecting eq. (3.31), where b̈k is considered as a part of measurement noise,

which implies that the accuracy of the estimates is independent from the values of the inertial

acceleration. This can also be seen from Fig. 3.13. Observe as well that the filter performance

may be assessed from the value of Rk in eq. (3.33), as a low Rk implies a high confidence in

the measurements. This is easily understood that when there is no inertial acceleration, the

orientation can totally be obtained from c̈k which only includes the gravitational acceleration.

In the case of the complete pose method, the orientation estimate matches the true one only

occasionally. We conjecture that this is due to the poor accuracy of the angular-velocity esti-

mates, which are closely linked to the orientation estimates through the state equations. This

may be assessed from Fig. 3.14 and Fig. 3.15 by comparing the angular velocity estimated

from the complete-pose method. Contrary to the orientation-only method, the complete-pose

method relies on a nonlinear relationship between the measurements and the angular veloc-
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Figure 3.12: Orientation estimates and errors from different methods

ity. Although not explicitly stated, this relationship is a square-root operation, since the

accelerometers measure the angular velocity squared. The square-root function has an infinite

slope at zero, which explains the poor accuracy of the angular-velocity estimates whenever

they are close to being null. The poor accuracy of the orientation estimates are only a conse-

quence of this singularity of the complete-pose method.
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Figure 3.13: Errors of the proposed and existing orientation estimates
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Figure 3.14: The angular velocity estimate and true one

Similarly, UKF is used in nonlinear applications as well. In this chapter, the UKF method has

the same state-space system as the EKF. The difference is the way of linearization. We observe,

in Fig. 3.12, that the UKF estimate matches well the true orientation as well, similar to a large

extent to the orientation-only method, probably because of the good linearity of the system.

Hence, the improvement of the UKF method over the EKF method appears to be insignificant.

As a matter of fact, in the UKF, the state distribution is also approximated by a Gaussian

random variable, but is represented using a minimal set of carefully chosen sample points.

The result is a filter which more accurately captures the true mean and covariance to the
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Figure 3.15: The angular velocity estimate and true one

3rd order (Taylor series expansion). The EKF, in contrast, only achieves first-order accuracy.

In addition, the UKF removes the requirement to explicitly calculate Jacobians, which for

complex functions can be a difficult task in itself.

From what has been discussed above, we come to the conclusion that the EKF (orientation

only) and UKF (orientation only) algorithm should be preferred to the KF algorithm, mainly

due to a better choice of state space model and the noise covariance matrices. Additonally,

they are clearly more accurate than the MSE method, which appears to be very sensitive to

errors in the inertial acceleration.

3.6 Conclusion

Estimating the orientation of a game controller moving in a vertical plane is of much im-

portance in game playing. Its accuracy directly affects the game response. In this chap-

ter, three new algorithms using extended Kalman filter (EKF) and unscented Kalman filter

(UKF) to estimate the orientation are presented and compared with two existing methods,

namely, the time-integration method and the tilt-sensor method. Because of the drift from

the time-integration method and the error caused by the inertial acceleration from the tilt-

sensor method, it is not recommended to use any of these methods alone. In the simulated

examples, the orientation estimate from the complete-pose method matches the true one only

occasionally because of a high sensitivity of the method at low angular velocities. On the other

hand, the orientation-only method (EKF and UKF), which is shown to be stable, offers us an

excellent orientation estimate. In addition, it works efficiently at both high and low angular

velocities which denotes that the accuracy of estimate is independent from the trajectory. This
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will avoid the limitations of both the integration and tilt-sensor methods, and possibly open

new applications in human-machine interaction.
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Chapter 4

Calibration of the inertial and

magnetic sensors

A beard well lathered is half shaved.

As mentioned before, the objective of this thesis is to improve the orientation estimation of

game controllers like the Wii Remote with low-cost sensors. We thus design a game controller

ourselves using accelerometers, gyroscopes and magnetometers. For almost all these MEMS

(Micro-Electro-Mechanical System) sensors, however, the unit of initial output is voltage (for

analog sensors) or LSB (Least Significant Bit) (for digital sensors), while their final units are

m/s2, ◦/s and Tesla, respectively. Therefore, the calibration for the sensors is necessary to

determine their scale factors and offsets. As a matter of fact, most of the sensors are factory

calibrated, allowing the user to avoid any further calibration for most of the applications now

present in the market [68]. However, to reach a higher accuracy, it is still preferred to calibrate

them, in practice. Moreover, it is unrealistic that we calibrate the sensor everytime before

using a mass product. This chapter on calibration, however, is for preparation for validating

or testing our proposed algorithms. We do not consider its necessity for mass product here,

but may do more research in the furture work.

In this chapter, we firstly present the game controller design, in which all necessary sensors

are installed. Then, these sensors are calibrated to determine their scale factors and offsets so

as to obtain the final output and improve the performances of them. In addition, some tests

are presented for accelerometers and gyroscopes to validate the sensitivity to the cross-axis

acceleration.
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4.1 Design of game-controller

In the game controller, two triaxial accelerometers are assumed to be installed at each end

of it, a triaxial gyroscope and also a triaxial magnetometer are fixed in its center, as shown

in Fig. 4.1. It is noted that Fig. 4.1 only presents the general information of game controller

model, where the sensitive directions of accelerometers drawed there may not be consistent

with the true ones. Fig. 4.2 and Fig. 3.2 show the photo and ProE drawing of the designed

game-controller, respectively. Then, let us introduce the details of this game controller.

O

B

X

Z

Y

bk

pi,k

ri

e1

e2

e3

e4

e5

e6

F

B

g
Q

Figure 4.1: Model of the game controller with two triaxial accelerometers moving in space

Figure 4.2: Photo of game controller

The length of the game controller is 0.3 m. The distance between the two triaxial accelerome-

ters is 2r = 0.24 m, where r is the half-length dimension appearing in matrix A in eq. (3.10).

In addition to the two triaxial accelerometers, an electronic compass (magnetometer) and a

gyroscope are mounted on the game controller. Bluetooth and USB are used for connecting

the game controller with a PC and LEDs are used to indicate whether it is working.

60



a) Accelerometer array: This game controller uses the ADXL345 accelerometers [100] from

Analog Devices. Two such triaxial accelerometers are mounted at each end of the game con-

troller, and thus form an accelerometer-array.

b) Electronic Compass: The LSM303DLH [68], a tilt compensated electronic compass, is

mounted in the game-controller as well. This compass is a 5×5×1 mm chip, which includes a

digital triaxial accelerometer and a digital triaxial magnetic sensor. The triaxial accelerometer

can help to obtain the tilt angles of pitch and roll for tilt compensation, and the magnetic

sensor is capable of mesuring the earth’s magnetic field, thus determining the yaw (heading)

angle with respect to the magnetic north. We integrate the measurements from this sensor

when generalizing the algorithm to spatial displacements.

However, the accelerometer of the electronic compass does not work very well in case of high

accelerations or impacts. Because accelerometers cannot distinguish the gravitational acceler-

ation and the inertial acceleration, high-acceleration motion causes pitch and roll calculation

errors. Therefore the accuracy of the angle calculation in an electronic compass is affected by

the smoothness of the game controller motion.

c) Gyroscope: For the robustness of the estimates, the L3G4200D [101], another MEMS

motion sensor, is included. It is an ultra-stable triaxial digital output gyroscope. Mentioned

in the introduction of this thesis, the triaxial gyroscope may be used in combination with the

others for the estimation of spatial displacements.

d) Bluetooth: A Class 2 Bluetooth Module RN-42 [102] is used to connect the game con-

troller to computers. It is a small form factor, low power, highly economic wireless transmitter,

which can deliver up to 3 Mbps data rate for distance to 20 m. This is quite enough for a

game-controller, where a range of 5 m is sufficient in most game-playing applications.

4.2 Calibration of the accelerometers

After the accelerometers are installed in game controller, it is necessary to calibrate them,

using the one degree-of-freedom rate table RT1112 [103] from ACTIDYN, in order to deter-

mine their scale factors and offsets. The rate table RT1112 accuracy on the angular velocity

is reported to be within ±0.005% of its full scale range by its manufacturer. As for the po-

sitioning accuracy of the sensor, it was controlled by a custom aluminum jig built to fix the
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game controller on the rate table. Thus, we ignore any influence from the assembly on the

measured noise. Both the rate table and the jig are shown in Fig. 4.3.

In this game controller, as mentioned in Section 4.1, there are two triaxial accelerometers. ei

is a unit vector representing the sensitive direction of the ith accelerometer, while ri represents

its position with respect to the rate table center point.

Figure 4.3: One DOF rate table

Then, we have

ai = µivi,j + ηi = eTi Ω
2
jri + eTi Qjg, j = 1, . . . , n, (4.1)

where, ωj is the angular velocity of step j, n is the number of samples acquired during the

calibration run, Ω2
j =




−ω2
j 0 0

0 −ω2
j 0

0 0 0


, ωj = ωjk, µi is the scale factor, vi,j is the output

of the accelerometer, ηi is the offset, Qj is the proper orthogonal matrix that rotates the fixed

frame onto the mobile one at time step j and g = [0 0 − g]T is the vector of gravitational

acceleration with respect to the rate table reference. In the case of perfect installation, ei is

known. Finally, we have 5 unknowns µi, ηi and ri, where i = 1, . . . , 6.
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Eq. (4.1) can be written as

[vi,j 1 − eTi Ω
2
j ]



µi

ηi

ri


 = eTi Qjg. (4.2)

For the calibration, the game controller is fixed in different poses on the rate table, as seen

in Fig. 4.4. Figure 4.5 presents the schematic drawing of the two triaxial accelerometers in-

stalled in the game controller which is fixed on the rate table. Therefore, for each triaxial

accelerometer, one axis (a1y, a2y in Fig. 4.5) measures the centripetal acceleration, one (a1z,

a2z) measures the gravitational acceleration and the other (a1x, a2x), the tangential accelera-

tion. As the calibration is performed of constant angular velocities, the tangential acceleration

is zero, and is not taken into account in the equations. Because the accelerometers are not

at the center of rotation(i.e., ri 6= 03), a centripetal acceleration is observed by the single

accelerometer which points towards the center of the rate table, or in the reverse direction.

It is this accelerometer axis (e.g., a1y, a2y in Fig. 4.5) that is calibrated. Moreover, Fig. 4.5

informs us of the nominal sensitive directions and positions of the accelerometers:

[e1 e2 · · · e6] =




1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 1


 ,

[r1 r2 · · · r6] = r




0 0 0 0 0 0

1 1 1 −1 −1 −1

0 0 0 0 0 0


 ,

where r = 0.15 m.

In addition, for the horizontal accelerometer (when there are only tangential and centripetal

accelerations), gravitational acceleration is not observed, which indicates that eTi Qjg = 0, in

eq. (4.2). Because of the zero, this equation has an infinite number of solutions. We cannot

distinguish between scale factor, offset and position. Thence, in order to obtain the estimated

results, we need to change the game controller’s direction to make the accelerometer calibrated

vertical to the ground, which can observe the gravitational acceleration. Therefore, in order

to calibrate each accelerometer axis, it is necessary to test two different orientations of the

game controller on the rate table. Then, the new data is added in eq. (4.2), which gives

[
vi,j 1 −eTi Ω

2
j

vi,g,k 1 −eTi Ω
2
k

]

µi

ηi

ri


 =

[
eTi Qjg

eTi Qg,kg

]
=

[
0j

g · 1k

]
, (4.3)
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(a) Lying

(b) Standing

Figure 4.4: Game controller on rate table

where k = 1, . . . , n is the time step as j, Qg,k is the rotation matrix as Qj , vi,g,k is the output

of the accelerometer that observes the gravitational acceleration at time step k. Eq. (4.3) can

be written as

Xiβi = yi, (4.4)

where, Xi ≡ [xi,1 . . .xi,n xi,g,1 . . .xi,g,n]
T , xi,j =

[
vi,j 1 − eTi Ω

2
j

]T
, xi,g,k =

[
vi,g,k 1 − eTi Ω

2
k

]T
,

βi = [µi ηi ri]
T and yi =

[
0Tn g · 1Tn

]T
. By using the least square method, eq. (4.4) is solved

as

βi =
(
XT

i Xi

)−1
XT

i yi. (4.5)

It is noted that keeping the accelerometer axis in one direction (accelerometer sensitive direc-

tion pointing to the center of rate table or opposite) allows us to cover only a half of its range,

as the centripetal acceleration is always directed toward the rotation axis. In order to make
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Figure 4.5: Schematic drawing of two triaxial accelerometers in game controller on rate table

the calibration results more accurate, we want to calibrate the whole range of accelerations of

the sensor. Hence, the game controller is flipped in the opposite direction on the rate table as

well. By adding the data from the opposite direction, eq. (4.4) is changed to




vi,j 1 −eTi Ω
2
j 0T3

v−i,m 1 0T3 eTi Ω
2
m

vi,g,k 1 −eTi Ω
2
k 0T3

vi,g,p 1 0T3 −eTi Ω
2
m







µi

ηi

r1,i

r2,i



=




eTi Qjg

−eTi Qmg

eTg Qkg

eTg Qpg



=




0j

0m

g · 1k
g · 1p



, (4.6)

where m and p are the time steps just as j, r1,i is the position vector of sensitive accelerometer

for the first direction and r2,i is the position vector of sensitive accelerometer for the opposite

direction.

For the two directions, several angular velocities are reached and each lasts for a period of

time of 10 s or 20 s to even out the effects of noise and vibration and also avoid some inherent

delays. Given the full range of accelerometers, which is ±2g and their distance to the rotation

axis, the angular velocities were chosen as a sequence increasing by 80◦/s from 80◦/s to 800◦/s

for direction 1, and a sequence decreasing by 100◦/s from 800◦/s to 80◦/s for direction 2,

where some random values were added occasionally in order to make the experimental data

more convincing. Meanwhile, two directions of each accelerometer were chosen to cover both

its positive and negative axes. Fig. 4.6 shows us the imposed angular velocities and Fig. 4.7

gives the corresponding output of accelerometer.
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(a) Direction 1 (sensitive direction pointing to the center of rate table)
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(b) Direction 2 (sensitive direction pointing in opposite direction)

Figure 4.6: Angular velocity steps

With the outputs of the accelerometers and the true angular velocities, the scale factor αi,

the offset βi and the position parameters r1,i and r2,i can be estimated. Using the estimated

r and the known angular velocity ω, centripetal acceleration is obtained by ac = rω2. Thus,

combining Figs. 4.6 and 4.7, we obtain Fig. 4.8, which shows the sensor output, in counts,

against the imposed acceleration.

Then, the scale factor and offset are computed from eq. (4.5), which gives the best fit line

shown in Fig. 4.8. The corresponding calibration error is shown in Fig. 4.9. From this figure,

the minimum and maximum calibration errors are −0.7 m/s2 and 0.7 m/s2, respectively.

Given the experimental results, we can compute and analyse the nonlinearity error. As we use

66



0 20 40 60 80 100 120 140 160 180 200
-600

-500

-400

-300

-200

-100

0

time (s)

se
ns

or
 o

ut
pu

t (
di

gi
t)

(a) Direction 1

0 10 20 30 40 50 60 70 80 90 100
-100

0

100

200

300

400

500

time (s)

se
ns

or
 o

ut
pu

t (
di

gi
t)

(b) Direction 2

Figure 4.7: Output of an accelerometer

linear calibration laws to compute the sensor measurements from their signals, we consider

any nonlinearity as a component of the error. Moreover, from the specifications of the sensors,

these nonlinearities are more important than the noise, when taken over the full scale range.

Similar analysis will be done for the calibration of the gyroscope in Section 4.3.

From the specifications of the ADXL345 [100] and the tests we have done, the full-scale range

of the accelerometer is ±2g. Thus, the measured relative error is

± 0.7 m/s2

4g
≈ ±1.75%. (4.7)
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Figure 4.8: Accelerometer output versus the imposed acceleration
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Figure 4.9: Regression error

From the accelerometer datasheet [100], the typical nonlinearity error is ±0.5%. A “typi-

cal” specification is not guaranteed, however. In addition, given the magnetic noise created

by installation and the vibrations, this regression error percentage, which is somewhat larger

than expected, is taken to be plausible, in our case.

We also note that the error distribution is fairly uniform over the range of the sensor. Thus,

only minimal gains can be expected from the use of a higher-order calibration law. Moreover,

the accelerometer outputs exhibit the same behaviour whether the imposed acceleration in-

creases or decreases. Hence, there is no noticeable hysteresis in the response of this low-cost
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Table 4.1: Scale factor and offset of the accelerometers

Acc. Axis
scale factor scale factor offset offset
(calibration) (specification) (calibration) (specification)
(mg/LSB) (mg/LSB) (mg) (mg)

1 x 4.24 3.5—4.3 5.3061 -150—150
1 y 4.17 3.5—4.3 34.8980 -150—150
1 z 4.23 3.5—4.3 169.6327 -250—250
2 x 3.63 3.5—4.3 10.8367 -150—150
2 y 4.00 3.5—4.3 65.8776 -150—150
2 z 4.24 3.5—4.3 149.1531 -250—250

sensor.

In summary, we calibrated both triaxial accelerometers, and obtained the scale factors and

offsets of their six axes in total, which are shown in Table 4.1.

4.3 Calibration of the gyroscope

Similarly, the triaxial gyroscope is also calibrated on the one DOF rate table. We fix the

gyroscope on the rate table for three different poses to make each of its sensitive directions

parallel to the rotating axis of the table, shown in Fig. 4.10. In this case, the angular velocities

of the rate table are considered as the gyroscope measurements. Thus, we have, for the ith

x

y z
x

y

z
y x

z

1 32

Figure 4.10: Three IMU positions shown by the sensitive axes of gyroscope

sensitive axis,

ω̂i = µivi,j + ηi, (4.8)

where, µi is the scale factor, vi,j is the output of gyroscope, ηi is the offset and ωj the angular

velocity of rate table.
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From the datasheet [101], the scale range of the gyroscope is ±250◦/s. In our tests, we found

the value to be somewhat larger, at ±275◦/s. In order to achieve the full range of the data,

the rate table is performed from −325◦/s to 350◦/s, which is a arithmetic sequence with the

common difference of 25◦/s. This can be seen in Fig. 4.11. Then, the corresponding gyroscope
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Figure 4.11: True angular velocity of rate table

output is obtained and shown in Fig. 4.12. Similar to Fig. 4.8, the relationship between the
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Figure 4.12: Output of gyroscope

output of the gyroscope and the true angular velocity is found and shown in Fig. 4.13.

The parameters µi and ηi are computed by using the linear least squares method. Therefore,

the best fit line is given in Fig. 4.13 and its error is shown in Fig. 4.14. In Fig. 4.14, the
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Figure 4.13: Best fit line

-300 -200 -100 0 100 200 300
-3

-2

-1

0

1

2

3

True Angular Velocity (deg/s)

R
eg

re
ss

io
n 

E
rr

or
 (

de
g/

s)

Figure 4.14: Regression error

unit of regression error is deg/s. Moreover, we find that the regression errors are disconnected

from the rest at some angular velocities (e.g., 0◦/s, 75◦/s ). This is because the output of the

gyroscope is discretized. From Fig. 4.14, the maximum deviation is observed to be ±2.8◦/s.

The full scale range of the gyroscope being ±250◦/s, we have a relative calibration of error

± 2.8

250× 2
= ±0.56%. From the gyroscope specifications [101], the nonlinearity is ±0.2%,

which is typical specification and is not guaranteed. Then, similar to the analysis for ac-

celerometer, the results we obtain are slightly less accurate than the advertised typical value,

but they are still acceptable.
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The error is not distributed evenly over the gyroscope range of sensitivity. From Fig. 4.14,

we see a larger error in the measurements at high angular velocities, in both directions of

rotation. This error seems evenly distributed on both sides of the linear regression, however,

and a higher-order calibration law would not improve its accuracy significantly.

In the same manner, we estimate the scale factors and offsets for the two remaining axes of

the gyroscope. Finally, the calibration parameters are shown in Table 4.2, where dps indicates

degree per second, and mdps indicates milli degrees per second.

Table 4.2: Scale factor and offset of the gyroscope

Axis Scale Factor (mdps/digit) Offset (dps) Correlation Coefficient
x 8.7700 -0.4978 0.999994
y 8.8805 -0.2228 0.999993
z 8.6502 -0.0655 0.999992

specification 8.75

It is noted that the scale factor in the datasheet of the gyroscope, which is typical specification,

is 8.75 mdps/digit, which is close to the estimated values.

One factor that we conjecture could influence the accuracy of the gyroscopes is the cross

axis sensitivity to acceleration. MEMS gyroscopes measure the angular velocity through the

Coriolis effect. When rotating the Coriolis force causes the displacement of an oscillating

mass in the MEMS gyroscope, which is read from a capacitive sensing structure. The differ-

ential capacitance is proportional to the angular velocity and is then converted into output

for gyroscope. Hence, the output of the gyroscopes is determined by this Coriolis force. An

external transverse acceleration can also cause the same displacement, however. Although

these gyroscopes are designed to be significantly more sensitive to angular velocity than point

acceleration, this phenomenon still affects, to a degree, the precision of gyroscope. Therefore,

two other tests are performed to evaluate the influence.

Firstly, we change the position of the game controller on the rate table and obtain the best

fit lines shown in Fig. 4.15, where r represents the distance from the center of rotation to the

gyroscope. Then, the difference between the two best fit lines is shown in Fig. 4.16. we decide

to analyse the results after the second test is done.

Secondly, the back and forth test is performed, which consists in increasing and decreasing

the angular velocity, as shown in Fig. 4.17. The best fit lines are thus presented in Fig. 4.18.

Then, the difference between two best fit lines is shown in Fig. 4.19.
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Figure 4.15: Best fit line for two positions
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Figure 4.16: Difference between two best fit lines (two positions)

As the difference from the second test is larger than that from the first one, we just analyse

the second test. From Fig. 4.19, the absolute value of the difference is at most d = 40 digital

counts. Meanwhile, the maximum absolute value of the gyroscope output, from Fig. 4.18, is

3× 104. Then, we have

40/(3× 104) ≈ 0.13%, (4.9)

which is small relative to the calibration errors previously observed, which were of 0.56% at

most.
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Figure 4.17: True angular velocity (back and forth)
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Figure 4.18: Best fit lines for the back and forth test

4.4 Calibration of the magnetometer

As mentioned above, magnetometer is installed for the sake of azimuth angle, as inertial sensors

are not capable of providing information on this angle, which is vertical to the gravitational

field. Prior to use the magnetometer, we wish to calibrate [87]. To this end, we consider the

model illustrated above, where the true North is represented by the unit vector

m ≡ mF . (4.10)

This true magnetic North is to be measured by the magnetometer attached to a rigid body.

The magnetometer measurements are taken in frame M, which is obtained by rotating the
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Figure 4.19: Difference between two best fit lines (back and forth)

body-fixed frame O through a rotation ROM. The matrix ROM remains constant as the rigid

body moves, but is yet unknown. Frame O, in turn, is obtained by a rotation [Qk]FO of the

fixed frame F . [Qk]FO varies as the rigid body moves, but is known, as it is measured by the

Optitrack sensor, which will be described in detail in Section 5.4.

From the magnetometer, we obtain an estimate m̂M,k of the true North direction, in its local

frame M. Thus we must link the estimate to the true North, which gives

m = m̂F ,k = [Qk]FOROMm̂M,k. (4.11)

In eq. (4.11), [Qk]FO and m̂M,k are measured, while m and ROM remain unknown. Let us

parameterize ROM with the Euler angle θ (pitch), φ (roll) and ψ (azimuth), according to the

XYZ convention. Thus, we obtain

ROM = R(θ, φ, ψ)OM. (4.12)

Upon premultiplying both sides of eq. (4.11) with QT
k , and subtracting the left side from the

right one, we obtain

fk(m, θ, φ, ψ) ≡ R(θ, φ, ψ)OMm̂M,k − [Qk]
T
FOm. (4.13)

Under the assumption of perfect measurements and model, we must have fk = 03. In practice,

however, fk 6= 03, and the problem becomes that of finding the parameters m, θ, φ and ψ such

that the norm of the vectors fk, k = 1, . . . , n, is minimized, where n is number of samples.
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Symbolically, we have

minimize
1

n

n∑

k=1

‖fk(m, θ, φ, ψ)‖22, (4.14)

over m, θ, φ and ψ. (4.15)

This is a nonlinear least-squares problem, which can be solved in Matlab using the lsqnonlin

command.

A question remains as to how we obtain the magnetometer measurement m̂M,k, from its

output voltage vk. According to the calibration procedure provided by STMicroelectronics,

the sensor output voltage should lie on the surface of an ellipsoid (seen in Fig. 4.20), i.e.,

(vk − v0)
TE(vk − v0)− 1 = 0, (4.16)

where k = 1, . . . , p. In practice, the voltage is never exactly on the surface of one ellipsoid.

Hence, one must find the ellipsoid that fits best by solving another nonlinear least-squares

problem,

minimize
1

n

n∑

k=1

‖gk(E,v0)‖22, (4.17)

subject to E = ET , (4.18)

over E,v0. (4.19)

where gk(E,v0) ≡ (vk − v0)
TE(vk − v0)− 1. As before, problem (4.17) can be solved using

Matlab’s lsqnonlin command.

Although the equation of the best ellipsoid is obtained, this does not yet tell us how the voltage

measurements vk are linked with the magnetic field direction m̂M,k. Since m̂M,k is a unit

vector, geometrically, we are looking for a one-to-one correspondence between the ellipsoid of

eq. (4.16) and the unit sphere centered at the origin. Such a mapping is obtained by the linear

relationship

m̂M,k =
√
E(vk − v0), (4.20)

where
√
E is the matrix square-root, i.e., the matrix that has the same eigenvectors as E, but

whose eigenvalues are the square-roots of those of E. For m̂M,k to be a unit vector, vk has to

lie exactly on the ellipsoid of eq.(4.16). Since this is not the case in general, it is a necessary

precaution to normalize m̂M,k, i.e., to use instead

m̂M,k =

√
E(vk − v0)

‖
√
E(vk − v0)‖2

. (4.21)

Finally, after scale factor and offset compensation, we obtain a centered unit sphere, as seen

in Fig. 4.21.
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Figure 4.21: Magnetometer output (after compensation)

4.5 Conclusion

In this chapter, we firstly design a game controller in which accelerometers, gyroscope and

magnetometer were installed. Then, in order to use the output of these sensors correctly

and accurately, we calibrated accelerometers and gyroscope using a one DOF rate table and

magnetometer using the Optitrack system to determine their scale factors and offsets. In

the calibration, the accelerometers and gyroscopes were observed to be fairly insensitive to

cross-axis accelerations, to hysteresis and exhibited good linearity. These observations tend

to validate the model that we have been using, whereby errors are assumed to be Gaussian
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white noise. Meanwhile, the output of magnetometer lied almost on the surface of an ellipsoid,

which is obtained by solving a nonlinear least-squares problem. After scale factor and offset

compensation, the ellipsoid becomes a centered unit sphere, representing the magnetic field

direction. Finally, the fixed true North is found, by using the Optitrack system as the reference.
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Chapter 5

Estimating the orientation in space

Deux precautions valent mieux qu’une.

This chapter presents a novel method of estimating the orientation of a rigid body moving in

space from inertial sensors, which has been published in [104], by discerning the gravitational

and inertial components of accelerations. In this method, both a rigid-body kinematics model

and a stochastic model of the human-hand motion are formulated and combined in a nonlinear

state-space system. The state equation represents the rigid-body kinematics and stochastic

model and the output equation represents the inertial sensor measurements. It is necessary to

mention that, since the output equation is the nonlinear function of the state, the application

of the extended Kalman filter (EKF) is resorted to. The absolute value of the error from

the proposed method is shown to be less than 5◦ in simulation and in experiments. It is

stable, unlike the time-integration of gyroscope measurements, which is subjected to drift,

and remains accurate under large accelerations, unlike the tilt-sensor method.

Multimedia extension

• The video manette_GUI.avi presents a simple virtual environment to demonstrate use-

fulness of the proposed algorithm.

5.1 The proposed estimation method

After estimating the orientation in the plane in Chapter 3, the final objective is to estimate

the orientation in space. Instead of the model of Fig. 3.1 in Section 3.1, we are using the

model of Fig. 2.1 in Section 2.1.

Like most other researchers, we rely on Kalman filtering to estimate the rotations of the hand

from inertial measurements. Because the kinematics of rotations are nonlinear, we must resort
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to the extended Kalman filter to estimate the attitude of the hand. This, in turn, requires

that a model of the hand rotations and sensing be written as a standard state-space system

of the form

ẋ = f(x) + u, (5.1a)

y = h(x) + v, (5.1b)

where x is the state vector, f(x) is the state function, u is the process noise, y is the output

vector, h(x) is the output function, and v is the output noise. Thence, let us describe how

we propose to model the rotations of the human hand.

5.1.1 Stochastic model of the hand kinematics

We assume that the moments applied by the user on his or her own hand vary according

to a Gaussian white-noise stochastic process. From Newton’s second laws of motion, we

infer that the angular acceleration is Gaussian white noise, since it is linearly related to the

moments. From the angular acceleration, one can compute the angular jerk γ [91] by a

numerical differentiation, which is a linear operation in discrete time ( γk = (αk+1 −αk)/∆t).

Hence, the angular jerk is a Gaussian white noise as well. It can be rewritten as

γ = α̇. (5.2)

Since it is assumed to be Gaussian white noise, we can also write that γ follows a normal

distribution, namely,

γ ∼ N (0, σ2γ13×3). (5.3)

However crude this approximation may seem, we can only judge of its quality by the results

it provides, examples of which are presented in Sections 5.3 and 5.4.

5.1.2 Kinematics of rigid-body rotations

Let us start from the angular acceleration, which is related to the rigid-body angular velocity

ω through the simple relationship

α = ω̇. (5.4)

In turn, relating the angular velocity to rigid-body rotations requires a proper parameteriza-

tion thereof. To this end, we resort to the rotation matrix Q taking the fixed frame F onto

the moving frame B. Most authors prefer instead Euler angles or quaternions for this purpose.

Here, our choice is motivated by the observation that the rotation matrix appears linearly in

the accelerometer output equations, as shown in Section 5.1.4. As seen below, the use of rota-

tion matrices leads to simple, compact equations that are easily understood and implemented,

which is not the case with other representations. Besides, the rotation-matrix representation
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of rotations is free of singularities, which is not the case with Euler-angles representations [105].

From [88], we have a relationship between the rotation matrix Q and [Ω]F ≡ cpm([ω]F ), the

cross-product matrix1 of the angular velocity expressed in the fixed frame F . This relationship

is

[Ω]F = Q̇QT = Q[Ω]BQ
T , (5.5)

where the latter equality simply represents a change of frame from B to F . Solving for Q̇, we

obtain

Q̇ = Q[Ω]B. (5.6)

In order to reach the standard form of a state-space system, we define the rows of the rotation

matrix Q as

Q = [q1 q2 q3]
T . (5.7)

Therefore, we have

[q̇1 q̇2 q̇3] = Q̇T = [Ω]TBQ
T = [Ω]TB [q1 q2 q3]. (5.8)

Integration to the Kalman filter requires that we rewrite eq. (5.8) as




q̇1

q̇2

q̇3


 =




[Ω]TB 03×3 03×3

03×3 [Ω]TB 03×3

03×3 03×3 [Ω]TB







q1

q2

q3


 . (5.9)

5.1.3 Rotation-matrix orthogonality

Matrix Q is a rotation matrix if and only if it is proper orthogonal, that is, if it satisfies the

constraints

det(QQT ) = 1, (5.10)

QQT − 13×3 = 03×3. (5.11)

Because of measurement and modeling errors, we must expect the estimate of Q to violate

these constraints at any time if not all the time. This is not catastrophic, as long as the

constraint violation does not rise above a certain level to be decided by the users.

In order to integrate this idea within the state-space formulation, we regard the output of the

constraint QQT − 13×3 as a fake measurement. The output of this measurement is allowed

1The cross-product matrix of a, cpm(a), is defined as ∂(a× x)/∂x, for any a,x ∈ R
3.
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to remain its true value of 03×3 by the addition of a measurement error, which is modeled as

white noise. The state-space formulation of these ideas requires the definition of substituting

eq. (5.7) into eq. (5.11). We define

s =




qT
1 q1 − 1

qT
2 q2 − 1

qT
3 q3 − 1

qT
2 q3

qT
3 q1

qT
1 q2




, (5.12)

the constraint-violation measurement. s is endowed with a small noise δs allowing the mea-

surement to retain exactly null despite measurement errors, and preventing the singularities

in the algorithm calculation process,

06 = s+ δs. (5.13)

δs is assumed to follow the normal distribution,

δs ∼ N (0, σ2s16×6). (5.14)

5.1.4 Accelerometer measurements

Like orthogonality constraints, the inertial measurements are system outputs, symbolized by

the accelerations âi, i = 1, . . . ,m, from the m uniaxial accelerometers, and the angular velocity

ω̂ from gyroscope, respectively. The measurement âi of this ith accelerometer can be modeled

as

âi = ai + δai, (5.15)

where ai is the true acceleration component along the accelerometer sensitive direction, and

δai is the measurement error.

We assume that the measurement errors are zero-mean, identically, independently distributed

Gaussian white noise δa, i.e.,

δa ∼ N (0m, σ
2
a1m×m), (5.16)

where, δa ≡ [δa1 · · · δam]T , N represents the normal distribution, 0m is the m-dimensional

zero vector, σ2a is the measurement-error variance of a single accelerometer, and 1m×m repre-

sents the m×m identity matrix.
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The accelerometer-array input–output relationships are discussed in Chapter 1. From eq. (2.13),

we have

â = Az+ δa

= AP b̈−APGq+ATα+ACξ + δa, (5.17)

where b̈ is the inertial acceleration, G = −
[
gx13×3 gy13×3 gz13×3

]
, g = [gx gy gz]

T , and

q = [qT
1 qT

2 qT
3 ]

T .

The problem is that we don’t know the inertial acceleration b̈k. However, it is possible to

consider it as random motion whose covariance can be estimated. For a game controller being

acted upon by a human, although we have no deterministic way of predicting the trajectory,

we may estimate, however coarsely, the probability of moving from one pose to the next within

one time step. In particular, we may attempt to quantify the likely accelerations of the human

hand in given applications. Therefore, b̈ is assumed to follow the normal distribution,

b̈ ∼ N (0m, σ
2
b13×3). (5.18)

5.1.5 Gyroscope measurements

For the angular velocity ω̂ from the gyroscope, like eq. (5.15), we have

ω̂ = ω + δω, (5.19)

where δω is the gyroscope measurement noise and which is assumed to follow the Gaussian

distribution,

δωk ∼ N (03, σ
2
ω13×3). (5.20)

5.1.6 Magnetometer measurements

Having the gravitational field, where g = [gx gy gz]
T , Earth also has the magnetic field, which

gives the magnetic vector [m]F = [mx my mz]
T . Therefore, a magnetometer, whose output is

[m̂]O, can be installed to estimate the heading attitude. Similar to eq. (5.15) and eq.(5.19),

we have the magnetic intensity vector m̂,

m̂ = m+ δm, (5.21)

where m is the true magnetic intensity component along the magnetometer sensitive direction,

which is discussed in Section 4.4, δm is the magnetometer measurement noise and which is

assumed to follow the Gaussian distribution,

δmk ∼ N (03, σ
2
m13×3). (5.22)
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Then, like the expression in eq. (5.17) and from eq. (5.59), we have

[m]O = QT
FOmF ,k = RT

BOQ
T
B [m]F = RT

BO[q1 q2 q3][mx my mz]
T

= RT
BO(mxq1 +myq2 +mzq3)

= RT
BOMq,

(5.23)

where QB = Q, m = [mx my mz] is the vector of magnetic intensity pointing to the magnetic

North, M = [mx13×3 my13×3 mz13×3], q = [qT
1 qT

2 qT
3 ]

T , QFO and RBO are defined in

Section 5.4.

5.1.7 State-space system

Let us regroup the equations that model the system (5.2,5.4,5.9) and those that model the

measurements (5.13,5.17,5.19) into the standard form of a (nonlinear) state-space, in which

each uniaxial sensor corresponds to one output equation. This yields

ẋ = f(x) + u, (5.24)

y = h(x) + v, (5.25)

where

x = [qT
1 qT

2 qT
3 αT ωT ]T ,

f(x) =
[(
[Ω]TBq1

)T (
[Ω]TBq2

)T (
[Ω]TBq3

)T
0T3 αT

]T
,

u =
[
0T9 γT 0T3

]T
,

y = [âT ω̂T m̂T 0T6 ]
T ,

h(x) = [(−APGq+ATα+ACξ)
T ωT (RBOMq)T sT ]T ,

v = [(AP b̈+ δa)T δωT δmT δsT ]T .

Because the experimental data are obtained by sampling, we need to convert equations (5.24)

and (5.25) from continuous to discrete time. Let us first compute the state-transition matrix

from one rotation-matrix to the next,

Φk = 13×3 + [Ωk]
T
B∆t, (5.26)

where ∆t is the sampling period. Thence, the state-space system can be rewritten as

xk+1 =




Φkq1,k

Φkq2,k

Φkq3,k

αk

ωk +∆tαk



+




03

03

03

∆tγk

(1/2)∆t2γk



, (5.27)

yk = h(xk) + vk. (5.28)
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5.1.8 Jacobian matrices

Because of the system nonlinearity, the EKF covariance matrices cannot be directly estimated

from f and h, but only through their Jacobian matrices, F and H. These are computed as

F =
∂f

∂x
=




Φk 03×3 03×3 03×3 −∆tcpm(q1,k)

03×3 Φk 03×3 03×3 −∆tcpm(q2,k)

03×3 03×3 Φk 03×3 −∆tcpm(q3,k)

03×3 03×3 03×3 13×3 03×3

03×3 03×3 03×3 ∆t13×3 13×3



, (5.29)

H =
∂h

∂x
=




−APG AT AC(∂ξ/∂ω)

03×9 03×3 13×3

RT
BOM 03×3 03×3

∂s/∂q 06×3 06×3



, (5.30)

∂ξ

∂ω
=
[
2diag(ωk) sm(ωk)

]T
, (5.31)

∂s

∂q
=




2q1 03 03 03 q3 q2

03 2q2 03 q3 03 q1

03 03 2q3 q2 q1 03




T

, (5.32)

where sm stands for “special matrix”. 2

5.1.9 Covariances of the errors

In addition, the EKF method requires the covariances of the process and measurement noises.

The covariance Vk of the process noise is computed as

V = E
(
uku

T
k

)
=




09×9 09×3 09×3

03×9 ∆t2σ2γ13×3 (1/2)∆t3σ2γ13×3

03×9 (1/2)∆t3σ2γ13×3 (1/4)∆t4σ2γ13×3


 , (5.33)

2The special matrix of vector x = [x1 x2 x3]
T
∈ R

3 is defined as sm









x1

x2

x3







 ≡





0 x3 x2

x3 0 x1

x2 x1 0



.
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whereas the covariance matrices of the measurement noise Rk is

R = E(vkv
T
k )

=




E
(
(AP b̈+ δa)(AP b̈+ δa)T

)
0m×3 0m×3 0m×6

03×m E(δωδωT ) 03×3 03×6

03×m 03×3 E(δmδmT ) 03×6

06×m 06×3 06×3 E(δsδsT )




=




σ2bAPA
T
P + σ2a1m×m 0m×3 0m×3 0m×6

03×m σ2ω13×3 03×3 03×6

03×m 03×3 σ2m13×3 03×6

06×m 06×3 06×3 σ2s16×6



.

(5.34)

5.1.10 Tilt sensor method

For comparison, the two methods, tilt-sensor and integration, are also tested. As mentioned

in the introduction of this thesis, an accelerometer is considered as a tilt sensor when the

inertial acceleration is sufficiently small. Thence, for the tilt-sensor method, if we look back

at equations (5.18) and (5.25), the covariance σ2b of inertial acceleration b̈ is set to zero in the

algorithm, whether or not there is a hand motion, which gives

σ2b = 0. (5.35)

Meanwhile, the covariance σ2ω of measurement noise δω is set

σ2ω → ∞, (5.36)

which indicates that the gyroscope is not considered at all in this method.

5.1.11 Integration method

For the integration method, through inspecting eq. (5.9), the orientation (rotation matrix)

can be estimated by an integration of the cross-product matrix of the angular velocity ω.

Therefore, this method relies on both the gyroscope and the accelerometers, from which an-

gular velocity can be estimated [82]. In the algorithm of the EKF, looking at equations (5.24)

and (5.25), we need to set the covariances σ2a and σ2m of measurement noise δa and δm to

infinity, which makes the algorithm completely rely on the state equation. That is,

σ2a ≡ E(δaδaT ) → ∞ (5.37)

and

σ2m ≡ E(δmδmT ) → ∞. (5.38)

Hence, both of these two methods (tilt sensor and integration methods) are implemented as

particular cases of what has been developed in Section 5.1.7.
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5.1.12 Method of Marins et al. [62]

As mentioned in the introduction of this thesis, lots of researches were done trying to avoid

the problems given by integration method and tilt sensor method. In [62, 63], firstly, acceler-

ation and local magnetic field measurements are used as input to the Gauss-Newton iteration

algorithm or Quest algorithm to find the optimal quaternion. As we find that the Quest algo-

rithm [62, 64, 106, 107] has the disadvantage of sometimes requiring special computations to

avoid singular cases and of being less accurate and less robust [108], while the Gauss-Newton

iteration is simple and succinct, and can converge in 3 or 4 steps in most cases, we finally

choose the method proposed in [62] for comparison, which is summarized in Fig. 5.1.

g

m

Acceleration

Magnetic field
Gauss−Newton
Algorithm

Computed 
quaternion

q

ω
Angular rate Kalman

filter Estimated 
quaternion

q

Figure 5.1: Structure of method of Marins et al.

Let us first define the quaternion qM ,

qM =

[
rM

r0

]
, (5.39)

where rM and r0 (scalar component) are the four components of quaternion qM . Then, the

rotation matrix QM can be expressed as a function of the quaternion, namely,

QM = (r20 − rTMrM )13×3 + 2rMrTM + 2r0RM , (5.40)

where RM is the cross product matrix of rM .

Let us define eGN the error in Gauss-Newton method, then we have

eGN = ǫTFǫF = (yF −MGNyO)
T (yF −MGNyO), (5.41)

where, yF is a 6 × 1 vector with values of gravity and magnetic field in the fixed frame F ,

yO is a 6 × 1 vector with the measurements of gravity and magnetic field in the body frame

87



O defined by Optitrack system, and MGN =

[
QM 03×3

03×3 QM

]
. Therefore, the objective is to

find iteratively the values of quaternion components that yield the minimum error eGNmin.

For the Gauss-Newton method, the computed optimal quaternion components are given by

qopt(k + 1) = qopt(k)−
[
J(qopt(k))

TJ(qopt(k))
]−1

J(qopt(k))
T ǫF (qopt(k)), (5.42)

where qopt is a vector with the four components of the quaternion and J is the Jacobian

matrix, which is defined as

J = −
[ (

∂MGN

∂qx
yO

) (
∂MGN

∂qy
yO

) (
∂MGN

∂qz
yO

) (
∂MGN

∂qw
yO

) ]
. (5.43)

After that, the optimal quaternion is used as part of the measurement for the Kalman filter,

in which the other part of measurement is angular velocities from gyroscope. For the state

equation, let us define x a vector, with the first three components being the angular velocity

ω, and the last four components being the quaternion qopt, namely,

x =

[
ω

qopt

]
(5.44)

Then, we have the state equations


ẋ1

ẋ2

ẋ3


 =

1

τ


−



x1

x2

x3


+



ω1

ω2

ω3





 , (5.45)




ẋ4

ẋ5

ẋ6

ẋ7



=

1

2




x4

x5

x6

x7



⊗




0

x1

x2

x3



, (5.46)

where ⊗ represents quaternion multiplication. With the help of qopt from eq. (5.42), the

output equation will be

zi = xi + vi, i = 1, · · ·, 7 (5.47)

where vi is the white noise measurement.

5.2 Inertial measurement units

We illustrate the effectiveness of our approach by using two different IMUs, a game-controller

and the Octahedral Constellation of Twelve Accelerometers (OCTA) [82]. Both of these IMUs
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are designed and assembled so that they can not only be simulated but also tested in experi-

ments.

For the game-controller, this model has been described in detail in Section 4.1 in Chapter 3. All

the parameters using in the simulation and experiments are the same as those presented there.

For the OCTA, six biaxial ADXL320 accelerometers [84] from Analog Devices are mounted

on a rigid body to form an accelerometer array called OCTA [82], as shown in Fig. 2.5. As

a matter of fact, we use unreservedly the same model as that in Section 2.3. Thence, the

geometry of OCTA is shown in Fig. 2.7.

Likewise, the nominal sensitive directions and positions of accelerometers are the same as

those presented there. In order to estimate the azimuth angle, a triaxial magnetometer

MAG3110 [109] from Freescale is fixed on the OCTA, which will be described in detail in

Section 5.4.

5.3 Validation through the simulation of a target-pointing

trajectory

We illustrate the effectiveness of our approach by two examples: the simulation of a game-

controller application and the motion tracking of a real accelerometer array.

5.3.1 Target-pointing trajectory

In order to test the proposed method, a target-pointing application is simulated, inspired from

motion-tracking problems found in video games. The user holds a game controller and points

at targets 10 meters away. The game-controller direction is parameterized by the pitch (θ)

and azimuth (ψ) angles, as shown in Fig. 5.2. Therefore, the rotation matrix taking F onto

B is

Q =




cosψ −cosθsinψ −sinθsinψ

−sinψ cosθcosψ −sinθcosψ

0 sinθ cosθ


 . (5.48)

We define that

e = [−cosθsinψ cosθcosψ sinθ]T , (5.49)

p = λe = [x y z]T = [y0tanψ y0 y0tanθsecψ]T , (5.50)

where e is the vector pointing from the game-controller G to the target P and p is the position

of the target. Meanwhile, as mentioned above, we assume the distance y between the game
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controller and targets to be of 10 m, which leads to y0 = 10.

 G

=θ

θ

ψ =

ψ 

x

y

e

z

azimuth
pitch / elevation

P (x, y, z)

y0 =10 m

Figure 5.2: Game controller and target

The simulated measurements are computed from the true trajectories of the game controller,

by the addition of Gaussian white noise as a measurement error. For the calculation in Matlab,

we set the standard deviation of each accelerometer error to σa = 0.1g (3% of the amplitudes

of the values we expect to measure) and those of the gyroscope and the magnetometer errors

to σω = 0.1 rad/s and σm = 0.01 µT (2% and 1% of the amplitudes of the values we expect

to measure), respectively. Meanwhile, the gravitational acceleration vector is g = [0 0 − g]T

and the sampling time is ∆t = 0.01 s.

5.3.2 Target-pointing trajectory generation

For the simplicity of the simulation, only a few targets are first generated randomly, as seen

in Fig. 5.3. In this figure, the dotted line represents the limits of the two angles θ and ψ,

mentioned in Section 5.3.1, where −π/4 ≤ θ, ψ ≤ π/4.

Additionally, in the simulation, the rotation angle ψ for each time step is described by a

fifth-order polynomial, namely,

ϕ = ϕ(6τ5 − 15τ4 + 10τ3), (5.51)

where ϕ is the rotation angle from one target to the next, τ = t/T , t = 0,∆t, 2∆t, . . . , T , ∆t

is the sampling time and T is the total time from one target to the next. This polynomial is

from the robot trajectory planning [88, 110]. The order five is not arbitrary. A polynomial

of such an order has six coefficients, if we include the zero-order term it contains. We can
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Figure 5.3: Targets and trajectory

choose those coefficients to simultaneously satisfy six constraints. This allows us to satisfy

continuity conditions of orders zero, one and two at both limits of the interval over which the

polynomial is used, which makes for six constraints. The order of the polynomial was thus

chosen to satisfy constraints on orientation, angular velocity and angular acceleration. The

relationship between ϕ and τ is shown in Fig. 5.4, where ϕ is chosen randomly.
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Figure 5.4: Relationship between ϕ and τ

In order to compute the angle ϕ, the unit vector ẽ of rotation axis, which is normal to the

plane constituted by the two target points and game-controller point, is first obtained. Finally,

the rotation matrix for each time step [88] is

Q̃ = ẽẽT + cos(ϕ)(13×3 − ẽẽT ) + (cpm(ẽ))T sin(ϕ). (5.52)

Then, the first derivative of the rotation matrix is computed for the cross-product matrix Ω̃
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of the angular velocity. We have

˙̃
Qk = (Q̃k+1 − Q̃k−1)/(2∆t), (5.53)

Ω̃k = Q̃k
˙̃
Q

T

k . (5.54)

Meanwhile, in the simulation, we add some noises δa , δω and δm, which are from equa-

tions (5.16), (5.20) and (5.22), to the accelerometers, gyroscopes and magnetometer, respec-

tively (Fig. 5.5(a)–Fig. 5.5(c)).
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Figure 5.5: Acceleration, angular velocity and magnetic intensity with and without noise
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Figure 5.6: Estimate of pitch angle and its errors

5.3.3 Simulation results of the target-pointing trajectory with the game

controller

Figures 5.6 and 5.7, which present typical results, show us estimates of the pitch and azimuth

angles from different methods. We can see that the estimate from the proposed method

matches well the truth. Fig. 5.8 gives us the true and the estimated trajectories. Meanwhile,

it is evident that both the estimates from the method of Marins and the tilt sensor method

have large errors, while the integration method exhibits important drift problems.
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Figure 5.7: Estimate of azimuth angle and its errors

5.3.4 Simulation results of OCTA model

After simulation for game controller, we did simulation for OCTA as well. Because of the same

target-pointing model, the only difference is the model parameters, mentioned in Section 5.2.

Therefore, similar to Fig. 5.6 and Fig. 5.7, Fig. 5.9 and Fig. 5.10 are obtained. It is evident

that the pitch and azimuth angles are well estimated from OCTA model, similar to that from

the game-controller model. The estimated trajectory is obtained as well, as shown in Fig. 5.11.

It is noted that the true trajectory is different from that in Fig. 5.8, as the simulated trajectory

data is created randomly in Matlab. Moreover, the estimates from the method of Marins and

the tilt sensor method have large erratic errors, while those from time integration method
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Figure 5.8: Targets and trajectory

have the problem of drift.

5.4 Experimental validation through an arbitrary

hand-generated motion

We validated the proposed method by performing an experiment that reproduces the condi-

tions in which the algorithm would work in real life. As the targeted application is a hand-held

game controller, all the motions for our algorithm are generated by hand. While this type

of validation has the merit of testing the algorithm close to its operating conditions, it also

presents the drawback of assessing its performance in one given situation only. An alternative

validation approach would consist in testing the method over a wide spectrum of trajectories,

either through simulations or experiments. This task was not achieved here, however, as the

goal is to demonstrate the usefulness of this method in its operating conditions [82].

We have exprimented with both the game-controller model and OCTA model. Except the

different models, all other things necessary for the experiments are similar. Therefore, we will

focus on OCTA while introducing the experimental testbed and preprocessing the measure-

ments.

5.4.1 Experimental testbed

In the experimental validation, the Optitrack, a motion capture system from Naturalpoint,

Inc., is used in the experiments to provide reference measurement. Six cameras are fixed to
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Figure 5.9: Estimate of pitch angle and its errors

the ground to film five and seven markers that are attached on game controller and OCTA,

respectively, as shown in Figures 5.12, 5.13 and 5.14.

The position precision of the Optitrack can reach to millimeter. Fig. 5.15 shows the relation-

ship between the position and orientation error in a plane, where l is the length of the game

controller, δθ is the orientation error and δy is the position error. The relationship between

them is

δθ = arcsin
2δy

l
. (5.55)
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Figure 5.10: Estimate of azimuth angle and its errors

Recall that arcsin
2δy

l
≈ 2δy

l
when

2δy

l
→ 0. If l = 0.3 m and ‖δy‖∞ ≤ 1 mm, then we have

−2δy

l
≤δθ ≤ 2δy

l
, (5.56)

0.384◦ ≤δθ ≤ 0.384◦. (5.57)

This error is somewhat small enough. We can promote this relationship to the three-dimensional

space. Therefore, Optitrack can be taken as a reference as well in the experiments.

Then, the OptiTrackTrackables block in Simulink can give the 6-DOF position and orien-

tation of objects tracked by the OptiTrack camera system. The position and orientation are
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Figure 5.11: Targets and trajectory

Figure 5.12: Markers on game controller

defined by a software called Tracking Tools [111], shown in Fig. 5.16. It is used for cali-

brating the cameras, defining the workspace coordinate frame, and defining trackables. Once

calibrated, a calibration file (.cal) and a trackables definition file (.tra) must be saved to the

computer and referenced in the Simulink block’s parameters. The displacements are produced

by shaking OCTA by hand [82].

The Optitrack, however, defines its own default frame O, also attached to OCTA. This frame

is unknown a priori, as it is automatically defined by the seven markers. Therefore, to al-

low a comparison between the reference Optitrack measurements and the accelerometer and
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Figure 5.13: Markers on OCTA

magnetometer measurements, it is necessary to find RBO, the rotation matrix transforming a

vector from frame O to frame B. The approach taken to identify this matrix is described in

Appendix B.

On the other hand, it is important to prepare all the hardware and software in order to

receive the data from the sensors we have installed. For OCTA model, the digital sensor

MAG3110 uses the I2C protocol, and thus a USB-I2C converter from Robot Electronics, shown

in Fig. 5.17, is connected to it. A virtual serial COM port is thus created, where magnetometer

outputs will be received. Totally, all data from sensors, including accelerometers and magne-

tometers, are obtained through Simulink and RT-Lab, which is the open real-time simulation

software from OPAL−RT Technologies.

For the game-controller model, the Bluetooth [102] protocol was used for receiving data.

Similarly, it creates also a virtual serial COM port. A Simulink model for collecting the

measurements was designed as well.

5.4.2 Preprocessing the measurements from OCTA and the Optitrack

The main objective is to estimate the accuracy of the angular-velocity and orientation esti-

mates computed from the proposed method. In this vein, the angular-velocity measurements

are provided by the Optitrack.

The output voltages vk, k = 1, . . . , n, from the 12 accelerometers are acquired. From the
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(a) Optitrack cameras on one side

(b) Optitrack cameras on another side

Figure 5.14: Optitrack cameras

δy
δ θ

l

Figure 5.15: Relationship between position and orientation error

calibration laws [87], we compute the corresponding accelerations

ai,k = α̃ivi,k + β̃i, (5.58)

where, ai,k is the acceleration of the accelerometer i along direction ei at time tk, α̃i and β̃i

are the scale factor and bias for the ith accelerometer, and vi,k is its voltage output at time
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Figure 5.16: Tracking tools screens

Figure 5.17: USB-I2C converter

tk.

Meanwhile, we also need to determine the vector representing the true magnetic North and

the rotation matrix ROM that takes the frame O onto a magnetometer’s frame M. This has

been discussed in Section 4.4.

From the Optitrack, the orientation of OCTA was measured every 0.01 s, for periods of 100

s. These orientations were returned in the form of rotation matrices [Qk]FO taking the fixed

frame F onto the moving frame O. According to the definition of RBO in Section 5.4.1, we

have

Qk = [Qk]B = [Qk]FOR
T
BO, (5.59)

which is the rotation matrix taking the fixed frame F onto the moving frame B.

In order to compute the corresponding angular velocity ωk, a first-order low-pass filter, with

a cut-off frequency fc = 5 Hz, was first applied over the entries of Qk. Also, to avoid the

time shifts caused by the filter, we filtered the data in both forward and backward time, and
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retained the average. After filtering the data, a central difference approximation of the first

derivative was used to compute Q̇k, namely,

Q̇k = (Qk+1 −Qk−1)/(2∆t). (5.60)

The cross-product matrix [Ωk]B of the angular velocity ωk is computed from eq. (5.6) as

[Ωk]B = QT
k Q̇k. (5.61)

Because of measurement errors, this matrix is generally not antisymmetric as it should be.

We retain only the skew-symmetric component of Ωk by resorting instead to the relation

[Ωk]B = (QT
k Q̇k − (QT

k Q̇k)
T )/2. (5.62)

5.4.3 Experimental results of game-controller model

With the help of Optitrack, as the reference, the experimental results are shown in Figs. 5.18

and 5.19. It is evident that the estimated pitch and azimuth angles from the proposed method

match well the true ones, while those from the tilt-sensor method have larger errors, e.g., at

the time of 23 s and 87 s, in Fig. 5.18(a). The estimate errors from the method of Marins are

between ±10◦, but still larger than those from the proposed method, as seen in Fig. 5.19(b).

For the integration method, the error got very large after just 20 seconds in Fig. 5.18(a) and

Fig. 5.19(a). It is noted that, because of some external factors, e.g., the light or obstacles

which may disturb the infrared cameras in the room, or marker misalignments during the

movement, the reference attitude matrix from the Optitrack sometimes gave discontinuities,

which slightly affected the judgement of accuracies of the methods. This truth, however, is

somewhat within the acceptable range in experiments.

5.4.4 Experimental results of OCTA model

Similar to the game controller experiments, typical experimental results from the OCTA were

obtained as well and are shown in Figures 5.20 and 5.21. The pitch and azimuth angles are well

estimated by proposed method. Its errors are in the range from −5◦ to 5◦, seen in Fig. 5.20(b),

even better than that in Fig. 5.18(b). In addition, the estimate from the tilt sensor method has

errors within ±10◦, similar to that from the method of Marins, while the integration method,

undoubtedly, has larger errors drifting away from the reference angle in just a few instants.

It is worth noting that, for the two experiments, we moved the game controller and OCTA

in space with different inertial accelerations so as to evaluate the tilt-sensor method more

convincingly. The inertial acceleration in the game controller experiment is smaller than that

in the OCTA experiment.
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Figure 5.18: Estimate of pitch angle and its errors

5.5 Comparison and discussion

Firstly, to get basic ideas of the estimate results, let us pay attention to the different models,

simulation and experimental results. Both the game-controller and OCTA are used in simula-

tions and experiments. It is apparent that, for these two models, the errors of estimate results

are similar to each other, not only in simulations, but also in experiments. Thus, it seems

that the accelerometer-array geometry has little effect on the estimate accuracy. One should

take care, however, to avoid singular accelerometer-array configurations, where a part of the

angular velocity or angular acceleration becomes unobservable [90]. In a word, the output of

the accelerometers should provide enough information of acceleration for y to be computed
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Figure 5.19: Estimate of azimuth angle and its errors

through eq. (5.25).

Moreover, it is noted that the errors of angle estimates in simulations are smaller than those

from experiments. If seen in Fig. 5.6 and Fig. 5.7, the error is between −3◦ and 3◦, while

it is between −10◦ and 10◦ in experiments, shown in Figs. 5.18, 5.19, 5.20 and 5.21. This

seems logical, because within the acceptable range, some inevitable errors, like from camera

captures, sensor misalignments, marker misalignments during the movement, and so on, ex-

ist in experiments, and affect the accuracy of the estimates, but were not accounted for in

simulation. In fact, when combined with the symmetric marker arrangement, or because of
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Figure 5.20: Estimate of pitch angle and its errors

the obstacles (for example, human body), the loss of a camera due to poor perspective of the

markers can make the rigid body orientation flip very common. What we do is to do our best

to avoid these. Finally, Table 5.1 gives us the basic information of the results.

Then, the different methods are compared and analysed in detail. From eq. (5.8), the rotation

matrix can be estimated by integrating the angular velocity over time. The errors will accu-

mulate, however, inevitably causing a drift, which prevents us from using the time-integration

method alone for more than a few seconds.
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Figure 5.21: Estimate of azimuth angle and its errors

Meanwhile, in the tilt-sensor method, the inertial acceleration is assumed to be null. In the

event that the inertial acceleration is small, the orientation estimate is sufficiently accurate,

shown in Figures 5.18 and 5.19, but its errors are still larger than those from the proposed

method, while in the case of high accelerations, large errors are generated, as shown in Fig-

ures 5.20 and 5.21.

For our proposed method, both simulation and experiments show that the pitch angle can be

estimated with a reasonable accuracy, independently from the intensity of the accelerations.

This can be proved by Fig. 5.22, which is traced from experimental data of OCTA. In addition,
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Table 5.1: Comparison of the model, simulation and experiment

IMU orientation error in simulation (deg) orientation error in experiments (deg)
Game-controller -3—3 -10—10

OCTA -3—3 -5—5
similar similar

a close observation of Fig. 5.22(a) reveals that the cloud formed by all the measured data

points is confined within a cone with its apex at the origin. The mathematical relationship

between the pitch angle, and the inertial and gravitational accelerations allows for an analytical

determination of the aperture of this cone:

− tan−1

(
‖b̈‖
g

)
≤ δθ ≤ tan−1

(
‖b̈‖
g

)
, (5.63)

where b̈ is the inertial acceleration, g is the gravitational acceleration and δθ is the error of

pitch angle. Because the estimate of the azimuth angle is affected by that of the pitch angle,

the azimuth-angle error exhibits a similar limit in Fig. 5.22(b).

As a matter of fact, inertial acceleration b̈ is considered as a part of the measurement noise,

by inspecting eq. (5.34). In the calculation process, the covariance of the inertial acceleration

is required. The higher this covariance, the more the system relies on the state equation. It is

easily understood that when the covariance is nearly zero, which denotes that the rigid body

is stationary, the system relies mostly on the measurements and the accelerometers are taken

as the tilt sensors.

In addition, it is found that the accuracy of the estimates from the game-controller (with gyro-

scope) are similar to those from OCTA (without gyroscope), as can be seen in Table 5.1. This

indicates that one can do with or without gyroscope in some applications, especially those

involving impacts, as mechanical gyroscopes are known to be more sensitive than accelerome-

ters to these acceleration peaks. To be rigorous, a gyroscope is suggested to be used, however.

We found that the accelerometers give still large errors of angular velocity estimates when at

low angular velocities, which is a problem in several applications. Moreover, an accelerometer

array requires more space than a single gyroscope. If space is not a problem, then one may

find the ideal solution to be a combination of both.

For the estimate of the azimuth angle, we can see from Fig. 5.7 and Fig. 5.21, that there is no

drift of errors, given by the magnetometer installed. Because the measurements from inertial
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Figure 5.22: Estimate of pitch and azimuth angle versus the norm of inertial acceleration

sensors only supply information of pitch and roll angles because of the gravitational accelera-

tion, it is impossible to estimate the azimuth angle only by these inertial sensors. Mathemat-

ically, if we look back at eq. (5.25), where −G[qT
1 qT

2 qT
3 ]

T = −gq3 and q3 = f(θ, φ) (θ and φ

are the pitch and roll angle, respectively), the output equation does not include state variable

for the azimuth angle. Hence, in this case (without magnetometer measurements),the state

equation works alone, which comes to be the time-integration method. Therefore, another

special sensor like magnetometer or optical sensor should be added to prevent the associated

drift along that axis.
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By using the same parameters and measurements, the method of Marins [62, 63] is compared

with tilt-sensor method and our proposed method. The resulting pitch and azimuth angle

estimates are shown in Figs. 5.6, 5.7, 5.9, 5.10, 5.18, 5.19, 5.20 and 5.21. It is evident,

however, from Figs. 5.6, 5.7, 5.9 and 5.10, that the errors from the method of Marins

are larger than those from the proposed method, even sometimes larger than those from

the tilt-sensor method. We conjecture that this reduced accuracy of the method of Marins

occurs because, as for the tilt-sensor method, it makes no distinction between inertial and

gravitational accelerations [62, 63]. Although in the second step of the method, gyroscope

measurements come to help estimate the orientation, it does not essentially solve this problem.

In the cases of very high inertial accelerations and large Euler angles, the computed quaternions

with large errors from the first step will still make the final results less precise. As a matter of

fact, the inertial accelerations used in the simulation are larger than those in the experiments.

Therefore, the method of Marins in the simulation performs worse than in the experiments.

Meanwhile, one disadvantage of the Gauss-Newton method is that it may become lost with

poor initial estimates. Moreover, as the final objective is to estimate the rotation matrix which

represents the attitude of rigid body, it is better to avoid intermediate rotation parameters

such as quaternions.

5.6 Application programming interface (API)

After developping the algorithms, it is necessary to test them in practice. In order to imitate

the game controller Wii, we would like to create an application programming interface (API)

so that the virtual game controller can follow our designed true game controller. We built a

Matlab GUI connecting with Simulink to create a simple virtual environment for the game

controller.

We firstly used Simulink to receive data of all sensors through the virtual serial port created

by Bluetooth. Then, we connected the Simulink with the Matlab graphical user interface

(GUI). Our algorithm was embedded in the program so that the virtual game controller in

GUI can be controlled by the outputs of sensors, caused by the movement of the real game

controller. In order to make things clearer, we summarize the system by four components, as

seen in Fig. 5.23.

Matlab GUI
Sensors

Game Controller Serial Receive

    Model

BlueTooth
Algorithm

Figure 5.23: Simulink model of interface
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When the user moves the game controller in space, the Simulink model receives the output

of the game controller sensors. The orientation is then estimated from the measurements by

using the algorithm presented in Section 5.1. Finally, the virtual game controller is traced in

the GUI, as seen in Fig. 5.24, according to the estimated orientation.
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Figure 5.24: Virtual game controller

The results of testing the virtual gaming environment seemed good when we handled the game

controller in front of a computer screen. The virtual game controller can follow approximately

every movement of the true one. There were some delays, however, which are caused by the

communication, not algorithms. This will be ignored, as our interface is kind of qualitative

appreciation, as opposed to quantitative. In addition, it is difficult to evaluate the precision

of the movement estimation. Because the views in the computer (with −37.5◦ of azimuth

and 30◦ of pitch) is not the same as that in reality. Hence, it can be misleading and give the

impression that there is a great error in reality.

Moreover, as the proposed algorithm is designed to estimate the orientation, the position of

a point of the game controller is not reliably estimated. The method used consists in the

integration of the point acceleration, which generates drift. As a result, if the game controller

is still on a table, the virtual game controller moves slowly. Mathematically, the point position
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is computed from the basic kinematic equations

ḃ = v, (5.64)

v̇ = b̈, (5.65)

where, b and v are the point position and velocity, respectively. Because of measurement

errors, the error accumulates after integration. In order to eliminate the accumulated error

and artificially stabilize the virtual game controller, we add a tuning term, which is somewhat

larger than the error, for each step. Therefore, eqs. (5.64) and (5.65) become,

ḃ = v −Kd,bb, (5.66)

v̇ = b̈−Kd,vv, (5.67)

where, Kd,b and Kd,v are tuning parameters, with the unit s−1. With this ad hoc correction

method, the visible position error in the interface appears to be very subtle to the user.

5.7 Conclusion

Estimating the orientation of a rigid body moving in space is of high importance in game

playing. In this chapter, a new algorithm using extended Kalman filter to estimate the

orientation of a rigid body moving in space is proposed, validated both by simulation and

experimental results. The main novelty of the proposed approach lies in the consideration

of the inertial acceleration as a part of measurement noise. Both a rigid-body kinematics

model and a stochastic model of the human-hand motion are formulated and combined in a

nonlinear state-space system, where the components of the rotation matrix are state variables.

Unlike the time-integration method generating the drift, the proposed one is shown to be

stable. This can explain well why the sensor magnetometer is used in the experiments. The

time-integration method is unstable, because it does not use the fixed external reference for

estimating the orientation. This fixed external reference can be the Earth’s gravitational field

or the magnetic field. The gravitational field, however, is not sufficient as reference for all

three axes of rotation. Therefore, we need the magnetic field as well, measured by the mag-

netometer. On the other hand, considering the inertial acceleration as white noise proved to

yield more accurate results than neglecting it altogether, as is generally done with tilt sensors

or with other existing methods [62]. In other words, it works efficiently with both high and

low accelerations. Meanwhile, it is noted that, compared with the method of Marins [62] that

uses two stages and does not explicitly distinguish the inertial and gravitational accelerations,

the proposed method, using a simpler structure, i.e., a single Kalman filter applied on a state-

space system, is more stable and accurate.
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Additionally, we found that the accuracy of the estimates from the game-controller (with gyro-

scope) are similar to those from OCTA (without gyroscope). Therefore, in some applications,

especially those involving impacts, one can do with or without gyroscope. In other words, the

proposed method is independent of the gyroscope. On the contrary, one important point is

to consider the geometry of the device, as an accelerometer array requires more space than a

single gyroscope. In this case, to be rigorous, a gyroscope is suggested to be used, as we have

done for the game controller in the thesis. In reality, one may find a best way to combine both

if space is not a problem.

In conclusion, the extended Kalman filter designed in this paper will be useful in applications,

such as game controllers and human-machine interfaces in general. In addition to inertial

sensors, another sensor like magnetometer or optical sensor should be used as the output mea-

surement for estimating the azimuth angle, as it is not related to the gravitational acceleration.

It is of much importance to test and demonstrate the proposed methods not only by using

the estimate accuracy, but also by performing in human-machine interface, which is one of the

final applications of them. The smartphones, game controller Wii, and so on, are the examples

of this. Therefore, we have developped an application programming interface using the Matlab

GUI so that the virtual game controller appearing on screen can follow the orientation of the

real one.
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Conclusion

Every end is a new beginning.

Summary and contributions of the thesis

The products of technology, media and telecom have had a rapid development in the last

decade. In particular, the mass-market of video game controllers, which includes the Wiimote

and other gaming interfaces are inexpensive and easily available. A drawback, however, is

that the precision in the motion detection hardware leaves a lot to be desired for many gam-

ing applications, let alone high-precision industrial or scientific applications [1]. Therefore,

in this research, we have proposed and developed algorithms to estimate more accurately the

orientation of a game controller moving in space.

In order to better estimate the orientation of a rigid-body moving in space, we first focused

on estimating its time derivative, the angular velocity. Gyroscopes are standardly used to

measure the angular velocity. MEMS gyroscopes have been reported unreliable under high ac-

celeration by some authors, however. Hence, we investigated the possibility of replacing them

with low-cost accelerometers in different locations of the game controller. From the kinematics

equations, the minimum number of accelerometers required to estimate the angular velocity

of a rigid body in space without resorting to the angular acceleration is nine. Therefore, an

accelerometer-array called OCTA was designed, which will be used for both angular veloc-

ity and orientation estimation. To estimate the angular velocity, we combined the two basic

methods available, which are time-integration (TI) and polynomial-roots (PR) methods, using

their weighted sum. This proposed method has been published in the Journal of dynamic sys-

tems, measurement and control [82]. We chose the weighting factors to minimize the variance

of estimated angular velocity. Experiments were done to evaluate this proposed method, in

which a magnetic motion tracking sensor was used as a reference. The proposed method was

shown to yield stable results, unlike the TI method which has the problem of drift. Mean-

while, it solves the sign problem, which affects other stable methods like the PR method and

the method of Parsa et al. [38]. Moreover, the PR method and that of Parsa et al. are less

accurate at low angular velocities than the proposed method, which shows better robustness.

115



Having devised a method for angular velocity estimation, we turned our attention to orienta-

tion estimation. This second phase of the research appeared more challenging than the first,

so we set ourselves the intermediary goal of estimating the orientation in the vertical plane.

This work has been presented by me in the conference called IDETC2012 [89]. In the research,

a game controller model similar to the Wiimote was designed. Then, three new algorithms

using EKF and UKF were proposed and compared with two existing basic methods, which are

the time-integration method and the gravitational method. Any of these two methods cannot

be used alone because of its inherent problems: drift and error from inertial acceleration,

respectively. Moreover, because of the high-sensitivity at low angular velocities, the proposed

complete-pose method, which is to estimate the complete rigid-body pose by using EKF, only

works occasionally. After comparison and analysis of the proposed and some representative

existing methods in the simulations, it is found that our proposed orientation-only methods

(EKF and UKF) are stable and give excellent orientation estimates, error of which is within

±10◦, both at low and high angular velocities. This indicates that its accuracy is independent

from the trajectory, and is promising for the generalization of the method to spatial orienta-

tions.

To benchmark the proposed estimation method, we designed and created a true game con-

troller, which comprises two triaxial accelerometers, one triaxial gyroscope and one triaxial

magnetometer. The end goal was to use our proposed method in a simple virtual environ-

ment, to compare its response to that of real hand-held game controllers. Before doing that,

all the sensors were calibrated. A high-precision rate table with one DOF was used for the

calibration of the accelerometers and the gyroscope. For the accelerometers, the scale fac-

tors and offsets were well obtained compared to the specification in the datasheet, although

the relative error is somewhat larger than expected. Moreover, it was found that there is no

noticeable hysteresis in the response of this low-cost sensor. Similarly, for the gyroscopes,

the scale factors and offsets were obtained, close to the estimated values. Furthermore, two

more tests (different position test and back and forth test) were performed to find that the

output is robust, as the difference between them is small relative to the calibration errors. In

summary, both the accelerometers and gyroscopes were observed to be fairly insensitive to

cross-axis accelerations, to hysteresis and exhibited good linearity. Meanwhile, the tracking

system Optitrack was used for the calibration of the magnetometer. After scale factor and

offset compensation, the magnetometer measurements lie well on the surface of a centered

unit sphere, instead of an ellipsoid. Then, the true magnetic North and the rotation matrix

from the body-fixed frame to the magnetometer frame were well estimated, as the root mean

square value in the calculation was found small enough, relative to the Earth’s magnetic field.
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The final objective is to estimate the orientation in 3D world. In our research, a new algorithm

using the extended Kalman filter was proposed, which has been published in the Multbody

system dynamics [104]. In order to evaluate it, we have used both the game controller and

OCTA. Similarly, compared with the basic time integration method and tilt-sensor method,

the proposed method avoids the drift problem and error given by tilt-sensor method. Further-

more, we have implemented the method of Marins et al. [62], with the same initial parameters.

Unlike the method of Marins using two steps (Gauss-Newton iteration and Kalman filter), our

proposed method uses a simpler structure, i.e., a single Kalman filter applied on a state-space

system. Meanwhile, instead of estimating the intermediate parameters, like quaternions, the

proposed method directly estimates the rotation matrix. Lastly, the method of Marins and

some other similar methods still do not attempt at distinguishing the inertial acceleration and

the gravitational acceleration. This makes the final estimates have the unpredictable errors

or noises from the rigid body motions in space. In this case, our proposed method presents

stable and accurate results (error of which within ±3◦ in simulation and ±10◦ in experiments),

both in simulation and in experiments. Then, the virtual human-machine environment, i.e.,

real-time experiment, was created using the Matlab GUI. It is found that the virtual game

controller can follow the true one approximately, which seems to be good enough for the game

controller applications.

In summary, our research proposes new algorithms to estimate the orientation of the game

controller moving in space. Compared with some existing basic methods and other methods

given by predecessors, both in simulation and experiments (offline and online), our new algo-

rithms are shown to be stable and accurate. We believe that the proposed methods can be

widely used to measure hand motion, e.g., in game controllers, robot surgery [112], vehicles

and aircraft.

Future work

Real-time tracking of rigid body motion in space has been playing a more and more important

and critical role in the human-machine interaction applications, such as artificial intelligent

(AI) robotics, military unmanned aircraft, vehicles and game controllers. In this thesis, we

proposed new algorithms to estimate the orientation of the rigid body moving in space. Some

further work, however, needs to be done to improve these estimation methods.

Firstly, the better the sensors, the more accurate the measurements. For improving the es-

timating results, there is no doubt that choosing better sensors is one of the most natural

ways. In mass-market products, however, we must limit ourselves to low-cost sensors. Hence,

the problem of producing accurate sensors at a low cost is still of importance. On the other
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hand, keeping using these inertial sensors, we could try to improve the proposed algorithms.

Because in the algorithm, we estimated coarsely the probability of moving from one pose to

the next within one time step. In order to accurately obtain knowledge of inertial acceleration

covariance, we may analyse deeply the statistical properties of the hand motions. Further-

more, because of the use of EKF (or UKF), we could do more research on the sensor errors to

verify whether they are well represented by Gaussian white noise. More detailed information

on this could be analysed instead of simply using the specification of the sensors.

Secondly, in order to estimate the azimuth angle, a magnetometer was used in our research.

This sensor, however, is sensitive to environmental magnetic interference outside of the hand-

held device, e.g., wifi, mobile phones, metallic objects and magnetic tracking devices. There-

fore, an alternative sensor should be sought for azimuth angle estimation. Unfortunately, we

did not find any better sensor. We could probably use LEDs and fix the reference point, as

Wiimote is doing.

Thirdly, as the main work is on the orientation estimation, there are still large noises on the

position estimates. Although in the virtual environment, we did add parameterized compo-

nent in the basic kinematic equations for tuning to eliminate the accumulated error caused by

integration. It is, however, not a rigorous way. Therefore, we could add some other position

capturing sensors like cameras. In order to merge this into our extended Kalman filter, it

would be interesting to try to include the camera measurements as a part of the outputs, like

the other sensors.

Furthermore, for the sake of higher accuracy, robustness, stability, and position estimation,

Simultaneous Localization and Mapping (SLAM) [113] is suggested to be used. SLAM is a

technique to build up a map of an unknown environment or to update a map within a known

environment, while at the same time keeping track of the current location of the observer.

Surely, the SLAM still has some problems, e.g., computational complexity, nonlinearity, data

association and landmark characterization. During the past years, a lot of researchers have

tried to solve these problems. Meanwhile, recent research on SLAM has primarily focused on

developing algorithms that can be used in real-time implementation as well [114, 115, 116].

Finally, we need to find a way to combine the SLAM with our proposed methods so that both

the orientation and the position can be estimated accurately.

Last but not least, as the research aims at the game controller product, more work on software

design for human machine interface is needed to be conducted. In this thesis, user’s interface

is designed only to validate the proposed algorithms for one time once, which is not sufficient
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and artificial. We may add some more buttons or choices, e.g., stop and continue. Edittext

can be used to adjust the variance of inertial acceleration, or measurement noises. Meanwhile,

it is a good idea to embed some existed databases of human hand motions into the software.

In this case, the interface would become artistic.
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Appendix A

The Method of Parsa et al.

For comparison purposes, we reproduce here the method proposed by Parsa et. al. [38].

Similar to the method proposed in this thesis, the one by Parsa et. al. provides an estimate

ω̃ of the angular velocity from both TI and PR estimates. However, the underlying idea is

different, as it consists in using a first-order Taylor series approximation to correct the TI

estimate ωk.

From Section 2.1, recall that

ξ(ωk) =
[
ω2
x,k ω2

y,k ω2
z,k (A.1)

ωy,kωz,k ωz,kωx,k ωx,kωy,k]
T .

We also have
∂ξ

∂ωk

δωk = δξk, (A.2)

where
∂ξ

∂ω
= [2diag(ω) sm(ω)]T ∈ R

6×3. According to the first-order Taylor series approxi-

mation of ξ(ω̃k), we have

ξ(ω̃k) = ξ(ωk) +
∂ξ

∂ωk

|ωk=ωk
(ω̃k − ωk) = ξ̂k. (A.3)

Thus, the final estimate is obtained by solving eq. (A.3) for ω̃k, which yields

ω̃ = ω +

(
∂ξ

∂ω
|ω=ω

)† (
ξ̂ − ξ(ω)

)
. (A.4)

Here, ω and
∂ξ

∂ω
|ω=ω are given by eq. (2.15), while ξ̂k is given by eq. (2.13).
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Appendix B

The Rotation Matrix RBO

OCTA was calibrated [87], which allowed to identify the actual sensitive directions and posi-

tions of its accelerometers in frame B , as well as their biases and scale factors. Using the same

static calibration method, but with the Optitrack as a reference [87], the sensitive directions

ei,O, i = 1, ..., 12, in the Optitrack frame are found to be




eT
1,O

eT
2,O

·
·

eT
12,O



= ET

O =




0.6678 0.0224 −0.7440

0.0119 −0.9998 −0.0159

−0.6772 −0.0745 0.7320

0.7276 0.0034 0.6860

0.0007 −0.9989 −0.0473

0.7605 −0.0114 0.6493

−0.0047 0.9999 −0.0127

0.6713 −0.0009 −0.7412

0.7349 −0.0189 0.6779

0.6746 0.0475 −0.7366

−0.7731 0.0076 −0.6342

−0.0138 −0.9997 −0.0226




.

From the definition of RBO, we have,

EB = RBOEO, (B.1)

and,

R̂T
BO =

(
ET

O

)†
ET

B , (B.2)

where,
(
ET

O

)†
=
(
EOE

T
O

)−1
EO is the left Moore-Penrose pseudoinverse of ET

O and R̂BO is

the estimate of RBO. Notice that this estimate does not represent, in general, a rotation

matrix. In order to “normalize” this matrix into a rotation matrix, we perform its singular

value decomposition:,

R̂T
BO = ÛΣV̂T , (B.3)
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and thus we have

RT
BO = ÛV̂T =




0.6629 0.7487 0.0071

−0.0044 −0.0056 1.0000

−0.7487 0.6629 0.0004


 , (B.4)

where, RBO is the true one.

As in the simulations, the initial conditions in the experiments are assumed to be known. The

standard deviation of each accelerometer error is σa = 0.1g m/s2 [117] and the σm of each

magnetometer error is σm = 0.01 µT, which gives better estimates after tuning, although

the Data Sheet [109] tells us that σm = 0.25 µT. The gravitational acceleration vector is

g = [0 g 0]T , and the sampling period is ∆t = 0.01 s.
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