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Résumé

Cette thèse propose une nouvelle famille de pantographes, les pantographes à transmission
par câbles (PTC). Les PTC sont définis comme des mécanismes permettant la reproduction,
selon un facteur d’échelle préétabli, de mouvements imposés à l’effecteur maître vers l’effecteur
esclave en se servant de câbles comme moyen de transmission des forces. Ils peuvent être aussi
présentés comme étant la communion entre les pantographes conventionnels, mécanismes
constitués de membrures rigides, et les mécanismes parallèles entraînés par câbles (MPEC).

L’objectif de cette thèse étant la conception de PTC combinant fiabilité d’utilisation, sécu-
rité et faible coût de fabrication, nous avons choisi de développer des outils permettant la
conception de PTC purement mécaniques, c’est-à-dire qu’aucune composante électrique n’est
nécessaire afin de transmettre les efforts entre les parties maître et esclave. Plusieurs appli-
cations peuvent être d’ailleurs envisagées pour ce type de mécanismes, soient, par exemple,
la télémanipulation d’objets à l’intérieur d’environnements sensibles aux perturbations élec-
tromagnétiques causées par l’activation de moteurs électriques ou tout simplement lorsque
l’accès à des sources d’énergie électrique est limité.

L’utilisation exclusive de câbles entre les deux parties du pantographe apporte plusieurs avan-
tages, mais aussi quelques inconvénients qui leurs sont inhérents. Le principal désavantage des
PTC est sans contredit l’unilatéralité de la transmission des forces dans les mécanismes à en-
traînement par câbles. Ce dernier impose une disposition réfléchie des câbles, c’est-à-dire que
ceux-ci doivent supporter l’effecteur selon toutes les directions, et un niveau minimum de
tension afin de conserver la géométrie du système. En général, pour les MPEC, les moteurs
électriques doivent fournir un couple et une puissance constants afin de maintenir cette ten-
sion. Nous proposons donc, dans cette thèse, l’utilisation de ressorts dans l’objectif de produire
cette tension sans actionneur, laissant ainsi à l’utilisateur l’application de toute charge addi-
tionnelle (par exemple, pour vaincre la friction, l’inertie ou des forces extérieures appliquées à
l’effecteur). Ce concept est validé par la conception mécanique du premier prototype de PTC
plan à deux degrés de liberté (DDL) et entraîné par trois câbles.

Dans le but de restreindre au minimum la dépense énergétique de l’utilisateur, nous suggérons
ensuite la conception et l’utilisation de ressorts non-linéaires. Une méthodologie est ainsi
développée afin de déterminer le comportement idéal de ces ressorts pour à la fois maintenir
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les câbles en tension et approximer l’équilibrage statique du mécanisme sur son espace de
travail. Ces ressorts non-linéaires sont en fait constitués de mécanismes à quatre barres et de
ressorts à couples constants. À titre d’exemple, cette technique est appliquée à la conception
mécanique d’une nouvelle version du PTC plan à deux DDL et entraîné par trois câbles.

Lors de la conception de tout PTC (et particulièrement pour les PTC comportant un es-
pace de travail tridimensionnel), un second inconvénient doit être pris en compte. Ce sont
les interférences mécaniques entre les différents câbles reliant un même effecteur à sa base
correspondante (autant pour l’effecteur maître que l’effecteur esclave) lors de déplacements
en translation, en rotation ou combinés. Par conséquent, nous proposons dans cette thèse
une méthode permettant de déterminer de manière géométrique les régions d’interférences
entre une paire de câbles et aussi entre un câble et une arête de l’effecteur à l’intérieur de
l’espace de travail du PTC pour une orientation constante de ce dernier. Il est entre autres
démontré que, pour une orientation constante de l’effecteur, ces zones d’interférences sont
définies par des segments de plans et de lignes à l’intérieur de l’espace de travail. Cette mé-
thode permet alors de prévoir, de manière exacte et très rapide, les lieux d’interférences pour
un PTC donné et elle fournit un puissant outil lors de l’optimisation géométrique de ce type
de systèmes. Cette technique est aussi directement applicable lors de la conception de tout
MPEC tridimensionnel.

Finalement, afin de déterminer une géométrie adéquate pour une application donnée, la der-
nière partie de cette thèse se concentre sur la conception d’un algorithme d’optimisation
géométrique pour les PTC ou MPEC basé sur trois critères principaux. Le premier critère
est la maximisation du volume de l’espace des poses polyvalentes (EPP) (critère bien connu
dans la litérature scientifique). Les second et troisième critères sont basés sur l’espace libre
de toute interférence mécanique (théorie développée dans la partie précédente de cette thèse)
et ces espaces doivent être aussi maximisés. À titre d’exemple, les paramètres géométriques
d’un MPEC comportant six DDL, étant entraîné par sept câbles et comportant neuf arêtes
sont optimisés pour illustrer cette technique. Par la suite, une application médicale est utili-
sée comme deuxième exemple, soit la synthèse dimensionnelle d’un PTC à six DDL, entraîné
par huit câbles et comportant dix-sept arêtes, prévu pour être utilisé à l’intérieur d’un sys-
tème conventionnel d’imagerie par résonance magnétique (IRM) cylindrique permettant ainsi
d’effectuer des biopsies simples sous guidage visuel.
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Abstract

This thesis reports the first steps toward the development of a new family of telemanipulators:
cable-driven pantographs (CDPs). We define CDPs as mechanisms designed to reproduce
trajectories induced from a master (input) to a slave (output) with a chosen scale factor
and using cables in order to transmit corresponding forces or moments. They can also be
presented as the combination of conventional pantographs, devices where rigid links are used
to transmit forces between the master and the slave, and cable-driven parallel mechanisms
(CDPMs).

Given that the purpose of this thesis is the design of CDPs which combine reliability, safety
and a low manufacturing cost, we have chosen to develop tools that allow the design of
purely mechanical CDPs, i.e., no electrical component is necessary to transmit forces between
the master and the slave. Several applications can be considered for this new family of
pantographs, e.g., the telemanipulation of objects inside environments that are sensitive to
electromagnetic disturbances, or simply where electrical energy access is limited.

The strict use of cables between the two main components of the pantograph leads to many
advantages but also to some inherent drawbacks. The main disadvantage of CDPs is without
any doubt the unilaterality of force transmission in the CDPM’s cables. It imposes a reflected
cables distribution, i.e., cables must support the end effector in all directions, and a minimum
level of tension in order to preserve the system geometry. In general, for a CDPM, the
driving electrical motors are used to produce continuous torque (and power) to maintain the
cable tensions. In this thesis, we propose a methodology which relies on springs in order to
produce these tensions in a purely mechanical manner, leaving to the user the application of
the additional forces, i.e., those forces needed to overcome friction, produce accelerations and
balance external forces applied at the end effector. This conceptual idea is validated through
the design of the prototype of the first planar three-cable two-degree-of-freedom (DoF) CDP.

Then, with the objective of minimizing the energy expenditure required by the user, we also
suggest to compute nonlinear springs behaviours that maintain the cable tensions to a mini-
mum level, while approximating the static equilibrium of the mechanism over its workspace.
The nonlinear springs are in fact embodied as four-bar mechanisms coupled with constant-
torque springs. This methodology is illustrated by its application to a modified version of the
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three-cable two-DoF planar CDP.

When designing any CDP (in particular for CDPs with tridimensional workspace), a second
drawback must be taken into account. This drawback is the possible occurrence of mechanical
interferences between the different cables used to constrain the pose of the end effector from
its respective base (this applies to both the master and the slave effectors) when moving
in translation, in rotation or both. Thence, in this thesis, we propose a methodology for
determining, in a geometrical manner, the interference regions between a pair of cables and
between a cable and an end-effector edge for a given orientation within its workspace. It is
shown that, for a constant end-effector orientation, these interference regions are defined by
plane and line segments belonging to the CDP workspace. Then, this technique allows to
determine—exactly and rapidly—the interference regions for a given CDP, and thus provides
a powerful tool for optimizing the geometry of this kind of mechanisms. This methodology
can also be directly applied to the design of any tridimensional CDPMs.

Finally, in order to generate a suitable geometry for a given application, the last part of
this thesis details an algorithm to synthesize CDP or CDPM geometries based on three
main criteria. The first criterion is based on the wrench-closure workspace (WCW) (which
criterion is well known in the literature), whose volume should be maximized. The second
and the third ones are based on the free-interference workspace, methodology developed in
the previous part of the thesis, whose volumes should also be maximized. As an example, the
geometric parameters of a seven-cable nine-edge six-DoF CDPM are optimized to illustrate
the relevance of the technique. Then, a medical application is used as a second example,
i.e., the dimensional synthesis of an eight-cable seventeen-edge six-DoF CDP intended to be
used inside a standard cylindrical magnetic-resonance-imaging (MRI) system for performing
simple image-guided biopsies.
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Foreword

“It matters if you just
don’t give up.”

- Stephen Hawking

X� Thèse de doctorat rédigée . . . Checked (!)

Ces quelques mots, bien simples à première vue, ont une très grande signification. Ce ba-
nal crochet indique la fin d’une étape de vie, la fin de cette aventure qu’auront été mes
études universitaires: baccalauréat, projet parascolaire, stage en entreprise, maîtrise, doc-
torat, conférences canadiennes et internationales, stage d’études, cours à l’étranger, assistance
à l’enseignement, bénévolat, emplois ... et ça de l’automne 2000 à l’automne 2017. Toutes
ces expériences inoubliables auront sans aucun doute aidé à forger la personne que je suis
aujourd’hui.

En cours de rédaction, lorsque je suis tombé par hasard sur cette citation du célèbre physicien
Stephen Hawking, je me suis brièvement remémoré tous les efforts qui ont été nécessaires à
la complétion de ces études, de cette thèse et bien entendu des travaux sous-jacents, mais
surtout, et en toute honnêteté, les quelques fois durant lesquelles il aurait été tellement plus
simple de tout laisser tomber car la combinaison travail-étude n’a pas toujours été un mélange
que je qualifierais d’agréable. Cependant, l’être humain peut être très tenace lorsqu’il se fixe
un objectif et le mien était assurément de terminer cette thèse, mais surtout d’en être fier...
peu importe les efforts et le temps nécessaires afin d’atteindre ce but. D’ailleurs, je me
permets d’ouvrir une petite paranthèse afin de lever mon chapeau aux personnes qui ont
rédigé une partie ou la totalité de leur thèse de doctorat tout en travaillant en parallèle car
la détermination et la volonté sont plus souvent qu’à leur tour mises à rude épreuve.

Tout au long de l’écriture du premier jet de cette thèse, qui, vu les circonstances, s’est étendue
sur un peu plus de six ans, je m’étais promis d’écrire petit à petit cette partie plus personnelle.
Plusieurs idées me sont venues à l’esprit et se sont bousculées afin de se retrouver en premières
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lignes sur ces pages initialement blanches. Cependant, j’ai finalement décidé d’y aller selon
les convenances et de me limiter au plus important, c’est-à-dire les remerciements.

Ainsi, mes premiers remerciements se dirigent tout d’abord vers mon directeur de thèse, le
professeur Philippe Cardou, qui s’est avéré pour moi une ressource inépuisable de connais-
sances dans chacune des sphères de mes travaux, mais aussi une véritable source de motivation.
Je lui serai toujours très reconnaissant pour ses nombreux encouragements tout au long de
mon cheminement, pour ses commentaires sans l’ombre d’un doute des plus pertinents, pour
sa patience exemplaire et pour son soutien financier aux moments opportuns. J’ai assuré-
ment beaucoup appris lors de ces années et la réalisation de ces travaux n’auraient jamais été
possibles sans son aide précieuse.

Dans un même ordre d’idées, je tiens à remercier mon co-directeur de thèse, le professeur
Clément Gosselin, pour la justesse et l’élégance de ses conseils, qui auront été un phare
tout au long de mes études graduées. Il aura été pour moi un honneur de cotoyer une telle
sommité internationale du domaine de la robotique et une personne d’une intégrité sans égal.
Bien entendu, je dois aussi remercier le professeur Gosselin pour son soutien financier afin de
supporter mes travaux de maîtrise et de doctorat tout comme je me dois de mentionner la
contribution des Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT)
pour mes travaux de doctorat. Ces différentes aides auront été fort utiles et appréciées.

Ensuite, j’aimerais spécialement remercier les membres au sein de mon comité de thèse, soit le
chercheur Marc Gouttefarde, le professeur Marc J. Richard et le professeur Alain Curodeau.
Ces derniers, malgré un horaire chargé, ont, tout comme les professeurs Cardou et Gosselin,
accepté et pris le temps nécessaire afin d’évaluer mes travaux. Leurs commentaires ont indu-
bitablement permis d’améliorer la présentation et la qualité de cette thèse.

J’offre aussi mes plus sincères remerciements à tous les membres du Laboratoire de robotique
de l’Université Laval. Je ne veux pas tous les nommer ici, par crainte d’en oublier, et aussi
que la liste serait très longue, vu le nombre d’années durant lesquelles j’ai fréquenté ce lab-
oratoire (!). Une chose est sûre, c’est qu’au cours des nombreuses années pendant lesquelles
j’ai établi mon bureau de travail en ces murs, j’ai eu la chance de côtoyer des gens extraor-
dinaires et brillants, qui ont été collègues de travail, partenaires de voyages, coéquipiers dans
la pratique de sports (une petite note spéciale pour le hockey) et qui sont ainsi devenus des
amis(ies). Je tiens particulièrement à remercier les professionnels de recherche du laboratoire,
soient Thierry Laliberté, Simon Foucault et anciennement Boris Mayer St-Onge, pour leur
disponibilité et leur aide inestimable afin de faciliter l’avancement des travaux de tous et de
toutes au laboratoire. De plus, je me dois de remercier Mathieu Lepage, Coralie Germain et
Dany Dubé pour l’aide apportée à mes travaux de recherche au cours de leur stage d’études
respectif. Finalement, j’aimerais aussi remercier les professeurs Rajni Patel et Ana Luisa Tre-
jos, ainsi que les membres du groupe CSTAR (Canadian Surgical Technologies & Advanced
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Robotics), pour leur accueil chaleureux et leur collaboration lors de mon stage d’études au
Western Ontario University, London, ON, à l’automne 2009.

Lors de projets se déroulant sur plusieurs années, différentes épreuves de vie risquent de
survenir et elles font partie de notre formation personnelle aussi bien que les études font
partie de notre formation professionnelle. Ainsi, je me dois de saluer tous les gens qui me
sont chers, parents et amis(ies), vous m’avez accompagné pendant toutes ces années dans
mes moments joyeux, mais aussi supporté dans mes moments plus difficiles, je ne peux que
me considérer choyé d’être entouré de gens de votre trempe. Je tiens d’ailleurs à remercier
spécialement mon père Ghislain Perreault et ma mère Michèle Bérubé, qui même lors de
périodes difficiles, ont su montrer, à leur manière, supports, encouragements et fierté vis-à-vis
mes études. On dit que les enfants sont le reflet de leurs parents, et bien je remercie les
miens d’être les personnes qu’ils sont et de m’avoir inculqué de belles valeurs de vie. Enfin,
je désire remercier tendrement ma conjointe Anne-Marie Champoux pour son soutien moral
constant et la patience dont elle a fait preuve tout au long de l’écriture de cette thèse. Sans
toi, mes multiples fins de semaine de travail auraient sans aucun doute été beaucoup moins
agréables ,.

Finalement, de vrais amis ne craignent pas de nous dire le fond de leur pensée, ainsi, après
avoir entendu mille et une fois la question que tout doctorant craint: “quand crois-tu terminer
ton doctorat?”, on sait qu’il est plus que le temps d’achever la rédaction et de se consacrer—
entièrement—à l’étape suivante, soit la poursuite de la fameuse carrière professionnelle; ce
monde tant mystérieux que terrifiant si l’on se fie aux divertissantes bandes dessinées “Ph.D.
Comics”.

Mais tout d’abord, passons aux choses sérieuses ...

En toute humilité,
je vous souhaite,

Bonne lecture !
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Introduction

“I can’t define a robot,
but I know one when I see one.”

- Joseph F. Engelberger

Context

The first use of the word robot is reported to be in the play called “Rossum’s Universal
Robots”, for which the premiere was held at the National Theatre in Prague on January 25,
1921 [1, 2]. It was a science-fiction theatrical piece created by the Czech Karel Capek and
robot was associated to a biological humanlike-in-appearance system that can do the work
of two-and-a-half human labourers. This play was an enormous success in Europe and later
in the United-States. Consequently, the word robot officially entered the English language
in 1922 [3]. At this time, robotic systems as we know them today could only be conceived
by people with a high level of imagination and they strictly belonged to the realm of science
fiction.

Four decades later, the inventor and entrepreneur George C. Devol Jr. and the engineer
Joseph F. Engelberger founded Unimation Corp. (for Universal Automation) in Danbury,
CT, United-States, the world’s first robotics company, based on Mr. Devol’s patent [4]. Their
system was called Unimate and was the first programmable industrial robot in the market. It
was hydraulically powered and designed to learn a trajectory by storing the angles involved,
enabling the robot to repeatedly perform tasks (see Fig. 0.1). This new invention was perfect
to execute labours such as spot welding and spray painting in cars assembly lines of the 60s.
It was so spectacular that Unimate even appeared on “The Tonight Show”1, in 1966, in order
to perform human tasks such as knocking a golf ball into a cup, pouring a beer and leading
the orchestra. Without any doubt, from the work of Mr. Devol and Mr. Engelberger, a new
era was beginning and what were only belonging to science fiction until now started to slowly
become reality—a robot was able to perform tasks by itself.

Despite this breakthrough, more than 50 years of technological progress later, we are not yet
1“The Tonight Show” is a popular American late-night talk show that has aired since 1954.
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Figure 0.1 – First programmable industrial robot: Unimate.

sharing our daily tasks with electromechanical entities having a really high level of artificial
intelligence, as per Mr. Capek’s theatrical piece. In fact, before we truly live in his science-
fiction world, plenty of work still remains to be done in order to fill the gap [5, 6]. But the
robotics world is maturing very fast with the increasing number of new worldwide research
groups and the large projects diversity which lead it, without any doubt, to a promising bright
future. Currently, researchers from all around the world work at designing systems that can
extend our capabilities, can assist us to become more efficient or can easily execute tasks
in environments where the human being is not very welcomed. We can think of dangerous
conditions such as those found under water, in fires, inside nuclear plants, etc. In fact, the
lack of oxygen, the high pressure, the extreme temperatures, the high level of radioactivity
and the limited access to some environments are sufficient reasons that lead to the use of
articulated electromechanical systems to perform these tasks instead of humans.

Nowadays, a human is generally always involved into the control loop of current designed
robots. In general, three different approaches are followed by designers. One is to define and
program optimal trajectories to perform accurate, fast and repetitive tasks at the system end-
effector under known external parameters, as for the robot Unimate. The second, mostly used
when external parameters are unknown or unpredictable, is to move the end effector by direct
manual control from a human. This type of system can be named an assisting device. The
last method is mainly similar to the second one, but the human input is provided remotely,
using a second system to indirectly control the end effector. This approach corresponds to
systems called telemanipulators or teleoperators, which are defined as “any remote-controlled
machine which mimics or responds to the actions of a human controller at a distance” [3].
This branch of mechanisms is also known as master-slave architectures because of the motion
relationship between their two main parts. One part, the master, contains an end effector
on which displacements are imposed by the user, and the second part, the slave, contains
an end effector that mimics the master’s displacements and interacts with objects inside its
workspace. The distance between the master and the slave can vary from millimetres to
kilometres and different scaling factors can be applied between their respective ranges of
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(a) Mr. Payne’s design (b) Mr. Goertz’s design

Figure 0.2 – First master-slave mechanisms.

motions.

From our research in the scientific literature, the first telemanipulators or teleoperators, which
were purely-mechanical systems, seem to have been designed by two separate groups in the
late 40s, i.e., approximately 20 years before the invention of the programmable robot Unimate.
One group was led by John H. Payne while he was a designer for General Electric [7]. The
second was directed by Raymond C. Goertz while working as an associate director for the
Atomic Energy Commission at Argonne National Laboratory in the United-States [8, 9, 10].
Their master-slave systems were both used to remotely handle radioactive material through
a large protective wall in a nuclear plant. Their designs presented seven degrees of freedom in
order to facilitate the grasping of multiple objects. Clearly, the purpose of these mechanisms
was to eliminate human exposure to high levels of radioactivity while performing experiments.
Figures 0.2a and 0.2b show the designs of Mr. Payne and Mr. Goertz, respectively.

During the following years, many researchers have developed and patented similar master-
slave mechanisms, but using different approaches in order to improve their capabilities. As
examples, we may cite the work of Wiesener [11], Germond et al. [12], François et al. [13],
Glachet et al. [14] and Reboulet [15]. These works aimed at improving the accuracy of
reproduced movements (between the master and the slave parts), at increasing the range of
motion for each degree of freedom and at statically balancing these master-slave mechanisms.
However, in return, most of these enhanced system capabilities involve higher complexity of
their internal mechanics and the working distance between the master and the slave is still
constrained by the rigid links which are required to transmit forces and motions.

In parallel, with the technological progress in electromechanics, researchers decided to trade
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Figure 0.3 – Philip S. Green’s Canadian patent 2,632,123: schematic drawing.

rigid links that were used to transmit forces and motions, with actuators and electronic
components. See for instance the work of Goertz et al. [16] in the late 50s, Green [17] in the
90s, and more recently Brock et al. [18]. These US and Canadian patents present systems that
use electronics and actuators in order to generate the required forces and motions. Indeed,
master and slave parts that were initially mechanically connected with rigid linkages are
then electrically connected with wires and driven by motors. These modifications lead to
the decrease of the system’s size and the internal mechanics complexity and allow a much
larger potential distance between the two workstations, which brings us to the essence of the
word telemanipulator. Moreover, research in this direction has led to the creation of another
term, the word telepresence, which is defined as the use of remote control and the feedback
of sensory information to produce the impression of being at another location; a sensation
of being elsewhere created in this way [3]. In Green’s work [17], from the Stanford Research
Institute (SRI), the use of two cameras with different viewing angles for the production of
stereoscopic signal provides the operator with the sensation of directly controlling the end
effectors with his or her hands, regardless of the distance between the master and the slave
parts (see Fig. 0.3).

All these developments on telemanipulators, during the last decades, opened the door to new
applications such as telesurgery in the medical field. Indeed, since the mid 80s, the health-
care system gradually takes advantage of new technologies in order to increase the quality
of diagnoses, to improve the accuracy of surgical procedures and to facilitate the training
of medical staff. The appearance of robotics in the medical field is mostly explained by the
increasing precision of surgical procedures to be performed by surgeons; indeed, the actions
to be taken are often at the limit of dexterity and endurance of man. Then, with the advan-
tages inherent to these new telemanipulators, researchers were interested in investigating the
possibility of developing robots for medical applications. The potential increase of dexterity,
accuracy (exact reproduction of movements with different scaling factors) and stability of the
end effector (no fatigue and human hand tremors filtering) were sufficient incentives to begin
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(a) neuromate® (b) neuroArm

Figure 0.4 – Assisting and master-slave neurosurgical systems.

the evaluation of their practicability.

Hence, in the last three decades, four surgical specialties have seen the major developments re-
garding medical robotic technologies: neurosurgery, orthopaedic surgery, laparoscopic surgery
and radiosurgery. In the literature, several papers describe the history of medical robotics
and provide an overview of the features and applications of the different systems designed
for research and also those available on the market [19, 20, 21, 22, 23, 24]. One of the first
surgical robots, which has been designed in 1985, is called neuromate® [25] (see Fig. 0.4a).
This assisting device is designed to aim at a specific target inside the human brain with a
very high level of accuracy. It is qualified of semi-active because it only constrains the motion
of the instrument which is inserted by the surgeon. In 1989, the first robotic neurosurgical
procedure was performed on a patient and neuromate® was used to place a needle for a brain
biopsy using computed tomography (CT)2 guidance.

In the same surgical field, and approximately fifteen years later, a research group has worked
on the design of a robotic system compatible with magnetic-resonance-imaging (MRI)3 to
perform neurosurgery (see Fig. 0.4b). This project, which involved important financial and
human resources, is called neuroArm [27, 28, 29]. The system is based on a master-slave
architecture and power is electrically transmitted between the two parts of the telemanipula-
tor. In 2008, the neuroArm system was used to perform, for the first time, an image-guided
MRI-compatible robotic neurosurgical procedure on a patient. This technology was then ac-
quired by the company IMRIS Inc. (a Deerfield Imaging Brand) and it was planned to be
commercially available under the name SYMBIS Surgical System [30].

2Computed tomography (CT) scanning, also called computerized axial tomography (CAT) scanning, is a
medical imaging procedure that uses x-rays to show cross-sectional images of the body [26].

3Magnetic resonance imaging (MRI) is a medical imaging procedure that uses strong magnetic fields and
radio waves to produce cross-sectional images of organs and internal structures in the body. Because the
signal detected by an MRI machine varies depending on the water content and local magnetic properties of a
particular area of the body, different tissues or substances can be distinguished from one another in the study
image [26].
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(a) ROBODOC® (b) MAKOplasty®

Figure 0.5 – Assisting orthopaedic surgical systems.

In orthopaedics, the first robotic system was called ROBODOC® [31] (see Fig. 0.5a). This
device was designed for total hip and knee replacements. For the hip, the robot was developed
to mill a cavity in the femur for the placement of a prosthetic implant. The accurate shaping
of the cavity for a precise fit and positioning of the implants for optimum biomechanics allowed
for better outcomes for the patient. For the knee, the robot was able to plane the knee surfaces
on the femur and tibia to achieve a precise fit of the implant. In 1992, the first human hip
replacement surgery with the ROBODOC® system was successfully completed [32]. More
recently, another orthopaedic robotic system has been launched in the medical market and
has received the Food and Drug Administration (FDA) [26] approval for total hip and partial
knee replacements, this system is called MAKOplasty® [33] (see Fig. 0.5b). It is interesting
to note that these two medical robots are assisting devices for the orthopaedic surgeon to
perform more precise surgical procedures (tremors filtering and limiting hand motions to
within virtual boundaries) and are not telemanipulators (master-slave architectures) such as
the design of Mr. Payne, Mr. Goertz and the neuroArm.

In laparoscopic surgery, three well-known telemanipulators have been mainly used in the op-
erating rooms worldwide: the AESOP® Endoscope Positioner, the ZEUS® Surgical System
and the da Vinci® Surgical System. The AESOP® (see Fig. 0.6a) is a voice-activated robotic
system for endoscopic surgery created by the company Computer Motion Inc. In 1993, this
became the first robot approved by the FDA for laparoscopic surgery. The system allows to
steadily maneuver the endoscopic camera inside the patient’s body during surgery through
voice commands by the surgeon. Then, surgeon’s hands are free for controlling conventional
laparoscopic tools in order to perform the surgical procedure in a minimally-invasive4 man-

4Minimally invasive is designating or relating to therapeutic and diagnostic techniques and procedures
that minimize the extent of surgical intervention, such as laparoscopic surgery or percutaneous—through the
skin—needle biopsy [3].
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(a) AESOP® (b) ZEUS®

Figure 0.6 – Voice-controlled assisting and master-slave laparoscopic surgical systems.

ner. Another system, designed by the same company was the ZEUS® Surgical System (see
Fig. 0.6b), this robot consists of three table-mounted arms, one of them uses AESOP® tech-
nology while the two others are used as the surgeon’s right and left hands. Then, surgeons
can give voice commands to adjust their view while controlling the other two robotic arms
by sitting at a console, where a tridimensional image of the surgery is provided. The ZEUS®
was a more complete surgical system than the AESOP® and it has then been used to perform
the first complete telesurgery in 2001 [34]. The operating surgeon was in Manhattan, NY,
United-States, and the patient (a porcine specimen) was in Strasbourg, France, with more
than 6 000 km of distance between each site.

In addition to laparoscopic surgery, a competitive system has been designed by the company
Intuitive Surgical Inc [35]. They redesigned the telepresence surgery system created by Green
(see Fig. 0.3) and developed the da Vinci® Surgical System [36, 37]. This system proposes a
master-slave architecture with a console containing two master controllers, a high-definition
(HD) stereo viewer and foot pedals in order to control the four anthropomorphic robotic arms
belonging to the slave part. The patient cart (slave side component) contains four arms, one
arm to hold a two-channel HD endoscopic camera and three additional arms to constrain
the motion of different laparoscopic wristed-design tools. This system was approved by the
FDA in 2000 for general laparoscopic surgery. This was followed with FDA clearings for
thoracoscopic, cardiac, gynaecology, paediatric, transoral and urology procedures [38]. The
system’s medical-market growth is attributed to the numerous benefits inherent to its use
for the patient (more significant for patients with difficult conditions) compared with open
and conventional laparoscopic surgery such as smaller incisions (less scars), less blood loss,
less trauma and pain due to the intuitive motion, the fixed pivot-point for the laparoscopic
instruments and the improved vision and dexterity for the surgeon. All of these normally
leads to a shorter recovery time and a faster return to normal activities for the patient. Until
today, four generations of the da Vinci® Surgical System have been launched: the da Vinci®
Standard in 1999, the da Vinci® S in 2006, the da Vinci® Si in 2009, and recently the da
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Figure 0.7 – The well-known master-slave da Vinci® Si Surgical System (laparoscopic surgery).

Figure 0.8 – The image-guided CyberKnife® Robotic Radiosurgery System.

Vinci® Xi in 2014 (see Fig. 0.7, which shows the third generation–da Vinci® Si Surgical
System–with dual console). In 2003, the two companies, Computer Motion Inc. and Intuitive
Surgical Inc., have merged together and as of October 2017, more than 4 270 da Vinci®
Surgical System robots have been installed worldwide.

Finally, in radiosurgery, a well-known system is the image-guided CyberKnife® Robotic Ra-
diosurgery System [39] (see Fig. 0.8) which is commercialized by Accuray Inc. This system
is a method of delivering radiotherapy, with the intention of targeting treatment more accu-
rately than standard radiotherapy. The two main elements of the CyberKnife® are: (1) the
delivery of beams of high dose radiation produced from a small linear particle accelerator and
(2) a robotic arm which allows the energy to be directed at any part of the body from any
direction. This is a non-invasive alternative to surgery for the treatment of both cancerous
and non-cancerous tumours, including the prostate, lung, brain, spine, liver, pancreas and
kidney. This system is based on a serial architecture, it is guided by an x-ray imaging system
and it was cleared by the FDA in 2001 to treat tumours anywhere in the body.
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(a) CAD model (b) Prototype

Figure 0.9 – The Johns Hopkins University fully-actuated MRI robot.

Without need to say, the surgical devices discussed above are only a few among a wide
range of research and industrial projects that could have been presented here. But, from
the viewpoint of the author, they represent the major commercially-available robotic systems
applied to neurosurgery, orthopaedic surgery, laparoscopic surgery and radiosurgery.

Similar to the progress of robotics in medicine, the imaging technologies have seen significant
growth in the past years. Indeed, they have received strong interests from scientists, which
have strived to improve images quality and decrease the associated computing time, which
potentially leads to earlier diagnoses of diseases such as cancers. Among the different types
of imaging, magnetic resonance imaging has been involved in several research projects, since
this technology allows discerning different types of soft human tissues. This is useful when
performing biopsies, as it allows to accurately reach the desired target in the human body [40,
41]. With these two parallel growths in the medical field, robotics and imaging, it is tempting
to take advantage and merge their technologies to create complete and versatile systems, as
it is clearly possible based on the achievements of the neuroArm project [27, 28].

From our research of the literature, in the last fifteen years, several robots have been designed
to be totally or partially MRI compatible [41, 42, 43, 44, 45, 46]. Among those, we may cite
the work of the Johns Hopkins University (JHU) team that has designed the system called
MrBot [46, 47, 48]. This MRI-compatible five-degree-of-freedom (DoF) robot is pneumatically
actuated for image-guided access of the prostate gland and can be used for fully automated
brachytherapy5 seed placement (see Fig. 0.9a for a computer-aided design (CAD) model
of the device installed inside the gantry of a MRI cylindrical scanner and Fig. 0.9b for a
prototype photography). Another project, based on the work of Christoforou et al. [44,
49], aims at developing a seven-DoF remotely controlled MRI-compatible manipulator to
perform minimally-invasive interventions inside clinical cylindrical scanners. This master-

5Brachytherapy is a form of radiotherapy where a radiation source is placed inside or next to the area
requiring treatment.
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slave architecture is based on two serial kinematic chains (one for each part) and they use
electrical motors and wires in order to transmit the system inputs. Then, in order to minimize
the inevitable MRI image alteration, they move all electronic components in a Faraday cage.
Finally, a research team from the Massachusetts Institute of Technology (MIT), DeVita et
al., has designed a system to perform biopsy interventions and treatments for prostate cancer
therapy within the bore of a MRI system [43]. This project proposes a parallel mechanism
actuated by bistable components in order to generate discrete movements to the tool. Except
for some of them, including the neuroArm, a majority of the MRI-compatible systems found
in the literature only have few degrees of freedom and a limited workspace.

The manufacturing of MRI-compatible robots, which requires particular attentions from
designers because of the numerous constraints associated to the use of this type of im-
agers [41, 42, 49], can easily lead to the increase of the project cost. Among those, we
can point to the use of non-magnetic and non-conductive materials (such as plastic, ceramic,
fibreglass, carbon fibre and other composite materials) and of non-electromagnetic motors
(as per examples: manual, hydraulic and pneumatic actuation or ultrasonic and piezoelectric
actuators). These constraints stem from the necessity of controlling the robotic system even
when subjected to the strong electromagnetic fields, inherent to MRI scanners. Conversely,
the chosen materials and driving components must not alter the images quality. Finally, the
use of the system, in combination with the scanner, must not present any additional risk to
the patient (it must be MRI-safe). If these constraints are satisfied, then the physician will
have high-quality real-time images feedback while doing the surgical procedure and will be
allowed to stay outside of the MRI environment during the operation, thus minimizing his or
her exposure time to the strong magnetic fields.

Having this in mind, the Laboratoire de robotique de l’Université Laval has proposed to design
a new type of mechanism that will be based on a purely mechanical master-slave architecture.
This concept, that will be manually actuated, can be placed in the same category that the
telemanipulators designed by Mr. Payne and Mr. Goertz in the late 40s (Figs. 0.2a and 0.2b)
and, consequently, may be seen as a step backward when comparing to all of the technological
improvements done in robotics over the past decades. But in fact, the long-term objective
here is to develop a more-affordable alternative system, i.e., a low-cost and relatively low-
complexity device with a six-DoF workspace and reasonable performances. Moreover, as
per the recent works presented in the previous paragraphs, this type of systems would be
ultimately compatible to be used in a MRI environment. However, compared to a project
as the neuroArm, which is intended to high-precision human-brain neurosurgery and involves
considerable financial support, the expected design here will be rather intended to surgical
procedures such as simple image-guided biopsies performed inside the bore of a conventional
MRI cylindrical scanner, as it is the case for other projects such as at the MIT [43] and
JHU [46].
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Figure 0.10 – Example of a MRI scanner: the MAGNETOM® Skyra three-tesla MRI system
from Siemens.

Objectives and Contributions

With the technical enhancements of MRI scanners over the past years, numerous medical
interventions now take advantage of this type of imaging devices. However, one of the most
restricting problems is the fact that MRI devices (for an illustrated example, see Fig. 0.10
for a three-tesla MRI device designed by Siemens [50]) and the majority of current medical
robotic systems cannot be used within a common work area due to the constraints inherent to
this type of imagers. As presented in the previous section, several projects aim at developing
robotic systems that are MRI-compatible. But most of them show a high level of complexity
and entail high manufacturing costs. Hence, it would be interesting to develop a new class
of telemanipulators, fully compatible with MRI systems, that have sufficient performances
for simple telesurgery applications, that allow a surgeon to minimize his or her time of ex-
posure to the high-level electromagnetic field, and which present a low manufacturing cost
when compared to currently commercialized medical robotic systems, i.e., a good compromise
between performances and costs.

Moreover, the development of surgical robots is highly demanding when compared to other
fields of applications. This is due to the restrictions associated with surgery, such as the neces-
sity to clean and sterilize the various tools, the generally limited space where the system has
to fit, the required level of ergonomics, the proximity of humans sharing the same workspace,
and the direct contacts with the patient’s body [19, 21]. Thence, the focus of this project will
be placed on the reliability of the telemanipulator, i.e., the impossibility of an unintended
loss of control, which is ensured by a manual actuation. In fact, this type of applications
requires an absolute surgeon’s confidence as this aspect is one of the main decisive points
when choosing any medical devices. In addition, the system must allow a reduction of the
surgeon’s motions by a given scaling factor, and, if possible, elimination of his or her hand
tremor and transmission of the forces applied at the end effector to the hand of the operator.
The design must also present a fast and easy installation process and an intuitive control.
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Following these requirements, the current thesis presents the first steps towards the devel-
opment of a new family of mechanisms called cable-driven pantographs (CDPs). The main
objective here is to develop relevant tools required to determine a suitable design, optimize
the geometry and enhance the capabilities of these new mechanisms. They are expected to
entail a low cost, to be safe, reliable and to consume little energy due to a purely-mechanical
design (no electrical components will be involved in the design). To the best knowledge of
the author, no mechanisms similar to the one proposed in this thesis, i.e., CDPs, have been
previously reported in the scientific literature. This project will ultimately lead to the design
of a six-DoF CDP, which will be conceptually optimized to manipulate needles inside an MRI
scanner in order to perform image-guided punctions or simple biopsies on patients.

As it will be described in this thesis, the design of purely-mechanical telemanipulators actu-
ated by cables brings up significant difficulties. Indeed, many constraints must be taken into
account to produce a telemanipulator that shows reasonable performances [8] and to over-
come drawbacks inherent to relying on cables to transmit forces between the master and the
slave [51, 52]. One of these difficulties is the fact that a minimal tension must be constantly
kept in cables in order to preserve the mechanism geometry. A second difficulty is that a
neutral static equilibrium should be reached and guaranteed over the system workspace in
order to minimize the energy input required from the operator to move the end effector. A
third challenge is that the multiple-cable-actuated mechanisms must be designed in a way to
minimize or avoid any cable interferences (cable contacts) within its own workspace to ensure
a suitable control of the end-effector pose.

Then, in summary, the work proposed in this thesis should contribute to scientific progress
by the following innovations:

• The development of a new family of telemanipulators, i.e., the CDPs;

• The development of the kinematic and kinetostatic models associated to the n-DoF
CDPs;

• The development and evaluation of a methodology allowing an approximate static equi-
librium of the CDPs, i.e., to minimize its potential energy fluctuations over a given
workspace;

• The development of a general method to geometrically determine the occurrence of
mechanical interferences involving the cables used to constrain the pose of the CDP
end-effector;

• The development of a global methodology to dimensionally synthesize the geometry of
CDPs that fulfill application-based requirements.
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Finally, all of these contributions put together represent a significant step towards the design
of a six-DoF CDP-type telemanipulator to be installed inside a conventional MRI scanner.

Nomenclature and Organization

First, in order to facilitate the reading of this thesis, it is necessary to define the chosen
nomenclature. Then, in general, a lower-case italized letter such as “x” represents a scalar,
while a capital italized letter such as “X” is associated to a point or a line. The use of bold
font is reserved to objects having more than one component such as “x” for a vector (lower-
case letter) and “X” for a matrix (capital letter). Calligraphic letters such as “X ” are used
to identify reference frames, subspaces or sets such as a line segment.

The system of measurement units used throughout this thesis corresponds to the modern form
of the metric system, i.e., the International System of Units [53]. The length, mass and time
units are the metre m, the kilogram kg and the second s, respectively. As for the derived units
of the SI system such as the plane angle, the force and the torque, they are represented by the
radian rad (and, when specified, by the degree˚), the newton N and the newton-metre N·m.
Finally, the positive direction of a rotation along a given axis follows the right-hand rule.

The current work is divided in four main chapters, the order of which is not chronological but
rather logical. This choice is made to ease the overall understanding of the reader. It goes
without saying that by nature, research follows a path strewn with successes and failures and,
as a result, the order in which the work has been done is not necessarily always the order in
which it has to be presented.

Chapter 1 defines the new class of telemanipulators, i.e., the CDPs, which are a blend of
conventional pantographs with the cable-driven parallel mechanisms (CDPMs). The working
principle of CDPs is then demonstrated by describing the one-DoF fundamental component
of a CDP, the architecture of a general n-DoF CDP, the input-output displacement and load
relationships inherent to this family of telemanipulators and their kinetostatic modelling. As
a proof of concept, the design of a three-cable two-DoF CDP prototype is then presented as
well as a verification of its performances.

Chapter 2 describes a methodology aimed at improving the CDP performances by the intro-
duction of nonlinear springs to maintain minimum cable tensions while approximating the
static equilibrium over the mechanism workspace. We first present the definition of an ap-
proximate static equilibrium, a concept that is then applied to a three-cable two-DoF CDP.
The minimum cable tensions are first determined in order to approach as much as possible
the static equilibrium and, based on the resulting tension profiles, the nonlinear spring pa-
rameters are determined using an optimization technique. This method is implemented on
the prototype presented in Chapter 1 in order to validate the results.
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Chapter 3 reports an exhaustive analysis of the mechanical interferences phenomenon that
can occur between a pair of cables constraining the pose of the end effector of a CDP as well
as between a cable and an edge of the same end effector. This methodology, first created
to facilitate the development of CDPs, is directly applicable to any CDPM. In this chapter,
the definition of a mechanical interference is initially presented with its application to planar
CDPMs. Then, this analysis is extended in order to geometrically determine the mechanical
interferences loci within the constant-orientation end-effector workspace of any generic spatial
CDPMs. The technique is first applied to the determination of the interference regions for a
pair of cables and secondly applied to the determination of the interference regions for a cable
and an end-effector edge. The technique is validated through its use on a six-cable six-edge
six-DoF CDPM and then an eight-cable 31-edge six-DoF CDPM.

Chapter 4 then demonstrates a dimensional synthesis method to determine the geometric
parameters of a CDP (or a general CDPM) for a specific application, e.g., for a particular
prescribed workspace. The three criteria on which this optimization technique is based are
first defined: the constant-orientation wrench-closure workspace (COWCW), the constant-
orientation cable-cable interference (COCCI) and the constant-orientation cable-edge inter-
ference (COCEI). In order to validate the proposed synthesis technique, the resulting method
is applied to the synthesis of a seven-cable nine-edge six-DoF CDPMwith an arbitrarily-chosen
prescribed workspace. Finally, the same methodology is applied to optimize the geometric
parameters of a novel eight-cable seventeen-edge six-DoF spatial CDP which would be ap-
plied to the coveted medical application, i.e., to manipulate needles inside the bore of a MRI
system in order to perform simple image-guided punctions or biopsies on a patient.

Finally, this thesis is concluded with a summary of its main scientific contributions. Since the
current work presents the first steps towards the development of a new family of mechanisms
called cable-driven pantographs, a complete list of propositions for future work and research
lines is then provided. These guidelines could serve as a source of inspirations for future
researchers in order to lead this project to its coveted goal, i.e., the design and prototyping
of a MRI-compatible six-DoF CDP aimed to perform simple image-guided biopsies inside the
bore of cylindrical MRI scanners.
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Chapter 1

Cable-Driven Pantographs and
Their Working Principle

“Necessity ... the mother of invention.”
- Plato

This chapter unveils the premise of the work presented in this thesis, i.e., the development
of a new class of pantographs, a type of mechanisms that allow the reproduction of the
displacements of an input link, the master, at an output link, the slave. The application
we envision for these devices is the telemanipulation of objects from small distances, at low
cost, where magnetic fields or other design constraints prohibit the use of electromechanical
systems. Despite the long history of pantographs, which were invented between the 15th

and the 17th century, the class of pantographs proposed here is new, as it relies on cable-
driven parallel mechanisms (CDPMs) to transmit the motion. This allows the reproduction
of rigid-body displacements, while the majority of previous pantographs were limited to point
displacements, in order to copy and scale diagrams and writings.

Since this new type of mechanisms, called cable-driven pantographs (CDPs), lies in the middle
between conventional pantographs and CDPMs, these two distinct families of devices are first
defined for the reader in Sections 1.1 and 1.2, respectively. The working principle of CDPs
is then presented in Section 1.3. More specifically, Sub-sections 1.3.1 and 1.3.2 describe their
basic geometry, for a one-DoF and a n-DoF CDP, respectively, and Sub-section 1.3.3 con-
tains the derivation of the input-output displacement relationship associated to CDPs with
its validation by means of numerical simulation. Moreover, Sub-section 1.3.4 presents the
input-output load relationship inherent to CDPs while Sub-section 1.3.5 proposes the formu-
lation of their kinetostatic model. From Section 1.3, it is shown that one important challenge
in the design of the proposed systems is that the cables must remain taut at all times. We
address this issue by adding springs that passively maintain a minimum tension in the ca-
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bles. As a preliminary validation, the behaviour of this conceptual design is experimentally
tested by building the first three-cable two-DoF planar CDP in Section 1.4. Sub-section 1.4.1
shows the prototype of this apparatus and Sub-section 1.4.2 reports the experimental eval-
uation of its performances, results that demonstrate the practicability of this new class of
pantographs. Finally, a brief summary that highlights the main results obtained from this
chapter is presented in Section 1.5.

1.1 Pantographs

The word pantograph may be decomposed into its Greek roots panto and graph, which re-
spectively mean all and writing. In the literature, it is commonly used to represent three
different kinds of mechanisms. The first meaning of the word pantograph according to the
Oxford English Dictionary [3] is an instrument for the mechanical copying of a plan, diagram,
pattern, etc., especially on a different scale, typically with two drawing points connected by
an adjustable parallelogram of jointed rods. Also: any of various similar mechanisms for
automatically guiding or scaling the motion of a cutter, stylus, etc.

According to this definition, the first pantograph seems to have been constructed in 1603 by
Christoph Scheiner1, who only gave a written account of his invention in 1631 [54]. This device
allowed the reproduction of the displacements of a point in the plane, and was intended for
copying drawings. As shown in Fig. 1.1, this first pantograph was designed with rigid planar
links, which were connected with passive revolute joints. Two pencils were fixed to this
mechanism, one handled by the user to follow the contours of the original drawing and the
second constrained to follow the same motion but at a distance. The mechanism is based
on a parallelogram geometry, the scaling ratio between the original and the copied drawings
being determined by the ratio of the lengths of the segments within the linkage. Indeed, and
as we can observe in Fig. 1.1, the scaling factor is defined by the ratio between the lengths of
segments KS and IR, i.e., KS/IR. It should also be noted that, in order to have the exact
original image proportion applied to the resulting image, IM = KL and IK = ML must be
true, i.e., these segments must form a parallelogram geometry.

Since Scheiner’s device, researchers have published and patented different versions of the
original two-DoF pantograph. We may cite some relatively recent work such as the patent
of Plumbley [55], who designed a system that automatically cuts metal sheets by following
the irregular lines of the original shapes; The patent of Plese [56], who designed a purely
mechanical pantograph based on a new shape of metallic links; The patent of Valois [57], who
created a pantograph with a linkage geometry that is perpendicular to the working plane
instead of being parallel as in previous designs; And the patent of Blain [58], who proposed a

1Note: Even if some report that Leonardo da Vinci, Michelangelo and various ancient Greeks may have
used a pantographic device as early as in the 15th century, no archived and clear evidence has been found by
the author.
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Figure 1.1 – First definition of pantograph: Scheiner’s pantograph.

new architecture based on a transmission of motion built from gears and a worm screw in order
to increase the reproduction quality. Other interesting reports include a new design that can
modify the scaling factors independently along two mutually perpendicular directions [59],
a family of feasible geometries to generate the pantograph behaviour [60] and the design of
pantographs based on compliant mechanisms [61].

Moreover, work has also been done on three-DoF pantographs (see Fig. 1.2a for a three-
DoF pantograph that was patented in England by Benjamin Cheverton in 1844 [62]). Such
mechanisms have been extensively used for sculpting, machining and engraving applications,
when an existing part or feature is to be reproduced [63, 64]. Still today, several companies
sell three-dimensional pantographs, which reproduce the displacements of a point in space
(for example, see Fig. 1.2b [65]). In contrast with these pure-translational mechanisms, a
three-DoF pantograph that transmits pure rotations was also patented by Reboulet [66].
This patent enumerates different possible assemblies of mechanical and electromechanical
components in order to produce the intended behaviour. It should be noted that all of these
purely-rotational mechanisms present the particularity to have a rigid link that supports their
end effectors and contains a spherical joint at its extremity to allow for rotations about a fixed
point.

A second definition for the word pantograph is: a jointed, self-adjusting framework on the
top of an electric vehicle for conveying the current from overhead wires [3]. This class of
pantographs has been widely used in the design of the electrification system for high-speed
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(a) The Cheverton’s sculpturing
machine

(b) A market-available
three-DoF pantograph

Figure 1.2 – First definition of pantograph: two examples.

(a) (b)

Figure 1.3 – Second definition of pantograph: two different designs of pantographic mechanisms
installed on electrical trains.

trains (see Fig. 1.3 for two examples). We can easily find in the literature work done on
these mechanisms such as, for examples, papers reporting on their design and dynamics
analysis [67, 68, 69].

Finally, a third definition for pantograph is any of various other adjustable supporting or
extending mechanisms in the form of a diamond-shaped trellis or lazy tongs [3]. This class of
pantographs has been widely used in the design of commercialized products such as lazy-tong
riveters (Fig. 1.4a), extendable shaving mirrors (Fig. 1.4b) and scissor-lift systems (Fig. 1.4c).
Moreover, some researchers have used this kind of mechanisms for the design of deployable
structures [70, 71, 72, 73, 74] and others for the development of haptic instruments [75, 76].
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(a) A lazy-tong reviter (b) An extendable mirror (c) A scissor lift

Figure 1.4 – Third definition of pantograph: three examples.

For the purpose of this thesis, the word pantograph will be referring to the first definition,
i.e., a mechanism that allows the reproduction of displacements according to a constant
scaling factor between its master and its slave parts. Based on this definition, we note that
pantographs can also be seen as a type of telemanipulator or teleoperator. Moreover, since
the end effectors of our pantograph—one for the master and one for the slave—will be driven
by cables attached in parallel, the cable-driven pantograph will show a behaviour similar to
that of conventional cable-driven parallel mechanisms.

1.2 Cable-Driven Parallel Mechanisms

Cable-driven parallel mechanisms are now well-known architectures within the robotics com-
munity. In general, these systems rely on four main components: a base frame, servo-actuated
winch assemblies, cables and an end effector (also called a moving platform). Figure 1.5a shows
a schematic model of an arbitrary four-cable three-DoF planar CDPM. The winch assemblies
serve to wind the cables, i.e., to control their lengths and tensions. Normally, these anchor
points, noted Ai, here i = 1, . . . ,4, are fixed to a base frame. The end effector, which in the
example of Fig. 1.5a has three DoFs, i.e., two translations of the reference point P {x, y} and
one rotation {φ}, is constrained to move in the workspace defined by the points Ai (here the
workspace is a section of a plane) and contains the attachment points Bi. Finally, the cables
BiAi connect points Bi to their respective points Ai and modifying their lengths simultane-
ously allows the generation of controlled trajectories and wrenches at the end effector.

The growth in popularity of CDPMs, which can be observed by the increasing number of
related papers in the literature during the past years [77], is due to the many advantages
held by these mechanisms over conventional robots, where rigid links are used to control the
end-effector pose in space. Scientists generally agree on the following:

• Light weight of the moving parts;
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Figure 1.5 – Two examples of CDPMs.

• Higher accelerations due to a better ratio payload/weight of the moving parts;

• Larger workspace than conventional manipulators;

• Higher stiffness than serial manipulators;

• Modularity and portability;

• Low cost.

Due to the use of cables instead of rigid links, moving parts have lower inertias, which allows for
larger accelerations for a similar payload (cables generally have a negligible mass compared to
the payload). Also, the fact that cables are wound on reels leads to the possibility of covering a
larger workspace because of the theoretical non-existence of a length limit [78, 79, 80]. Based
on their parallel architecture, and depending on the chosen cables elasticity and actuators
backlash, CDPMs generally show a higher stiffness at their end effector than serial robots [81].
The modularity and the potential portability of this kind of mechanisms are additional benefits
inherent to their use. In general, it is easy to modify the workspace of a CDPM only by
adjusting the position of one or a few pulley-actuator assemblies. Finally, the cost related to
the purchase of cables is considered to be less than that involved when rigid parts need to be
designed, machined and assembled.

Because of these non-negligible advantages over conventional robots, many designs and pro-
totypes have been developed by worldwide researchers and these systems were applied to
a wide range of applications. For example, CDPMs have been used to design cable-driven
haptic interfaces [82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], a virtual swimming inter-
face [94], upper-limb neuro-rehabilitation systems [95, 96], a wire-driven leg rehabilitation
system [97, 98], a locomotion interface [99, 100, 101, 102, 103, 104], an active suspension for
wind tunnels [105, 106, 107], an air vehicle simulator [108, 109], a sports simulator [110], a
safety-related system for land demining [111], systems for the research and aid after natural
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disasters [112, 113, 114], a mechanism for capturing object appearance [115] and some very
large radiotelescope concepts [78, 79, 116, 117]. In addition, other groups have focused on
industrial applications such as high-speed manipulators [118, 119], a waste storage tank re-
mediation system [120] and a welding device for environments hostile to human workers [121].
Another team of researchers has developed a family of CDPMs particularly designed for
medium and large-scale industrial handling and assembly tasks [122]. More recently, a group
has worked on the design of a MRI-compatible CDPM [52, 123, 124]. Finally, CDPMs are
now also available on the market for some specific applications. For example, a well-known
commercial system is the SKYCAM [125] (see Fig. 1.5b), which is used for live video shootings
during sport events held in large stadiums. It goes without saying that all of these projects
represent only a small part of the research done on CDPMs, but they clearly demonstrate the
wide range of potential applications of this class of mechanisms.

Other than their applications, CDPMs have also been the topic of many studies in order to un-
derstand, describe and improve their behaviour. We may cite some of the work done on their
inverse and forward kinematics [126, 127, 128, 129, 130, 131], their kinematic sensitivity [132],
their dexterity [133], their singularity analysis [134, 135, 136] and their workspace analy-
sis [137, 138, 139, 140, 141, 142, 143, 144, 145, 146]. More specifically, some have evaluated
their wrench-closure workspace (WCW) [147, 148, 149, 150], and some others, their wrench-
feasible workspace (WFW) [151, 152, 153, 154]. These workspaces may be roughly defined as
the reachable CDPM workspace where all or a set of the possible wrenches can be generated at
its end effector by tightening a combination of its cables. In addition, other work has focused
on the performance of under-constrained CDPMs [155, 156, 157, 158, 159, 160, 161, 162],
the force distribution of over-constrained CDPMs [101, 102, 163, 164, 165, 166], different
tools for their kinematic synthesis [99, 100, 167, 168, 169, 170, 171, 172, 173], and finally,
some researchers have published papers on their dynamic analysis, their control and their
calibration [174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186].

However, even if CDPMs have been extensively used and studied by many groups of re-
searchers worldwide, one must be also aware of the drawbacks inherent to their use:

• Unilaterality of the force transmission through cables;

• Necessity of having n+ 1 cables to fully constrain a n-DoF CDPM;

• Possibility of mechanical interferences between two cables and between a cable and an
object inside the workspace (such as the CDPM end-effector’s geometry itself);

• Lower stiffness than conventional parallel manipulators (possible vibrations of the mov-
ing parts).
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In fact, by their nature, cables cannot push on an object; They can only pull. This unilaterality
of force transmission with cables leads to the need of having at least two cables when one
desires to design a fully-constrained one-DoF CDPM, i.e., two different cables are necessary to
pull on the end effector in order to move it towards both directions of this DoF. By extending
this reasoning fact to n-DoF CDPMs, we obtain a minimum of n + 1 cables to suitably
constrain n DoFs [82, 148]. Therefore, having more cables than degrees of freedom also leads
to a higher risk of collisions between these cables [99, 101, 103, 187, 188]. Indeed, these cables
are all attached in parallel to the same end effector, which, when moved, can easily induce
interferences. Finally, if the cable tension is not sufficiently high and the material properties
of the cables are not suitable for the application, the system stiffness is reduced and vibrations
of the moving parts can be observed, which can decrease the accuracy of the CDPM [81, 189].

It is also interesting to note that another indirect drawback is the necessity to keep the
cables taut at all times to preserve the geometry of the mechanism. As a result, even when
no external wrench is applied on the moving platform, continuous power is needed from an
external input system (most of the time from electrical motors) in order to ensure a minimal
cable tension. This can be seen as a lack of safety (e.g., during a power failure) and an
unnecessary expenditure of energy, which is a long-term drawback for the use of CDPMs.

1.3 Cable-Driven Pantographs: Working Principle

Until today, and to our best knowledge, current pantographs—more specifically, those cor-
responding to the first definition as given in Section 1.1—are generally designed to either
reproduce the displacement of a point on a plane or in tridimensional space or to transmit
pure rotations. When it comes to reproducing arbitrary rigid-body displacements in space,
i.e., both translations and rotations, all existing solutions require the introduction of actu-
ators. Such solutions are applicable in many cases, but in some others, cost, reliability, or
compatibility reasons prohibit the use of electricity or of other sources of energy.

In this thesis, we propose to replace these active devices with a passive one, namely, a purely
mechanical device that transmits a part of the applied forces. We call this mechanism a
cable-driven pantograph, since it relies on cables to reproduce the rigid-body displacements
of a master end-effector at a slave end-effector. Basically, a cable-driven pantograph (CDP)
contains two CDPMs with a linkage system that connects both mechanisms together. One
CDPM—the master—is manipulated by the user and the second one—the slave—reproduces
the displacements generated at the master following a chosen scale factor κs.

Such mechanisms offer several advantages over conventional telemanipulators, due to two
main characteristics: (i) they are purely mechanical and (ii) they are formed with cable-
driven parallel mechanisms.
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The first characteristic (i) makes cable-driven pantographs suitable for low-cost applications,
which preclude the use of servomotors, electric drives and controllers. Moreover, these purely
mechanical devices may be regarded as more reliable, since they involve fewer components
than other electrically actuated machines, and do not rely on software. Such a characteristic is
thought to be important when one needs to manipulate hazardous material from a distance,
for instance. CDPs are also interesting for applications where conventional actuators are
incompatible with the work environment. Such incompatibilities may occur because of intense
magnetic fields, for example, or the unavailability of electrical power.

The second characteristic (ii) calls for the same advantages as those of cable-driven parallel
mechanisms over conventional robots. As described in Section 1.2, the robotics community
generally acknowledges six main advantages. First of all, because the end effector and cables
are the only moving parts, the inertia of the mechanism is extremely low. This fact, that
leads to the second advantage, generally allows CDPMs to reach higher accelerations than
other robotic manipulators [190]. Thirdly, cable-driven parallel mechanisms can have very
large workspaces [191], since their cables can extend over long distances. Fourthly, CDPMs
can show higher stiffness than serial manipulators due to their parallel architecture [81].
Fifthly, these mechanisms are modular, because the reels on which the cables are wound
can be easily dismounted and reconfigured to accommodate a new workspace, and the parts
of the mechanism are light and easily disassembled, then the mechanism is portable [192].
And sixthly, the manufacturing cost of CDPMs is normally lower than that of conventional
robots because less parts have to be machined. In the context of the reported cable-driven
pantographs, the reader should note that a lower inertia of the pantograph implies a smaller
difference between the inertia controlled by the user and the inertia he would control if he
was directly manipulating the payload without the mechanism, i.e., moving the CDPM’s
end-effector of the slave instead of the master.

One of the applications envisioned for cable-driven pantographs is simple MRI-guided surgery.
Indeed, as briefly discussed in the Introduction, compatibility problems arise when designing
a telemanipulator that is to operate inside an MRI device [41, 42, 49, 193]. In such a case,
conventional electric motors cannot operate in the same room as the scanner. In order to
resolve this problem, one can place the electric motors in a different room and transmit
the mechanical power to the scanner through a mechanism [194]. Another approach is to
use ultrasonic motors, which rely on piezoelectricity instead of electromagnetism in order
to produce mechanical power from electricity [195]. However, ultrasonic motors need to be
located outside of the scanner bore, since the high voltages they require degrade the MRI
measurements. These facts push in favour of cable-driven pantographs as an alternative to
conventional telemanipulators that is perfectly compatible with an MRI environment.

Because of the potentially large workspace of CDPs, they could also be used to scan large
objects [115]. By using a scaling factor greater than one between the master and the slave, the
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Figure 1.6 – Fundamental component of the proposed n-DoF CDP.

operator could theoretically scan a volume of tridimensional space larger than that he could
normally reach. He could then quickly perform scans for applications such as inspection,
reverse-engineering, and tridimensional animation, for example.

Having as goal, in this thesis, to develop tools to facilitate the design of a low-cost, high-
reliability telemanipulator that would allow the manipulation of objects from small distances,
the simple principle on which our proposed design is based on is described in the following
sub-section.

1.3.1 Fundamental Component

The fundamental component of cable-driven pantographs is presented in Fig. 1.6, where it
is shown as a generator of pure translations with one degree of freedom. In this design, the
master is in direct contact with the user, while the slave performs the task as the end effector
of a robot, i.e., that its displacements are prescribed. It must be noticed that cables ends are
attached to their respective pulleys. Also, this architecture preserves the similitude between
the manipulators for any end-effector position. In fact, the slave translations are in proportion
with those of the master, namely,

x′ = κsx, (1.1)

where κs is simply the ratio of the diameters of two pulleys, i.e., κs = d′/d. We use cables
for the transmission of forces between the master and the slave, which ensures a low inertia
of the telemanipulator and generally suits well the transmission of forces over a few metres.
Moreover, here the reader should note that we make the hypothesis that cables are perfect line
segments without mass, which was proven a suitable assumption for this size of mechanisms,
based on the work of dit Sandretto et al. [196].

The architecture presented in Fig. 1.6, however, has a problem regarding its forces equilib-
rium. Indeed, this current version cannot maintain the necessary tension in the cables at all
times, and then fulfill our previous hypothesis regarding the straightness of cables. Thus, this
mechanism cannot keep its geometry, i.e., it is not in equilibrium.

In order to ensure a minimum tension tmin in the cables while avoiding any electronics, we
resort to springs. Another solution could be the use of counterweights, but, for practical

24



x

x′

�	
master

@I slave

A
AU

spring q
q

Figure 1.7 – Fundamental component of the proposed n-DoF CDP with springs.

reasons such as the preservation of a low inertia of the moving parts and compactness, we
prefer springs. In the case of the linear one-degree-of-freedom pantograph of Fig. 1.6, the
natural choice would be springs that apply constant forces, regardless of the displacement.
Such springs, which are available on the market (see, for example, the Neg’ator Springs, from
the SDP/SI company [197]), maintain the system in a neutral equilibrium while the cables
remain in tension. Figure 1.7 presents the fundamental component of CDPs with springs
attached to pulleys in order to provide the required passive forces to keep the cables taut
at all times. In general, notice that neutral equilibrium cannot be reproduced with simple
springs for mechanisms with n > 1 degrees of freedom, at least, not exactly, since the positions
of the eyelets or pulleys are usually fixed in the workspace and non-zero resulting forces are
generally encountered.

1.3.2 General Description

Based on the fundamental component of cable-driven pantographs shown in the previous sub-
section, a CDP with multiple degrees of freedom can be constructed by assembling several
instances of the elementary concept shown in Fig. 1.7. As a result, a generic cable-driven
pantograph with six DoFs and actuated by m cables is schematized in Fig. 1.8. The master
and the slave are two cable-driven parallel manipulators whose geometries are the same, up
to a scaling factor κs. The user controls the moving platform of the master, and the task is
accomplished at the moving platform of the slave. Cable i, i = 1, . . . ,m, of the master, which
is attached to point Bi on the master end-effector, passes through a base-fixed eyelet Ai, and
reaches pulley i, which consists of two drums and a spring. The cable winds on one of the
two drums, and is kept in tension by the spring between the pulley and the base. The second
drum winds the corresponding cable i′, i′ = 1, . . . ,m, of the slave, which runs through an
eyelet A′i and connects to the moving platform of the slave through point B′i. Notice that the
ratio of the diameter of the two drums of the ith pulley must be equal to the ratio κs of any
corresponding lengths on the master and the slave. As a result, we call the device of Fig. 1.8
a cable-driven pantograph.

1.3.3 Input-Output Displacement Relationship

In order to elaborate the input-output displacement relationship of generic cable-driven pan-
tographs with n degrees of freedom, we can, in a general manner, schematize this mechanism
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Figure 1.9 – Schematic representation of a CDP.

as shown in Fig. 1.9. As specified in Sub-section 1.3.2, the master and the slave CDPMs are
similar regarding their respective geometry, i.e., their counterpart lengths follow a constant
ratio κs. Then, the transmission ratio (winding and unwinding ratio of the cables between
the master and the slave) is chosen equivalent to this same ratio κs. Moreover, p represents
the position vector of the master’s reference point P relative to the origin point O on the base
and p′ is the position of the slave’s reference point P ′ from the origin point O′.
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In Fig. 1.9a, points Ai and Bi represent respectively the attachment points of cable i on the
base and the end effector of the master part, while in Fig. 1.9b, points A′i and B′i represent
the attachment points of the cable i′ on the base and the end effector of the slave mechanism,
respectively.

These two CDPMs are mechanically connected by their counterpart cables, which wind fol-
lowing the constant ratio κs. Therefore, any displacement of the master end-effector generates
a variation ∆ci of the length ci of the ith cable of the master in its reference pose. These
length variations result in variations ∆c′i = κs∆ci of the lengths c′i of the cables of the
slave mechanism. The resulting cables lengths of the two sub-systems are then ci + ∆ci and
c′i + ∆c′i = κs(ci + ∆ci). This similitude ratio is therefore kept, which allows us to conclude
that this mechanism is a CDP.

Then, based on Fig. 1.9 and on the fact that the slave is related to the master by a proportional
transformation, it is possible to establish these following rules:

• The geometric dimensions of the slave correspond by a scaling factor to those of the
master;

• The slave point-displacements also correspond to a scaling ratio from those of the master;

• The slave rotations correspond exactly to those of the master.

The last two rules can be mathematically demonstrated, assuming the first to be true. If one
focuses on the schematic representation of the master CDPM (see Fig. 1.9a) and the slave
CDPM (see Fig. 1.9b), and assuming that c′i = κsci, the following relationship can be derived:

(c′i)2 = ||a′i − p′ −Q′b′i||22 = κ2
s||ai − p−Qbi||22 = (κsci)2, (1.2)

where ai is the vector pointing from the origin point O to the attachment point Ai, bi is
the vector pointing from the reference point P to the attachment point Bi, Q is the 3 × 3
matrix representing the end-effector attitude of the master CDPM and a′i, b′i and Q′ are their
corresponding counterparts for the slave CDPM.

First, if we consider a constant orientation on both mechanisms, i.e., Q and Q′ are constants,
we can reformulate Eq. (1.2) as follows:

(a′i − p′ − b′i)T (a′i − p′ − b′i) = κ2
s(ai − p− bi)T (ai − p− bi). (1.3)

From the first rule, we know that a′i = κsai and b′i = κsbi, and consequently (a′i − b′i) =
κs(ai−bi), we can simplify this equation by defining u ≡ (a′i−b′i) = κs(ai−bi), which leads
to

(p′ − u)T (p′ − u) = (κsp− u)T (κsp− u), (1.4)
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and for this relation to be true, we must have

p′ = κsp, (1.5)

which demonstrates that the slave point-displacements correspond to a scaling ratio from
those of the master.

From this result, and now when Q and Q′ are variables, we can express the Eq. (1.2) as
follows:

(a′i − p′ −Q′b′i)T (a′i − p′ −Q′b′i) = κ2
s(ai − p−Qbi)T (ai − p−Qbi). (1.6)

Similar to the previous case, here, we know that a′i = κsai, p′ = κsp, and consequently we
can define a vector v such as v ≡ (a′i − p′) = κs(ai − p). This variable change leads to

(Q′b′i − v)T (Q′b′i − v) = (κsQbi − v)T (κsQbi − v), (1.7)

and for this relation to be true, knowing that b′i = κsbi, we must have

Q′ = Q. (1.8)

In conclusion, this mathematical development demonstrates that the slave rotations corre-
spond exactly to those of the master.

Moreover, it is possible to extend the point-displacement relationships as follows:

p′ = κsp, (1.9)

ṗ′ = κsṗ, (1.10)

p̈′ = κsp̈, (1.11)

where ṗ and p̈ are respectively the velocity vector and the acceleration vector of point P on
the end effector relative to point O on the base of the master CDPM. Vectors ṗ′ and p̈′ are
similarly defined for the slave CDPM. As previously written, κs represents the scaling factor
or the scaling ratio.

On the other hand, the rotations of both CDPMs—the master and the slave—are equal, as
should their time derivatives. This characteristic, which applies to all CDPs, can be expressed
by the following general relations:

Q′ = Q, Q̇′ = Q̇ and Q̈′ = Q̈. (1.12)

Validation of the Displacement Relationship by Simulation

The validation of a theoretical concept is always an important intermediate step prior to the
manufacturing of prototypes, which have inherent costs and are time consuming. Then, in
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Figure 1.10 – Simulation with the software ADAMS®: a two-DoF planar CDP.

this work, we decided to perform software simulations in order to confirm the displacement
behaviours of this new type of mechanisms. The software application ADAMS® [198] has
been used to this end and cables are defined as rigid cylindrical bars (we assume that cables
are always in tension).

Previously in this sub-section, it has been shown that p′ = κsp and Q′ = Q for cable-
driven pantographs (and similarly for their time derivatives) for a chosen scaling factor κs.
Then, this preliminary validation focuses on the resulting similitude ratio of translational
displacements for a two-DoF CDP and of both translational and rotational displacements for
a six-DoF CDP. The results obtained from this study aim at confirming the fact that keeping
the same ratio κs between the master and the slave mechanisms at all levels, i.e., between
the geometry of both bases (attachment points Ai and A′i), the geometry of both moving
platforms (attachment points Bi and B′i) and between both winding drums diameter (d and
d′), ensures having the exact same angular displacements as well as the exact same similitude
ratio between the displacement in translation of both CDPMs’ end-effector.

Looking at Figs. 1.10 and 1.11, one can observe that for a generic three-cable two-DoF planar
CDP, when a chosen similitude ratio of κs = 1/2 is applied to all components of the cable-
driven pantograph, i.e., to the base and end-effector geometries and to the drum diameters,
this same ratio is preserved between the master and slave end-effector displacements. It
should be noted that the end-effector motions here are dependent on their respective pulley
positions (points Ai and A′i) and their end-effector attachment points (points Bi and B′i),
which would not be necessarily the case for a two-cable one-DoF CDP because of its linear
behaviour (see Figs. 1.6 and 1.7).

For the simulation of the three-cable two-DoF CDP, the following planar trajectory has been
imposed to the master end-effector:

Px(t) = 0.3 sin(2πt), Py(t) = 0.4 sin(4πt), t = 0, . . . ,3 s, (1.13)

and the resulting master and slave end-effector displacements are shown in Fig. 1.11. Here,
the upper-graph and lower-graph solid red lines with circles are respectively associated to
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Figure 1.11 – Simulation of a two-DoF planar CDP: comparison of motion plots.

the motion in the X and Y directions of the master end-effector, while the dashed blue lines
(upper and lower graphs) are associated to the motion in the X and Y directions of the slave
end-effector. Based on their in-phase displacements and their respective magnitude (half of
the master magnitude for the slave), it is obvious that the resulting ratio is κs = 1/2. One can
also notice the magnitude difference for the two directions, i.e., following X and Y directions,
which is zero along the full trajectory (P ′x(t) − κsPx(t) = 0 and P ′y(t) − κsPy(t) = 0, where
t = 0, . . . ,3 s).

Finally, in order to validate the translation and rotation relationships together, a simulation
has been performed with a generic eight-cable six-DoF CDP (see Fig. 1.12). As for the
previous two-DoF planar CDP, the scaling factor κs = 1/2 was applied to all mechanical
components. Then, as expected, similar results were obtained when performing the following
tridimensional trajectory in translation (see Fig. 1.13a):

Px(t) = 0.6 sin(2πt), (1.14)

Py(t) = 0.4 sin(4πt), (1.15)

Pz(t) = 0.5 sin(2πt), t = 0, . . . ,3 s, (1.16)
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Figure 1.12 – Simulation with the software ADAMS®: a six-DoF CDP.

and in rotation (see Fig. 1.13b):

θx(t) = (π/4) sin(2πt), (1.17)

θyI(t) = (π/8) sin(2πt), (1.18)

θzII(t) = (π/6) sin(2πt), t = 0, . . . ,3 s. (1.19)

In Fig. 1.13a, the first graph, the second graph and the third one are respectively associated
to the translational motion in the X direction, in the Y direction and in the Z direction
of the master (red curve with circles) and the slave (blue dashed line) end-effectors. In
Fig. 1.13b, the first, the second and the third graphs are respectively associated to the three
rotations {θx, θyI , θzII}, which are the three angles defining the orientation Q of the CDPM
end-effector (see Eq. (A.17) from Appendix A), following the Euler angles convention XY Z
(three successive pure rotations along the axes X, Y I (the new axis Y after one rotation
along axis X) and ZII (the new axis Z after one rotation along axis X and then one rotation
along Y I), of the master end-effector (red curve with circles) and {θ′x, θ′yI , θ

′
zII} defining Q′ for

the slave end-effector (blue dashed line). In translation, the motion of the slave end-effector
is in phase with the motion of its master counterpart and magnitudes follow a scaling factor
of κs = 1/2 (all magnitude errors are zero). Moreover, in rotation, it is easily observed from
Fig. 1.13b that angular displacements of both the master and the slave moving platforms are
identical.

In summary, these two numerical simulations and their corresponding results have corrob-
orated our theoretical input-output displacement relationships derived in this sub-section.
Then, based on this validation, our analysis can be now continued to the input-output load
relationship inherent to the cable-driven pantographs.
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Figure 1.13 – Simulation of a six-DoF CDP: comparison of motion plots.
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1.3.4 Input-Output Load Relationship

Knowing the relation between the input and output displacements—both in translation and
rotation—we can now determine the relation between an input wrench applied at the master
moving platform, and the corresponding output wrench applied at the slave moving platform.
For a first approximate relation, let us make two assumptions, which are never exactly true:

1. There is no friction acting on the cables connecting the master and slave moving plat-
forms;

2. The springs maintain a perfect neutral equilibrium of the pantograph over its workspace.

The friction can be decreased by using a small number of pulleys between the master and the
slave and by selecting the appropriate journal bearings to support them and suitable eyelets
at points Ai and A′i. On the other hand, maintaining a minimum level of cable tensions while
preserving a neutral equilibrium of the two moving platforms is a challenging problem, which
will be addressed in Chapter 2.

For now, if we assume that these variations in the potential energy are negligible, then we may
apply the principle of virtual work as follows. Let us first define the force f at an arbitrary
point P and the torque n, both acting on the moving platform of the master (see Fig. 1.14a),
while the force f ′ applied at the homologous point P ′ of P and the moment n′ both act on
the slave (see Fig. 1.14b). Let δp be a small virtual displacement of P , δQ, a small virtual
rotation of the master moving platform, and, likewise, δp′ a small virtual displacement of P ′,
and δQ′, a small virtual rotation of the slave moving platform. Then, the virtual work done
by f and n is

δU = fT δp + nT (eδθ), (1.20)

and, similarly, the virtual work done by f ′ and n′ is

δU ′ = f ′T δp′ + n′T (e′δθ′), (1.21)

where e and e′ are the unit vectors giving the directions of the rotation axes corresponding
to δQ and δQ′, respectively, and δθ and δθ′ are the corresponding small virtual angles of
rotation about e and e′, respectively. The relationship with δQ and δQ′ can be expressed by
the following:

δQ ≡ 13×3 + cpm(e)δθ, (1.22)

and,

δQ′ ≡ 13×3 + cpm(e′)δθ′, (1.23)
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Figure 1.14 – Schematic representation of the applied wrench.

and where 13×3 is the 3 × 3 identity matrix and cpm() returns the cross-product matrix2 of
its vector argument.

According to the principle of virtual work, the equilibrium equation of this system can be
written as

δU + δU ′ = 0, (1.24)

or
fT δp + nT (eδθ) + f ′T δp′ + n′T (e′δθ′) = 0. (1.25)

Because of the behaviour of a cable-driven pantograph, we know that δp′ = κsδp and e′δθ′ =
eδθ, and the equilibrium equation becomes

(f + κsf ′)T δp + (n + n′)T (eδθ) = 0. (1.26)

Since {δp, eδθ} are arbitrary small virtual displacements, their vector coefficients must vanish,
which leads to

f ′ = − 1
κs

f and n′ = −n. (1.27)

Therefore, in theory, when no friction acts on the cables and a perfect neutral equilibrium is
reached over the CDP’s workspace, a force applied at the moving platform of the master must
be balanced by another force applied to the slave moving platform, in an opposite direction
and of magnitude inversely proportional to κs, while a torque acting on the master must be

2The cross-product matrix X of x ∈ R3 is defined as X ≡ ∂(x× y)/∂y, y ∈ R3.
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Figure 1.15 – Free-body diagram of the proposed one-DoF CDP with springs.

balanced by a torque of the same magnitude but in the opposite direction on the slave moving
platform. It is important to note that, in practice, however, since our concept of CDPs is
based on the use of springs with given torsion coefficients, the magnitudes of f ′ and n′ will
be limited.

1.3.5 Kinetostatic Modelling

When aiming at designing a cable-driven pantograph, one should have an idea not only of
the system input-output behaviours but also of its internal behaviours. Here, a kinetostatic
analysis of a two-cable one-DoF CDP and then a three-cable two-DoF CDP is presented.

Two-Cable One-DoF Cable-Driven Pantograph

From a cursory inspection of the system presented in Fig. 1.7, it is clear that this mechanism
can be qualified as statically indeterminate3 (or hyperstatic). Indeed, for a given position x
of the master, it is impossible to determine the individual tension in each cable of the system,
unless one accounts for the deformation in all cables. By looking at the corresponding general
free-body diagrams shown in Fig. 1.15, one can infer the following relations:

f = t1 − t2, (1.28)

τ1 = d

2(t1 + κst
′
1), (1.29)

f ′ = t′1 − t′2, (1.30)

and

τ2 = d

2(t2 + κst
′
2), (1.31)

where t1 and t′1 represent the tensions of the two cables attached to the left spring (its torque
being noted τ1), which belong to the master and the slave, respectively. Similarly, t2 and t′2
represent the tension of the two cables attached to the right spring (its torque being noted
τ2). Only with this system of four linear equations, however, it is not possible to find a unique

3A statically indeterminate problem occurs when the conventional static equilibrium equations are insuf-
ficient for determining the reactions acting on a body.
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solution for {t1, t2, t′1, t′2}. This system of linear equations can be reformulated as:

P4,4t4 = c4, (1.32)

where

P4,4 =


1 −1 0 0
0 0 1 −1
1 0 κs 0
0 1 0 κs

 , t4 =


t1

t2

t′1
t′2

 , and c4 =


f

f ′

2τ1/d

2τ2/d

 . (1.33)

These equations are not linearly independent, i.e., the 4× 4 matrix P4,4 is singular, its rank
being 3. Therefore, Eq. 1.32 admits an infinite number of solutions t4. Hence, an additional
independent equation is required, which is generally called the compatibility equation.

This compatibility equation is based on the internal length-variation behaviour that occurs
within our CDP’s fundamental component. Since we chose to rigidly fix each winding pulley
of the master to its counterpart winding pulley of the slave, we know that their respective
small angular displacements, δφi and δφ′i, have to be the same, and consequently,

δφi = 2δcφi
d

=
2δc′φ′i
d′

= δφ′i, (1.34)

where δcφi is the variation of the length ci of the ith cable of the master due to its unwinding
and winding on its corresponding drum and, similarly, δc′φ′i the small variation of the length of
its counterpart cable at the slave. We also set δci ≡ δcφi + δcei and δc′i ≡ δc′φ′i + δc′e′i

, knowing
that the elastic deformation δce of a cable can be approximated by (tl)/(EA), where t is its
tension, l is the original total length of the cable, A is the cross-sectional area of the cable
and E is its modulus of elasticity. Here, we assume that the total length of the cable is the
winded and unwinded lengths. This implies that the winded length of the cable can deform
or slip on the pulley while the tension is applied. Moreover, we can assume, for our problem,
that if δc is set to be the sum of all cables length variations at the master and δc′ the sum
of all cables length variations at the slave, δc = δc1 + δc2 and δc′ = δc′1 + δc′2, respectively.
Finally, taking into account that A and E are constants for all cables, that δc′ = κsδc and
l′ = κsl, we obtain the following compatibility equation:

t1l + t2l = 1
κs

(t′1l′ + t′2l
′) = t′1l + t′2l. (1.35)

This equation provides the sufficient condition in order to determine a unique solution for t4

based on the system of linear equations of Eq. (1.32). The new system of equations becomes

P5,4t4 = c5, (1.36)
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where

P5,4 =



1 −1 0 0
0 0 1 −1
1 0 κs 0
0 1 0 κs

1 1 −1 −1


, and c5 =



f

f ′

2τ1/d

2τ2/d

0


. (1.37)

One should note that this system of equations is fully-determined, and therefore has only one
solution, which, after solving the problem using the Gaussian elimination method, can be
expressed as follows:

t1 = 4τ2 + (2 + κs)df + κsdf
′

2d(1 + κs)
, (1.38)

t2 = 4τ2 − κsd(f − f ′)
2d(1 + κs)

, (1.39)

t′1 = 4τ2 + df + (1 + 2κs)df ′
2d(1 + κs)

, (1.40)

and

t′2 = 4τ2 + d(f − f ′)
2d(1 + κs)

. (1.41)

One should note that for the previous solution to hold, the following relationship must be
satisfied:

2τ2
d

= 2τ1
d
− f − κsf ′, (1.42)

which can be easily validated from Fig. 1.15.

In the case where we choose the Neg’ator Springs in order to balance out our two-cable one-
DoF CDP, the two constant torques would be equivalent at each winding pulley (τ1 = τ2).
This would lead to the solution t1 = t2 = t′1 = t′2, when f and f ′ are null. Hence, when the
CDP is in static equilibrium (no external force required), we assume that torques generated by
the slave sub-system τ ′ss are proportional to torques generated by the master sub-system τss,
for their respective cables, following the scaling factor κs, i.e., τ ′ss = κsτss. Then, their
respective sum balances the corresponding spring torque τ as follows:

τi = τss,i + τ ′ss,i = (1 + κs)τss,i. (1.43)

It is important to note that this relation is true if and only if the CDP is in static equilibrium,
i.e., if the vector sum of the tensions in the cables attached to the master’s end-effector is null,
and, similarly, if the vector sum of the vector tensions in the cables attached to the slave’s
end-effector are null.

If we prefer choosing springs with a non-constant torque-rotation relationship, an applied
force f would be required by the user on the master end-effector in order to maintain a
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position outside an equilibrium position. From Eq. (1.32), we can formulate this new problem
with five unknowns instead of four:

P5,5t5 = c5, (1.44)

where

P5,5 =



−1 1 −1 0 0
0 0 0 1 −1
0 1 0 κs 0
0 0 1 0 κs

0 1 1 −1 −1


, t5 =



f

t1

t2

t′1
t′2


, and c5 =



0
f ′

2τ1/d

2τ2/d

0


. (1.45)

For this problem, where matrix P5,5 is full rank, when it is assumed that f ′ is known and
τi = ksp(φsp,i − φsp,i,0), where ksp is the spring constant in N·m/rad, φsp,i is the angular
position of the spring corresponding to the displacement of the cables on the pulley, and
φsp,i,0 is the free angular position of the chosen spring in torsion, i.e., when τi = 0 N·m, the
solution can be easily obtained by resolving the corresponding system of linear equations.
The set of solutions is represented by the following relations:

f = 2(τ1 − τ2)
d

− κsf ′, (1.46)

t1 = 2(2τ1 + κsτ1 − κsτ2)− κs(1 + κs)df ′
2d(1 + κs)

, (1.47)

t2 = 2(2τ2 + κsτ2 − κsτ1) + κs(1 + κs)df ′
2d(1 + κs)

, (1.48)

t′1 = 2(τ1 + τ2) + (1 + κs)df ′
2d(1 + κs)

, (1.49)

and

t′2 = 2(τ1 + τ2)− (1 + κs)df ′
2d(1 + κs)

. (1.50)

This solution is valid for any linear two-cable one-DoF CDP that includes springs, or an
equivalent torque-generator system, at its winding pulleys in order to preserve the cables
taut. From these results, it is easily seen that, when the CDP does not present a perfect
static equilibrium over its workspace, here ∆x, the force f that a user must provide to hold
a given position of the end effector of the master mechanism is proportional to the difference
between the torques generated by the two springs and to the force applied at the slave end-
effector. Moreover, it should be noted that a designer can choose suitable values of ksp and
φsp,min in order to ensure a minimum tension tmin in the CDP cables since {t1, t2, t′1, t′2} are
strongly dependent, as one can expect, on τ1 and τ2.

From the description of the kinetostatic behaviour of a two-cable one-DoF CDP, it is now
possible to extend this analysis to a three-cable two-DoF CDP.
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Figure 1.16 – Kinematic model of the three-cable two-DoF planar CDP (master part).

Three-Cable Two-DoF Cable-Driven Pantograph

The modelling of a planar two-DoF cable-driven pantograph constrained by three cables is
more difficult than that of the simple one-DoF component. To do so, the kinematic modelling
of the master geometry is presented with Fig. 1.16. In this figure, the vector ai represents the
position of the base-fixed eyelet Ai of cable i in the base frame, the vector p represents the
position of the reference point P of the end effector from the origin point O, the vector bi
represents the position of the attachment point Bi on the end effector from point P and
expressed in the base frame. Then, the vector ci ≡ ai − p − bi points from Bi to Ai, its
magnitude ci being the length of the ith cable. Finally, the workspace of the planar CDPM is
A, an equilateral triangle, and the length of its bounding edges is a. On the other hand, the
slave geometry is the exact image of the master but following the scaling factor κs, its planar
workspace being A′, an equilateral triangle geometry, and the length of its bounding edges is
a′ = κsa.

As the reader may notice from Fig. 1.16, this geometry’s purpose is to translate a point inside
a two-DoF workspace. In practice, however, the end effector is chosen to be a rigid body
instead of a single point in order to better represent a potential experimental testbed (for
instance, if measuring tools such as force sensors need to be attached). Then, since the end-
effector geometry is not a point, it should be noted that the mechanism has potentially three
DoFs—two point coordinates and one orientation—instead of only two. However, with the
chosen equilateral triangle architecture, only small rotations along the Z axis can be observed.
Hence, for simplicity reasons, it can be assumed that the system has two degrees of freedom.

In order to support this two-degree-of-freedom hypothesis, the author has computed the
exact rotations relative to the point displacements of the end effector over the mechanism’s
workspace and the results are shown in Fig. 1.17a. It can be seen that, except for the regions
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Figure 1.17 – Graphical demonstration of the two-DoF hypothesis: (a) Rotations in de-
grees (˚) of the planar CDP’s end-effector (master) relative to its point displacements over
its workspace A and (b) Difference between the direction of the cables attached to the planar
CDP’s end-effector with and without rotations (worst configuration: rotation of −7.1487˚).

close to the three vertices of the equilateral triangle formed by the workspace, the rotations
at the end effector are either null or very small (only a few degrees). Moreover, in Fig. 1.17b,
the author shows the direction of the three cables attached to the end effector with (dashed
red lines) and without (solid blue lines) rotations for the worst-case configuration, i.e., when
the absolute value of the relative rotation is maximum (−7.1487˚). It can be observed, since
the end-effector’s geometry is small compared to the base’s geometry, that the error on the
direction of the cables is very small, even for the worst configuration. If the end effector is
kept away from the triangle’s vertices, then the initial assumption is verified, i.e., the author
can neglect the rotation of the mechanism’s end-effector relative to its linear displacements.
Thence, the three-DoF planar CDP can be considered as a two-DoF planar CDP for the
purpose of this analysis. In fact, the smaller the geometry of the end effector compared to
the base, the closer the end effector is to a single-point behaviour.

Having justified the use of a two-DoF model, let us move to the objective of this sub-section,
which is to determine the cable tensions t in the master CDPM, the cable tensions t′ in the
slave CDPM, and the force f applied at point P on the master’s end-effector, given the position
of P and the force f ′ applied at point P ′ on the slave CDPM. Drawing the two-dimensional
version of Fig. 1.15 to get free-body diagrams of the master and slave end-effectors would lead
to the following equilibrium equations

Wt = f , (1.51)

W′t′ = f ′, (1.52)

where W is the Jacobian matrix of the master CDPM, and W′ is that of the slave CDPM.

40



It should be noted that in the case of a cable-driven pantograph, we have W = W′. The
pose-dependent wrench matrix W is mathematically derived for a general planar three-DoF
CDPM in Appendix A.1. But since in our case we can neglect one DoF, W can be simply
expressed as follows

W =
[ c1
c1

c2
c2

c3
c3

]
, (1.53)

where the length of the ith cable is

ci = ||ci||2 =
√

(ai − p− bi)T (ai − p− bi). (1.54)

Then, free-body diagrams of each of the three pulleys yield the equilibrium equations

d

2t + d

2κst
′ = τ , (1.55)

where τ ≡ [τ1 τ2 τ3]T . Equations (1.51–1.55) form a set of seven equations into eight un-
knowns, namely, f , t and t′. Hence, the two-degree-of-freedom cable-driven pantograph is
statically indeterminate, as is its one-degree-of-freedom counterpart. Solving for all the un-
knowns requires an additional deformation equation, but if one is only interested in the force
f , the static equilibrium equations are sufficient.

To solve for f without resorting to an additional deformation equation, consider the premul-
tiplication of Eq. (1.55) with W, which yields

Wt + κsWt′ = 2
d
Wτ . (1.56)

Since W = W′, we can substitute Eqs. (1.51–1.52) into Eq. (1.56), which gives

f + κsf ′ =
2
d
Wτ , (1.57)

f = 2
d
Wτ − κsf ′. (1.58)

From Eq. (1.58), it is interesting to note that if f ′ = 02, the resulting force at the master
end-effector is exactly as that for a single CDPM, i.e., where there is no slave sub-system.

Solving now for the tensions t and t′ requires an additional deformation equation, which,
similarly to the one-DoF case, we derive at the price of the following assumptions:

• All cables, in both master and slave CDPMs, are made of the same elastic material with
Young’s modulus E, and have the same cross-sectional area A.

• A cable slips without friction on its drum, so that the complete length of each cable
undergoes deformation under a corresponding tension.
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• l is the total length of each cable of the master CDPM, as it comprises the winded and
unwinded lengths of a cable. Similarly, κsl is the total length of each cable of the slave
CDPM.

• Any deformation of the cable is sufficiently small to have no effect on the overall posture
of the mechanism, i.e., the geometry and Jacobian matrices are unaffected by cable
deformations.

The cable elasticity induces small variations δc in the unwinded lengths of the three master-
CDPM cables, and the analogous variations δc′ in the lengths of the slave-CDPM cables. In
turn, the unwinded-cable-length variations produce small displacements δp and δp′ of points
P and P ′ on the master and slave end effectors, respectively. More precisely, the relationships
between these variations are

WT δp = δc, (1.59)(
W′)T δp′ = δc′. (1.60)

Notice that each of Eqs. (1.59–1.60) forms an overdetermined system of linear equations,
granted that W = W′ has full rank. A necessary and sufficient condition for each system
to admit exactly one solution δp (or δp′) is that the vector δc (or δc′) lies in the range of
WT . Equivalently, the vector δc (or δc′) must be orthogonal to the left nullspace of WT .
Mathematically, this may be expressed as

vT3 δc = 0, (1.61)

vT3 δc′ = 0, (1.62)

where v3 ≡ v1 × v2, and WT ≡ [v1 v2]. The mechanical interpretation of Eqs. (1.61–1.62)
is that the cable-length variations must be compatible with the mechanism constraints, i.e.,
they must generate common displacements of points P and P ′.

In the case of the master CDPM, the cable-length variations are decomposed as

δc = δcφ + δce, (1.63)

where δcφ are the variations due to small pulley rotations, and δce are the variations due to
cable elongations. Likewise, in the case of the slave CDPM, we have

δc′ = δc′φ + δc′e, (1.64)

and δc′φ are the variations due to pulley rotations, while δc′e are the variations due to cable
elongations.
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From the assumptions above, the cable elongations δce are governed by Hooke’s law, which
gives,

δce = l

EA
t, (1.65)

δc′e = κsl

EA
t′. (1.66)

Furthermore, two cables connected to the same pulley are coupled, and the relationship
between their length variations due to pulley rotations are expressed mathematically as

δc′φ = κsδcφ. (1.67)

Upon substituting Eqs. (1.63–1.67) into Eqs. (1.61–1.62), we obtain

vT3 δcφ + vT3
l

EA
t = 0, (1.68)

vT3 κsδcφ + vT3
κsl

EA
t′ = 0. (1.69)

Let us eliminate vT3 δcφ by substitution of the last two equations into one another, which,
after some simplifications, yields the deformation equation sought:

vT3 (t− t′) = 0. (1.70)

In summary, the cable tensions can be computed by solving the following linear system of six
equations with six unknowns:

vT3 −vT3
13×3 κs13×3

02×3 W


[

t
t′

]
=


0

2
dτ

f ′

 . (1.71)

The solution of Eq. (1.71) can be obtained with the following expression:[
t
t′

]
=
[

A B
C D

]−1 [
α

β

]
, (1.72)

where A = 13×3, B = κs13×3, α = 2
dτ , C =

[
−vT3
02×3

]
, D =

[
vT3
W

]
, and β =

[
0
f ′

]
.

The matrix inverse in Eq. (1.72) can be computed using the block matrix inversion method,
i.e., when a matrix is partitioned into four blocks, it can be inverted blockwise as follows:[

A B
C D

]−1

=
[

A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
,

(1.73)
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where A and D must be square and A and (D−CA−1B) must be nonsingular, in order to
be inverted.

Defining the matrix E ≡
(
D−CA−1B

)
, which in our case, can be expressed as:

E =
[

(1 + κs)vT3
W

]
, (1.74)

one can verify that its inverse is:

E−1 =
[

1
(1+κs)||v3||22

v3 WT (WWT )−1
]
. (1.75)

By substituting Eq. (1.75) into Eq. (1.73), we can then easily show that the solution for t
and t′ are

t = 2
d
τ − κs

(1 + κs)
v3vT3
||v3||22

2
d
τ − κsWT (WWT )−1f ′, (1.76)

and

t′ = 1
(1 + κs)

v3vT3
||v3||22

2
d
τ + WT (WWT )−1f ′. (1.77)

For the purpose of this thesis, the kinetostatic analysis presented here is limited to the case of
a three-cable two-DoF CDP. Nevertheless, there is no apparent reason why the principle would
not be applicable to CDPs with additional degrees of freedom. The associated mathematical
developments would be more involved, especially for CDPs presenting rotations at their end
effectors.

1.4 Validation of the Cable-Driven Pantograph Concept by
Experiment

In order to experimentally verify some of the theoretical results obtained in the previous
section, we decided to design the first planar CDP prototype. This mechanism aims to be an
ideal benchmark to determine the practicability of the described concept.

A simple instance of the generic concept presented in Fig. 1.8 is that of the three-cable
two-DoF cable-driven pantograph, which is shown in Fig. 1.18 and with which displacement
simulations have been performed in Sub-section 1.3.3. In fact, the capabilities of this device are
not different from those of the original pantograph [54], which reproduced the displacements
of a point in the plane. Nevertheless, we regard this simple device as a benchmark for the
general case, which allows rigid-body displacements.

The computer-aided design (CAD) model of the cable-driven pantograph shown in Fig. 1.18
reports the chosen geometry for the first prototype. The base-fixed eyelets are chosen to be
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Figure 1.18 – Geometry of the devised three-cable two-DoF CDP.

located at the vertices of an equilateral triangle. The same scaled geometry describes the
positions of the attachment points on the moving platforms. Moreover, the geometry of the
slave is obtained by scaling that of the master by a factor of one half, i.e., κs = 1/2. Then,
the geometry of the first prototype is described as two three-cable two-DoF planar CDPMs,
which are connected together by their corresponding cables in order to obtain a three-cable
two-DoF cable-driven pantograph.

1.4.1 Prototype of a Three-Cable Two-DoF Cable-Driven Pantograph

Following the geometry previously described with Figs. 1.16 and 1.18, a prototype of the
three-cable two-DoF planar cable-driven pantograph having a scaling factor of κs = 1/2 was
built, which is shown in Figs. 1.19 and 1.21. In these figures, the master moving platform
appears on the left-hand side, while the slave moving platform, controlled by the master end-
effector, is on the right-hand side. The distance between two fixed eyelets on the master is set
to a = 0.38 m, whereas it is a′ = 0.19 m on the slave. Each pulley assembly is identical and
contains two drums, on which cables are wound, and one spring-loaded assembly containing a
proportional spring in torsion with a spring constant ksp (in this first prototype, proportional-
torque springs have been preferred to constant-torque springs for cost reasons). The exploded
view of the CAD model of the spring-loaded winding-pulley assembly is illustrated in Fig. 1.20.

With Fig. 1.19, the working principle of all cable-driven pantographs are easily understood.
In fact, for this particular CDP, on the master side, three cables, respectively attached at
points Bi, i = 1,2,3, constrain the point displacements of the master end-effector inside its
workspace A. Its three cables pass through their respective base-fixed eyelets (points Ai) at
each vertex of A. Then, each cable passes through a set of pulleys, which are mounted on ball
bearings to reduce friction, in order to reach their respective spring-loaded winding-pulley
assembly. The positions of these idler pulleys have been determined in order to minimize
their numbers and the cable angles—directly related to the level of friction—when going in
and out of the base-fixed eyelets and of the spring-loaded winding-pulley assemblies. An alu-
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Figure 1.19 – CAD model of the three-cable two-DoF cable-driven pantograph.
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Figure 1.20 – Exploded view of the CAD model of a spring-loaded winding-pulley assembly.

minium bread board containing a pattern of pre-drilled holes with center-to-center distances
of 0.0254 m (1 in) (see Fig. 1.21) was used for this purpose. Once inside the spring-loaded
winding-pulley assembly, each cable is wound around a winding pulley of diameter d (here
fixed to 0.1016 m (4 in)). On the other side, i.e., on the slave side, cable i′ is wound on a
drum of diameter d′ = κsd (0.0508 m (2 in)), which is rigidly attached to its counterpart
drum. Then, each of these cables passes through a set of idler pulleys in order to reach the
slave base-fixed eyelets (points A′i), and attaches finally to the slave end-effector at points B′i.
In this way, cables i′ constrain the planar two-DoF displacements of the reference point P ′ of
the slave end-effector over its workspace A′.

Moreover, in order to ensure a minimum tension tmin in the cables, each set of master-slave
winding drums has a spring-loaded assembly attached in parallel and designed to generate
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the minimum required torque when the cable length is ci = 0 m, i.e., when the point Bi
coincides with point Ai. Then, a third winding pulley that is rigidly attached to the two
other master-slave drums is fixed on the same axis. This intermediate pulley of diameter dint
is linked by a cable to another pulley of diameter dsp on which a proportional-torque spring
with a spring constant ksp is mounted (see Fig. 1.20). This additional cable linkage is set to
provide the required angular displacement ratio kr (and necessarily a torque ratio) between
the axis on which the cables i and i′ are attached and the one on which the torsional spring is
mounted in order to stay within the working angular range ∆φsp of the chosen spring when
covering a distance a with a cable i, i.e., ∆cφi = a (or by similitude, a distance a′ with a
cable i′, i.e., ∆c′φ′i = a′ = κsa). This constant ratio kr can be expressed as:

kr = dsp
dint

= 2
d

a

∆φsp
= 2
d′

a′

∆φsp
. (1.78)

Then, in order to determine kr, we had to find ∆φsp by selecting a proper proportional-
torque spring for the application. We fixed our choice to a spring with a torque constant of
ksp = 1.027617 N·m/rad (9.095176 lbs·in/rad) and with an angular range ∆φsp of 270˚(φsp ∈
[0˚,270˚]). In fact, we selected the spring presenting the highest torque-constant value for
a good compromise between cost and dimension for our design. We also established the
minimum cable tension tmin to 5 N in order to support the weight of the end effector of the
master at all times (t′min to 2.5 N since the end effector of the slave part is assumed to be
κs times of the weight of the master one). Moreover, in the event where we would need to
modify tmin in order to increase cable tensions, we decided to restrict the maximum spring
angular displacements to 240˚. In this way,

∆φsp = 4π
3 − φsp,min, (1.79)

where φsp,min is the angular position of the torsion spring required to ensure tmin in cable i
and t′min in cable i′. Upon assuming the worst-case scenario, i.e., that the torque produced
by the torsion spring must balance the sum of the torques generated by the cables i (master
side) and i′ (slave side), when each single cable has to generate the highest τmin (τmin =
tmind/2 = 0.2540 N·m compared with τmin = t′mind

′/2 = 0.0635 N·m), we can derive the
following expression for φsp,min:

φsp,min = kr
ksp

(
tmin

d

2 + t′min
d′

2

)
= kr
ksp

d

2(tmin + κst
′
min), (1.80)

where tmin = 5 N and t′min = 10 N instead of 2.5 N. Then, using Eqs. (1.78) to (1.80), we
obtain a quadratic expression for kr and the two solutions are kr,1 = 2.5581 and kr,2 = 5.9153.
We selected the solution kr,1 = 2.5581 in order to minimize the difference between dsp and
dint.

For this first CDP prototype, we chose to use stainless steel cables with a nominal diameter of
0.0006096 m (0.024 in) (see item 2024SN manufactured by Carl Stahl® Sava Industries [199]).
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Figure 1.21 – Embodiment of the devised three-cable two-DoF CDP.

Thence, we set dint to 0.01651 m (0.65 in), which is slightly higher than the manufacturer’s
recommendation regarding the minimum pulley diameters for the chosen cable. This leads us
to a diameter dsp of 0.0422334 m (1.6627337 in), which we round to 0.041275 m (1.625 in), in
order to facilitate manufacturing. Finally, this small adjustment brings us to a new kr value
of 2.5. With this new kr value and Eq. (1.80), we determine that φsp,min = 1.235869 rad
(70.81˚). With Eq. (1.78), the actual usable range ∆φsp becomes 2.992126 rad (171.44˚), so
that the spring maximal angular position is now shifted to φsp,max = 4.227995 rad (242.25˚).
This gives us a range of 27.75˚to shift up tmin and t′min, if necessary, before to reach the
mechanical limit of the chosen spring.

Therefore, by modifying Eq. (1.80), tmax and t′max can easily be expressed as follows:

tmax + κst
′
max = ksp

kr

2
d
φsp,max, (1.81)

and by solving this equation, again with the worst-case scenario, we obtain tmax = 34.21 N
when t′max = 0 N, and t′max = 68.42 N when tmax = 0 N. Moreover, the tension within
the cable linking the proportional-torque spring pulley to the intermediate pulley has to be
assessed when φsp,max is reached. To do so, the maximum cable tension tint,max can be found
as

tint,max = 2ksp
dsp

φsp,max, (1.82)

and a maximum cable tension of tint,max = 210.53 N is obtained (tint,max = 234.65 N if
φsp,max = 270˚). It is noted that these values are all below the minimum breaking force
of the selected cable, which is approximately 312 N. Finally, the first prototype has been
assembled and Fig. 1.21 shows a photograph taken of this three-cable two-DoF CDP.

From the previous information and the kinetostatic model provided in Sub-section 1.3.5 for
a three-cable two-DoF planar CDP, it is now possible to determine the theoretical behaviour
of the devised CDP as a function of the master’s end-effector positions over the workspace A.
Because proportional-torque springs cannot produce a neutral static equilibrium of the end
effector over all the CDP’s workspace, it has been decided to evaluate the force magnitude
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Figure 1.22 – Theoretical ||fr||2 (N) computed over A for the devised prototype.

that a user would have to provide in order to move the master end-effector, which is linked
to the slave end-effector, over A. For this purpose, the vector fr of the resulting force can be
written as follows:

fr =
[
fx

fy

]
, (1.83)

where fx and fy are obtained from Eq. (1.58), when

τi(ci) = ksp
kr

(2
d

ci
kr

+ φsp,min

)
, (1.84)

Then, the magnitude of the resulting force can be expressed as

||fr||2 =
√

fTr fr. (1.85)

Also, for this numerical computation, it should be noted that we fixed f ′x = 0 N and f ′y = 0 N,
i.e., we assumed that no external force is applied on the slave end-effector.

Figures 1.22 and 1.23 illustrate the computed square norm of the expected resulting force that
should be applied by a user on the master end-effector when moving it over its workspace, and
similarly, moving its slave counterpart at the same time. Figure 1.22 shows the isocontour
lines by increments of 1 N and Fig. 1.23 shows a tridimensional view of the evolution of the
force magnitude. In both figures, it is easily seen that the only force-neutral position is at the
geometric centre of the equilateral triangle. The root mean square (RMS) value of ||fr||2 over
A is 24.7678 N, which has been computed by numerical integration (function quad2d from
MATLAB®) using the following relation:

||fr||2,rms =
√

1
A

∫
A
||fr||22dA. (1.86)

In the next sub-section, the constructed three-cable two-DoF cable-driven pantograph is tested
in order to validate this predicted behaviour and the proper functioning of this class of mech-
anisms.
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Figure 1.23 – Representation in 3D of theoretical ||fr||2 computed over A.

1.4.2 Verification of the prototype performances

The first prototype of a planar cable-driven pantograph was built and tested. This system,
which relies on two cable-driven parallel mechanisms connected together by their correspond-
ing cables, is a purely mechanical telemanipulator that allows the reproduction of two-DoF
point displacements in the proportion of a scaling factor κs between its two parts, i.e., its mas-
ter and its slave sub-systems. The tension in the cables is ensured by the use of proportional-
torque springs, which is a passive method of accumulating energy without using electrical
components as in most conventional devices. This system design is based on a relatively sim-
ple and low-cost architecture, and presents a simple and intuitive control, since the master
displacements are exactly reproduced by the slave.

In this sub-section, two experimental tests have been performed on the first prototype of a
three-cable two-DoF cable-driven pantograph. The first test is intended to validate the kine-
matic behaviour of our prototype, i.e., to assess if the chosen scaling factor κs = 1/2 between
the master and the slave geometries is accurately reproduced within the CDP displacements.
The second one is rather intended to validate the kinetostatic behaviour of the prototype
by measuring the exact external forces that must be applied by the user on the master’s
end-effector in order to maintain a static equilibrium over its workspace A.

Preliminary Validation of the Kinematic Behaviour

In order to perform this first experimental test, we attached a pen on the effector of the
master and the slave mechanisms and wrote the word “Laval” by controlling the master (see
Fig. 1.21). The same word was traced simultaneously by the slave, but assumed to be scaled
by the factor κs = 1/2. A photograph of these two “handwritten” words is displayed in
Fig. 1.24 in order to observe the degree of similarity that can be obtained.

Then, in order to assess the resulting similitude ratio between the root word and the repro-
duced one, we first took a close and perpendicular photograph of the two superimposed words
with a high-definition camera, which is shown in Fig. 1.24. We then cropped with an image
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Figure 1.24 – Handwritten words simultaneously traced at the master (large characters) and
the slave (small characters).

(a) (b) (c)

Figure 1.25 – Comparison of the handwritten words ratio: (a) second letter “a” (master), (b)
second letter “a” (slave), and (c) second modified letter “a” (slave).

editing software the second letter “a” belonging to each written word (see Figs. 1.25a and
1.25b). In order to perform a proper comparison, we rotated these two images to make the
upper segment of both letters as horizontal as possible (from Fig. 1.24, by 7˚and by 3.5˚for
the large and the small “a”, respectively, both with a right rotation). Then, after cropping
both rotated images in order to determine their smallest envelops, we used the images reso-
lution (number of pixels) as a comparison tool. We initially found an approximate ratio of
κw,hs ≈ 0.53 in both directions, i.e, the width and the height of the image, instead of our
prescribed CDP ratio of κs = 1/2.

During this experiment, however, the tips of the pens used to write these two words were of the
same size, which is against the first rule established in Sub-section 1.3.3. In fact, in order to
complete a meaningful comparison, the tip of the pen attached to the slave end-effector should
have been half of the size of that used at the master end-effector (following the prescribed
ratio κs = 1/2). Then, a number of pixels equivalent to a quarter of the full thickness of the
pen trace has been removed from the final image of the small letter “a” (see Fig. 1.25c). In
this way, the resulting width and height ratios are now κws ≈ 0.49 and κhs ≈ 0.50, respectively.
Table 1.1 contains the resolution of each image and its corresponding resulting ratio. These
results show that our prototype of a three-cable two-DoF planar cable-driven pantograph can
transmit displacements from the master to the slave following the prescribed scaling factor of
κs = 1/2 with reasonable accuracy.
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Table 1.1 – Image specifications (Fig. 1.25) and resulting similitude ratios.

Resolution (W x H)
Resulting ratio
κws κhs

Large “a” (Fig. 1.25a) 297 x 364 pixels — —
Small “a” (Fig. 1.25b) 156 x 191 pixels ≈ 0.53 ≈ 0.53

Small modified “a” (Fig. 1.25c) 146 x 182 pixels ≈ 0.49 ≈ 0.50

B
B
B
BBM

force-torque
sensor

(a) The master end-effector with the force-
torque sensor

(b) The chosen position measurements
benchmark

Figure 1.26 – The experimental setup.

Preliminary Validation of the Kinetostatic Behaviour

When using proportional-torque springs, the second assumption of Sub-section 1.3.4 according
to which the springs should maintain a perfect neutral equilibrium over the workspace is far
from being true. As a result, the balancing force required to maintain the master in a given
posture is neither null nor negligible, except at the centroid of its triangular workspace A, as
it was mentioned in the previous section (see Figs. 1.22 and 1.23).

In order to verify the real level of neutral equilibrium reached over the workspace of the devised
three-cable two-DoF planar CDP, an experiment was performed to measure the forces applied
on the end effector of the master while it is moved over A. The end effector was manually held
in place for approximately five seconds at each of a sequence of 151 positions, scattered over
the workspace according to the pattern shown in Fig. 1.26b. More specifically, these points
are equally distributed by intervals of two centimetres along line segments starting from the
centroid of A and ending at its edges and oriented by increments of fifteen degrees in order
to span the entire working area. A force-torque sensor from ATI Industrial Automation [200]
was used to record the balancing forces applied on the plane of motion (see Fig. 1.26a). Then,
the distribution of the balancing-force magnitude over the workspace is traced in Figs. 1.27
and 1.28. The experimental RMS value of ||fr||2 over A was ≈ 19.7 N, which was determined
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by computing the volume under the surface formed by our set of measurements ||fr||2 using
the following relation:

||fr||2,rms =

√√√√ 1
A

p∑
i=1

Vmesh,i ≡
√

1
A

∫
A
||fr||22dA, (1.87)

where Vmesh,i is the volume of the ith irregular triangular prism associated to the mesh grid that
best fits our set of experimental measures and p is the number of discrete triangles required
to form this mesh grid (p = 285). The function delaunay from the MATLAB® package [201]
is well suited to accomplish this task since it creates a bidimensional triangulation for a
given set of points. It should be noted that each irregular triangular prism is defined in three
dimensions by the planar Cartesian position of three points {vi,1,vi,2,vi,3} belonging to A and
the square of the norm of their associated measured force, i.e., {||fr,i,1||22,||fr,i,2||22,||fr,i,3||22}.
The volume Vmesh,i of the ith irregular triangular prism can be then computed using the
following equation:

Vmesh,i = 1
3(||fr,i,1||22 + ||fr,i,2||22 + ||fr,i,3||22) |(E(vi,2 − vi,1))T (vi,1 − vi,3)|

2 , (1.88)

where the second term on the right-hand side represents the area of the base section of the
irregular triangular prism and E is a rotation matrix of π/2 rad defined by

E =
[

0 −1
1 0

]
. (1.89)

In Fig. 1.27, it is observed that, as expected in Sub-section 1.4.1, only one position inside the
workspace, i.e., the centroid of A, produces a neutral equilibrium of the three forces—one force
per cable—applied on the end effector by its cables. Also, when comparing the expected with
the measured ||fr||2,rms values, it is noticed that the magnitude of the experimental resulting
forces are lower than expected, the measured RMS value is ≈ 19.7 N, for a difference of
≈ 5.1 N when compared with the theoretical value.

It is also interesting to notice that, when only the master side of the CDP is attached to
the spring-loaded pulleys, i.e., a system equivalent to a simple three-cable two-DoF CDPM,
the user has to apply a similar amount of forces in order to maintain the exact same end-
effector poses. Indeed, the measured ||fr||2,rms value is ≈ 19.4 N, instead of ≈ 19.7 N when
the full CDP (including the slave part) was mounted. This observation clearly shows that
the presence of the slave part of the CDP does not seem to generate a significant fluctuation
of the external force required by the user on the master end-effector in order to statically
balance the CDP. This negligible difference observed between these two measurements is only
valid, however, when no external force is applied at the slave end-effector of the full CDP.
The reader should also note that this observation corroborates Eq. (1.58). Figures 1.29 and
1.30 present the distribution of the balancing-force magnitude over the workspace A when
the master side only is attached to the CDP.
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Figure 1.27 – Experimental ||fr||2 (N) measured over A resulting from the devised prototype.
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Figure 1.28 – Representation in 3D of experimental ||fr||2 measured over A.
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Figure 1.29 – Experimental ||fr||2 (N) measured over A resulting from the devised prototype
(master only).
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Figure 1.30 – Representation in 3D of experimental ||fr||2 measured over A (master only).

The differences between theoretical mathematical models and experimental measurements
can be first explained by the possible errors related to the angular position of φsp,min when
assembling the prototype, which possibly modifies the forces distribution on the master-slave
end effectors over their workspace. If the exact value of φsp,min is set to be lower than
the computed value, the tension profile in the cables will shift down compared to the theory.
Another possible reason is the presence of friction in the system, which can reduce the resulting
forces felt by the force-torque sensor. From the use of the prototype, a relatively high level
of friction seemed to occur in the system, mainly between the cables and the fixed eyelets
and within the idler pulleys. Each cable has a different cable routing with a different number
of idler pulleys and different in-out angles, all of which affect the friction applied on their
corresponding cable of the CDP. Also, with friction, it is possible that the slave sub-system
provides a lower or a higher level of torque than expected on each winding pulley when one
moves the master end-effector, which in turn alters the tension in the master cables. In
addition, the experimental measurement process itself may contain several uncertainties such
as an increasing bias error from the force-torque sensor over the time, the possible inaccuracy
of the measured values, small unintentional displacements at the master end-effector while
recording the data, etc.

Finally, this prototype does not present the high level of safety initially desired because the
end effector is not in equilibrium over the entire workspace, but rather at a single position,
the centroid of the workspace. Therefore, if one releases the master end-effector, it will
automatically return to its equilibrium position. Based on this result, at this point, the
equations defined in Sub-section 1.3.4 cannot be directly applied because of the friction level
in the system and of the imperfect static equilibrium over the workspace. Despite the relatively
high forces required to control the prototype, however, it can still be used to reproduce two-
dimensional point displacements, as it was shown in Sub-section 1.4.2. It is also noted that
the maximum force that can be applied by the slave end-effector on its environment is limited
by the resulting forces that its cables can apply on it in a particular direction. In fact, the use
of stiffer springs would lead to a higher capacity of the slave end-effector to apply forces on its
environment. Moreover, for a specific application, if the necessary resulting force f ′r that must
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be applied on the slave’s environment requires a cable tension higher than t′max, tensions in
other system’s cables may reach a value lower than tmin or t′min, which can lead to a loss of the
mechanism geometry. In order to complete the validation of the kinetostatic model presented
in Sub-section 1.3.5, additional measuring instruments such as load cells would be necessary
to determine the experimental tension profile in each cable of the devised CDP while applying
external forces at both end effectors.

1.5 Summary

In this chapter, we proposed a new family of pantographs: the cable-driven pantographs. This
type of mechanisms, for which the force transmission between the master and the slave com-
ponents relies on cables, allows the reproduction of point or rigid-body displacements. The
general concept simply consists in connecting together two homothetic cable-driven parallel
mechanisms. One of them acts as the master, the other as the slave, which allows the repro-
duction of trajectories imposed from the master end-effector to the slave end-effector following
a prescribed scaling factor κs. Since CDPs are formed by the combination of conventional
pantographs and CDPMs, Sections 1.1 and 1.2 were dedicated to the description of these two
distinct classes of mechanisms.

In Section 1.3, the working principle of CDPs was described by their two main characteristics:
(i) they are purely mechanical and (ii) they are formed with cable-driven parallel mechanisms.
Then, the fundamental component used to develop this class of mechanisms was shown, in
Sub-section 1.3.1, as a one-DoF linear CDP in which the displacement ratio between the
master and slave end-effectors is defined by κs = d′/d, the winding-drum diameter of the
slave divided by the winding-drum diameter of the master. As the conceptual design could not
maintain the cables in tension, springs were added to the design. We extended this elementary
CDP to a n-DoF CDP in Sub-section 1.3.2. Moreover, the input-output displacement and
load relationships of CDPs were established in Sub-sections 1.3.3 and 1.3.4, respectively. In
summary, the relationships describing the theoretical behaviour of CDPs are simply p′ = κsp,
ṗ′ = κsṗ, p̈′ = κsp̈, Q′ = Q, Q̇′ = Q̇, Q̈′ = Q̈, f ′ = −(1/κs)f and n′ = −n. Then in
Sub-section 1.3.5, kinetostatic models have been established for a two-cable one-DoF linear
CDP and for a three-cable two-DoF planar CDP. Due to the fact that CDPs are statically
indeterminate by nature, it has been demonstrated that compatibility equations are necessary
in order to solve the corresponding system of equations. These theoretical models allow us
to approximate the behaviour of a CDP with regards to its cable tensions and the external
forces applied at its master-slave end-effectors.

The balance of this chapter was focused on the preliminary validation of the CDP concept
in Section 1.4. In Sub-section 1.4.1, we described the chosen geometry of the first CDP
prototype as a three-cable two-Dof cable-driven pantograph and its master workspace was
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selected to be an equilateral triangle with an edge length of a = 0.38 m and, by homothecy,
with a scaling factor κs = 1/2, its slave workspace was set to be an equilateral triangle with
an edge length of a′ = 0.19 m. Then, as a first step towards the development of this family
of pantographs, we built a two-Dof prototype. In order to solve the problem of maintaining a
sufficient level of tension in the cables, proportional-torque springs were installed in parallel
to the cable winding pulleys. This solution ensured a minimum tension of 5 N in cables
of the master and, by similitude, a minimum tension of 2.5 N in cables of the slave part.
Moreover, knowing that the use of proportional-torque springs does not allow a perfect static
equilibrium over the workspace, the mapping of the theoretical resulting forces that a user will
have to apply to hold the master end-effector, and necessarily the linked slave end-effector,
at a given position was determined with the relations established in Sub-section 1.3.5. In
Sub-section 1.4.2, we presented the first experimental results. Firstly, the prototype was
shown to allow the reproduction of a handwritten word. This drawing demonstrated the
capability of the devised cable-driven pantograph to suitably generate an image following
the prescribed scaling ratio of κs = 1/2. These results confirmed that selecting the proper
diameter of the master-slave winding drums and the proper base and end-effector geometries
(positions of points {Ai, A′i} and {Bi, B′i}, respectively) with respect to a prescribed constant
ratio κs leads to a constant proportion in all directions between the root image and the
resulting image. The prototype of the three-cable two-Dof CDP was secondly assessed in
order to measure the user-applied input forces when one desires to move and hold the master
end-effector over the CDP workspace. This analysis showed that relatively high forces are
required from the user in order to move the end effector out of its reference position, i.e., the
centroid of the workspace where the neutral equilibrium is reached. In fact, it was showed
that the measured input forces required by the user to move the end effector were lower than
the expected values, due to potential assembly and measurement errors and the presence of
friction within the mechanism. This result was observed when both the full CDP and the
master-only CDP were under evaluation. Then, in summary, this first prototype was used
to demonstrate the practicability of the cable-driven pantographs concept. Improvements
should be made, however, in order to decrease the level of forces required by the user to move
its end effector over the whole workspace. The next chapter proposes a method to achieve
this important safety requirement, which is possible based on the observation that, when no
external forces are applied on the slave end-effector, the force that a user must provide at the
master end-effector is independent from the presence of a slave CDPM.
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Chapter 2

Static Equilibrium of Cable-Driven
Pantographs

“To every action there is always
opposed an equal reaction.”

- Isaac Newton

In Chapter 1, it has been discussed that for cable-driven pantographs (CDPs), as well as for
general cable-driven parallel mechanisms (CDPMs), the unilaterality of force transmission
requires a minimum level of tension in the cables in order to preserve their geometry. As a
result, in most of the cases, driving electrical motors are needed to produce continuous torques
to maintain the cables taut at all times. An alternative solution, for a purely-mechanical
approach, is to add springs in parallel with the winding pulleys in order to generate these
torques. However, as it has been previously demonstrated, the use of conventional springs
only, even though it provides the required minimum torques, generates additional forces that
must be balanced by an undesirable input-force from the user’s hand at the CDP end-effector.

In this chapter, we propose to use passive nonlinear springs to generate these minimum
torques, while altering as little as possible the CDP neutral equilibrium over its workspace.
In this way, the user only needs to produce the additional forces, i.e., those forces needed
to generate accelerations, compensate internal friction and balance external forces applied to
the end effector. The design of the required nonlinear springs couples a four-bar linkage with
commercially available springs.

In the last decades, mechanical static balancing of mechanisms has received sustained interest
from researchers, since it allows to significantly decrease the size of the actuators for equivalent
displacements of the end effector. Indeed, the actuators do not have to produce the required
input energy to counterbalance the usual variations of the potential energy of the system
between each pose of the end effector. This role is generally rather fulfilled by springs,
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counterweights, pneumatic or hydraulic cylinders, and even by electromagnetic devices.

Springs are widely used since, unlike counterweights, they do not increase significantly the
mechanism’s inertia. For this reason, many researchers have chosen springs in order to stat-
ically balance their mechanism. As examples, let us cite the work of Nathan [202, 203],
which has designed constant force generator mechanisms using springs for an adjustable
seat application, and the work of Arakelian et al. [204] and Lin et al. [205], who have
worked on the balancing of a leg orthosis and a mobile arm support, respectively. Other
authors such as Herder [206], Tuijthof and Herder [207], Streit and Shin [208], Shin and
Streit [209], Laliberté et al. [210], Deepak et al. [211], which have worked on the static bal-
ancing of different planar mechanisms, have also used springs as fundamental components
of their analyses. Other researches have focused on the exact balancing of spatial mecha-
nisms [212, 213, 214, 206, 215, 216, 217] as well as on their partial gravity compensation [218]
in adding either compression, extension, and torsion springs.

Even if, in general, counterweights add inertia to the original system, they have been ex-
tensively used as a means of statically balancing mechanisms. From the literature, we can
cite, as examples, the work of Russo et al. [219] and Baradat et al. [220], who both combined
counterweights with pantograph linkage in order to reach their goal. Also, more recently,
Lacasse et al. [221] proposed the design of a statically balanced serial robot by using remote
counterweights connected to the robot via a low-pressure hydraulic transmission. More gen-
erally, other research groups have also used counterweights to statically balance planar and
spatial mechanisms [222, 223, 224, 225].

If springs or counterweights are insufficient or unpractical for a specific application, the use
of pneumatic or hydraulic cylinders may be considered. Indeed, some researchers have chosen
to rather include these technologies into their design, such as Idan et al. [226] and Winden-
berg [227], who directly connected these additional components to the moving platform of
their mechanism for partial static gravity balancing. Similarly, Segawa et al. [228] proposed
the use of permanent magnets attached on the base and to the moving platform of a given
mechanism in order to statically equilibrate its weight.

On the other hand, we know, from Chapter 1 (see Section 1.2), that cable-driven parallel
mechanisms have been the topic of many publications since they are interesting candidates
for several robotic applications, because of advantages they hold over conventional robots.
However, even if the static balancing of mechanisms and CDPMs have been widely studied
separately, to our best knowledge, no attention has been given to the static balancing of
CDPMs, and by extension, to the static balancing of CDPs.

The proper application of static-balancing principles to CDPMs, in general, could lead to
better safety and lower power consumption. Indeed, even with partial static balancing, a
sudden shortage in electrical power would be less dangerous, as the resulting variation in
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Figure 2.1 – Computer-aided design (CAD) model of the three-cable two-DoF planar CDP
devised benchmark.

potential energy would be reduced. Moreover, the maximum continuous torques required
from the motors would be smaller, thus reducing their size and weight, and more importantly,
their inherent risk for user safety. Currently, in most of the CDPMs, the driving electrical
motors are used to generate the prescribed accelerations and to balance out the external
forces applied at the end effector while maintaining a minimum level of tension in each cable.
In this case, continuous torques must be produced by the actuators even if no motion or
applied wrench are required. These constant torques may be considered as an unnecessary
expenditure of electrical energy. Hence, a conservative purely-mechanical sub-system that
could passively generate the required cable tensions would significantly reduce the wasted
energy and increase the safety level of the global system.

As previously revealed, we present here a method of designing a nonlinear spring to maintain
a given minimum tension in the cables of a CDP (which method can be directly applied to
more simple CDPMs), while approaching neutral static equilibrium over its master workspace,
and inherently over its slave workspace (see Fig. 2.1 for an overview of the final CDP devised
benchmark), a method akin to those proposed by Herder [206]. Thence, the desired nonlin-
ear springs are approximated by combining commercial springs with four-bar linkages. More
specifically, in this chapter, Section 2.1 introduces the definitions of an exact static equilibrium
(ESE) in Sub-section 2.1.1 and an approximate static equilibrium (ASE) in Sub-section 2.1.2.
Then, Section 2.2 demonstrates the methodology used to choose the optimal tension profile in
the cables and the nonlinear springs best suited for the three-cable two-DoF planar CDP pre-
viously presented in Sub-section 1.4.1 of Chapter 1. More precisely, Sub-section 2.2.1 recalls
the geometry of the chosen CDP, Sub-section 2.2.2 presents the optimization process followed
to determine the cable tension profile that best balances this mechanism, Sub-section 2.2.3
reports on the optimization of the design parameters of the chosen nonlinear springs, namely,
the dimensions of the four-bar linkage, the properties of the springs, and the assembly specifi-
cations of the sub-system, and finally, Sub-section 2.2.4 contains the experimental verification
of the theoretical results, where the external forces generated at the master end-effector are
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measured and compared with those predicted by the kinetostatic model. A summary of this
chapter is then proposed in Section 2.3.

2.1 Exact Versus Approximate Static Equilibrium

In general, an object is said to be in exact static equilibrium (ESE) when the sum of all forces
and torques—or the sum of all wrenches—exerted on it is null. In particular, a mechanism,
such as a n-DoF CDPM or a n-DoF CDP, is normally considered to be statically balanced
when the combination of all internal wrenches w, i.e., those wrenches generated by the cables
and the gravity effect, exerted on each end effector is equal to 0n ∈ Rn. Moreover, this
result must be true for every end-effector pose over the workspace. In fact, it means that the
system is at its lowest level of potential energy for all possible poses of its end effector, i.e.,
its potential energy U is constant over the entire workspace.

On the other hand, an approximate static equilibrium (ASE) occurs when one cannot reach
a state of perfect equilibrium, i.e., the ESE, but rather only approximates it for every end-
effector pose over the entire workspace. As a result, for some particular combinations of
the end-effector positions and orientations, a resulting wrench w 6= 0n is generated and the
moving parts of the n-DoF CDPM, or the n-DoF CDP, automatically move by themselves to
the closest stable equilibrium pose. If one wants the system to hold a given unstable pose,
an external wrench we = −w needs to be applied by the environment, e.g., by the user
directly or by additional actuators, on the mechanism end-effector. In summary, this type of
mechanism presents different levels of potential energy over its workspace (U is not constant)
and reaching an ASE amounts to minimizing |∆U |, or similarly the magnitude of w, over the
workspace. If no additional wrench we is applied to cancel the gradient ∇U , then the system
will always drift towards a minimum of U .

2.1.1 Exact Static Equilibrium of Cable-Driven Pantographs

For a m-cable n-DoF cable-driven pantograph (either for the master or the slave part), or
by similarity, for a simple m-cable n-DoF cable-driven parallel mechanism, the exact static
equilibrium relation can be written as:

w = Wt + wg = 0n, t > 0m, (2.1)

where W is the pose-dependent wrench matrix of dimensions n ×m, the vector t contains
the strictly-positive tensions of the m cables of the CDPM, which can be written as

t =
[
t1 t2 · · · tm

]T
, (2.2)

the vector wg represents the wrench generated by the gravity effect applied on the mechanism
end-effector, and 0n and 0m are zero vectors in Rn and Rm, respectively.
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When applying Eq. (2.1) to a generic m-cable n-DoF CDPM, determining the matrix W
is not as simple as in the case of the three-cable two-DoF planar CDP presented in Sub-
section 1.4.2. This is mainly due to the capability of the mechanism to perform rotations.
Then, in order to determine the internal components of W for any CDPMs, we can use the
principle of virtual work, which allows us to shift from the mechanism’s velocity relations to
its static relations and vice versa. The mathematical derivation of this matrix W is presented
in Appendix A.1 for the three-DoF planar case (two translations and one rotation) and in
Appendix A.2 for the spatial case (six DoFs).

Although reaching an ESE by solving Eq. (2.1) would be the best case scenario for any
purely-mechanical CDPM and CDP designs in general, achieving perfect static balancing of
such a mechanism over its entire workspace, as defined in this sub-section, is an extremely
challenging task in practice. Nevertheless, one may seek and find a method that brings the
CDPM or CDP close to static equilibrium. We leave to the next sub-section the definition of
closeness to static equilibrium.

2.1.2 Approximate Static Equilibrium of Cable-Driven Pantographs

When designing a purely mechanical CDP, achieving global ESE is a very challenging prob-
lem. The vector sum of the cable tensions must be null for every single end-effector pose of
the workspace. In general, this requires that all cable tensions be coupled to all cable lengths
through a complex relationship. Achieving this relationship through a passive mechanical
system is thus impractical. Hence, instead of targeting an ESE, we rather target an approx-
imate static equilibrium (ASE). The goal is to approach perfect neutral equilibrium, or, in
other words, to reach as close as possible to static equilibrium.

From Eq. (2.1), closeness to equilibrium can be expressed as follows:

w = Wt + wg ≈ 0n, t > 0m. (2.3)

This approximate equality illustrates that the wrenches applied by the cables cannot, in
general, perfectly compensate for the wrench applied by the gravity on the end effector. The
cable tensions are then chosen to tend, as much as possible, towards the ESE. Obviously, in
order to claim that one has achieved the ASE for a given system, Eq. (2.3) must be verified
for every pose of the CDP end-effector workspace (for both the master and slave CDPMs).

In order to design a system that reaches a high level of static equilibrium, different approaches
can be used. The first one is naturally to create a method allowing the determination of the
best architecture (points Ai and Bi) and the best tension profiles ti in the cables, simultane-
ously, for a prescribed n-DoF CDPM workspace. Several objective functions can be chosen
and then optimized while evaluating the infinite range of the different parameters combina-
tions. Although this option seems promising, it can easily lead to a system of equations with
a high level of complexity and interrelation.
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Then, with the aim of keeping the problem complexity reasonably low, it is possible to use
the square of the variance of the potential energy U as an objective function. This amounts
to minimizing the fluctuations of U over the mechanism workspace [229]. This problem is
symbolically expressed as

f ≡
∫
V

(U − U)2dV −→ min
Ai, Bi, i=1,...,m

, (2.4)

where f is the objective function, V represents the volume of the n-DoF workspace, U repre-
sents the potential energy for a given end-effector pose and U is the mean value of the potential
energy over the entire workspace. In summary, here, the position of the CDPM eyelets Ai and
its end-effector attachment points Bi are chosen to minimize the objective function f while
the profile tensions ti in the cables are known as a function of the cable lengths. It is noted
that this is equivalent to minimizing the external required input wrenches we when moving
the end effector out of a neutral equilibrium pose.

Another approach, when one knows the geometry of the CDPM, i.e., the positions of points Ai
and Bi, is to use the norm of the resultant wrench w from the cable tensions and the effect
of gravity acting on the moving platform as the objective function. Then, the closeness to
equilibrium may be expressed as

f ≡
∫
V
||Wt + wg||dV −→ min

ti>0, i=1,...,m
, (2.5)

where ti must be positive in order to preserve the mechanism geometry. Here, the relationship
between the tension ti of the ith cable and its length ci is to be chosen in order to minimize
the objective function f . It is noted that, for CDPMs generating both rotations and transla-
tions of their moving platforms, the norm has to include weights that take into account the
dimensionally non-homogeneous nature of their associated wrenches. In this work, the second
method has been preferred to the others, taking into account that the geometry of the CDP
or CDPM has been initially optimized using other optimization criteria in order to simplify
the problem.

2.2 Approximate Static Equilibrium of a Three-Cable
Two-DoF Planar Cable-Driven Pantograph

In order to achieve ASE and apply it to a CDP, we decided to first develop and evaluate
the proposed technique for a simple case, namely, a three-cable two-DoF planar CDP with
an equilateral triangle as workspace for each of its sub-systems—the master and the slave
CDPMs. Here, we seek static balancing when no external wrench we is applied on both end
effectors. Moreover, the gravity effect is assumed to be negligible since the gravity field is
chosen to act perpendicularly to the CDP’s planar workspace and the minimum tensions tmin

and t′min will be chosen in order to compensate for the weight of the moving parts. Also, since
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the workspaces of the chosen master and slave CDPMs are symmetric, we have assumed the
tension profiles to be identical for each cable.

As we know, designing a passive mechanical device that would achieve perfect static equilib-
rium of the end effector over the planar CDP workspace while maintaining sufficient cable
tensions is a challenging task. Although such a mechanical apparatus may exist, we conjec-
ture that it will be prohibitively complex. Previous work has demonstrated however, that,
when the base eyelets are fixed, it is possible to approximate the static equilibrium of a planar
CDPM while maintaining a minimum level of cable tensions by adding a reasonable number of
parts [230]. Then, based on these results and the design presented in Section 1.4 of Chapter 1,
a complete method is proposed for optimizing the design parameters of a four-bar mechanism
combined with commercial springs, to approximate the neutral equilibrium of the three-cable
two-DoF planar CDP.

2.2.1 Description of the Geometry

The geometry of the mechanism used throughout this section is similar to the geometry
previously shown in Section 1.4, i.e., a three-cable two-DoF planar CDP. The mechanism
description is given in Sub-section 1.3.5 and a kinematic modelling of its master part is
presented with Fig. 1.16. It is noted that a similar geometry is used for its slave part,
following the chosen scaling factor κs = 1/2. It is recalled that the end effector is considered
to be a rigid body instead of a point in order to better represent our experimental testbed (see
Fig. 2.1). It is also considered to only have two DoFs instead of three based on its particular
equilateral triangle geometry, a hypothesis that was validated in Sub-section 1.3.5. Although
the planar case is studied here, the whole work could be extrapolated quite naturally to the
more general spatial case, at least for a CDP presenting a constant end-effector orientation,
at the cost of more demanding mathematical formulations.

2.2.2 Determining the Minimum Cable Tensions

In order to approximate the static equilibrium of the three-cable two-DoF planar CDP over
A while maintaining a minimum positive tension tmin in all cables of the master CDPM and
t′min in all cables of the slave, the following technique is proposed. But first, since it has been
demonstrated in Chapter 1, when no external forces we are applied at the slave end-effector,
that the force required at the master end-effector to hold a given pose is independent of the
presence of the slave CDPM, it is assumed here, that reaching the ASE on the master CDPM
only will automatically guarantee the ASE at the slave CDPM; the slave CDPM mimics the
behaviour of the master CDPM at all times, when no external perturbation occurs. Based on
this assumption, the following mathematical derivation will be focusing on the master part
of the CDP only.
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Consequently, in order to reach an ASE of the three-cable two-DoF master CDPM, and
inherently of the slave CDPM, the equation below must be verified for any pose of the master
end-effector:

w = Wt ≈ 02, t ≥ tmin > 03, (2.6)

where t is the vector of the cable tensions, 02 and 03 are the zero vectors in R2 and R3,
respectively, and W is the pose dependent wrench matrix (its mathematical derivation can
be found in Appendix A.1, by removing the degree of freedom in rotation) defined as

W =
[ c1
c1

c2
c2

c3
c3

]
. (2.7)

It should be noted that Eq. (2.6) is the direct application of Eq. (2.3) to a three-cable two-DoF
planar mechanism. Here, because the end-effector motions are assumed to lie in a horizontal
plane perpendicular to the gravity field, the gravity wrench wg has no effect on the static
balancing.

In order to represent an arbitrary tension profile, we use a polynomial of degree η − 1 of the
Bernstein form, i.e., a linear combination of Bernstein bases [231]. The components ti of the
tension vector t can thus be expressed as

ti = t(ci) =
η−1∑
ν=0

βνbν,η−1(c†i ) = fi(ci), (2.8)

where βν are the Bernstein coefficients, and bν,η−1(c†i ) are the η Bernstein bases. These bases
are functions of the normalized length c†i ≡ (ci − cmin)/(cmax − cmin) of the ith cable, and are
defined as

bν,η−1(c†i ) =
(
η − 1
ν

)
(c†i )ν(1− c†i )η−ν−1, (2.9)

where
(
η − 1
ν

)
is a binomial coefficient. In our case, this binomial coefficient can be ex-

pressed as (
η − 1
ν

)
= (η − 1)!

(η − ν − 1)!ν! . (2.10)

This differentiates the method from that presented in our previous work [232], where stan-
dard polynomials had been used instead of Bernstein polynomials. Bernstein bases allow
us to minimize the variation of the potential energy of a planar CDPM over its workspace
without stumbling on numerical sensitivity problems, since these bases are numerically more
robust [233, 234].

Then, for the sake of conciseness, we may rewrite Eq. (2.8) as

t(ci) = γTi s, i = 1,2,3, (2.11)
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where γi ≡ [ b0,η−1(c†i ) b1,η−1(c†i ) · · · bη−1,η−1(c†i ) ]T and s ≡ [ β0 β1 · · · βη−1 ]T .

Reaching Eq. (2.6), i.e., approximating the neutral equilibrium over the workspace A, is
equivalent to minimizing the Euclidean-norm of the resulting force fr ≡ Wt applied on the
moving end-effector over A. Moreover, since ||fr||2 is a positive convex function1, minimizing
the square of this function is equivalent to minimizing the function itself [235]. Hence, we set
out to minimize the following expression:

||fr||22 = fTr fr =
( 3∑
i=1
γTi sci

ci

)T ( 3∑
i=1
γTi sci

ci

)
, (2.12)

= sTCTCs, (2.13)

where

C ≡
3∑
i=1

ci
ci
γTi . (2.14)

Since C is a function of p, i.e., the length and the direction of each cable depends on the
position of point P in the workspace A, we may formulate our objective function as

f(s) ≡ 1
2A

∫
A

sTC(p)TC(p)sdA, (2.15)

where dA is an infinitely small element of area of the workspace A. This objective function
is equivalent to

f(s) ≡ 1
2sTPs, (2.16)

where
P ≡ 1

A

∫
A

C(p)TC(p)dA. (2.17)

We note that f(s) must be minimized over s, the set of Bernstein coefficients, and that
matrix P can be computed prior to the minimization, as it is independent from s, using
the function quad2d from MATLAB® software. In our case, the workspace is an equilateral
triangle, and, in order to reduce the computing time, Eq. (2.17) can be written as

P ≡ 6
A

∫ 1
2

0

∫ −√3x
3

−
√

3
6

C(p)TC(p)dydx. (2.18)

Furthermore, since a minimum level of tension in the cables must be kept to maintain the
mechanism geometry even if no external wrench is applied on the moving platform, we must
submit f(s) to additional constraints. These constraints must be defined in order to ensure
cable tensions t(ci) ≥ tmin, where tmin is the minimum allowed tension. This minimum is
chosen to prevent cable sag while moving the end effector and to overcome the gravity field
acting on the end effector, which is perpendicular to the workspace plane. Moreover, since

1A convex function is a continuous function whose value at the midpoint of every interval in its domain
does not exceed the arithmetic mean of its values at the ends of the interval.
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A is an equilateral triangle, each cable has the same range of lengths ci ∈ [cmin, cmax], where
cmax − cmin ≡ a. Hence, we should verify that the constraint t(ci) ≥ tmin is satisfied for any
ci ∈ [0, a]. In practice, however, we evenly discretize the cable length interval [0, a] into q
constraints, each corresponding to a fixed length ci. The resulting constraints are

Gs ≥ 1qtmin, (2.19)

where 1q ≡ [ 1 1 · · · 1 ]T ∈ Rq, G ≡ [ γ1 · · · γq ]T ∈ Rq×(η−1), and

γi ≡ [ b0,η−1(c†i ) b1,η−1(c†i ) · · · bη−1,η−1(c†i ) ]T . (2.20)

By choosing q >> η, we obtain many more constraints than the degree η−1 of the polynomial,
and the constraint t(c) ≥ tmin, c ∈ [0, a], is fulfilled, for all practical purposes.

In summary, we have defined a convex quadratic objective function, which allows to approach
the neutral equilibrium over the three-cable two-DoF planar CDPM workspace, and an affine
convex function2, which constrains the resulting cable tensions above a prescribed threshold:

minimize 1
2sTPs,

subject to −Gs ≤ −1qtmin,

over s.
(2.21)

Thus, the problem defined in Eqs. (2.16) and (2.19) forms a quadratic problem (QP) with
inequality constraints and it can be directly computed using scientific software such as MAT-
LAB®. In this case, the quadprog function from the standard optimization toolbox is ded-
icated to solving convex quadratic programs. Notice that P must be symmetric positive
semidefinite3 for the QP to converge towards a global optimum, i.e., for the problem to be
convex [236].

Moreover, since it is usually more important to reach static equilibrium at the origin of A
and its surroundings than at its boundaries, a weighting function is used. This function can
be geometrically described as a cone over A, centred at the origin O, and with an unit height.
This weighting function is applied to P in order to obtain Pw, which is defined as

Pw ≡
1
A

∫
A

C(p)TC(p)w(p)dA, (2.22)

or in our case

Pw ≡
6
A

∫ 1
2

0

∫ −√3x
3

−
√

3
6

C(p)TC(p)w(p)dydx, (2.23)

2A one-dimension affine function is a function composed of a linear function and a constant and its graph
is a straight line. The general equation for an affine function in one dimension is: y = f(x) = ux+ v, where u
and v are constants.

3A n×n matrix M is called positive semidefinite (or sometimes nonnegative-definite) if xTMx ≥ 0 for all
x ∈ Rn.
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and where the weighting function w(p) is set to

w(p) =
(

1−
√

3||p||2
a

)
. (2.24)

Finally, the QP is defined as follows to determine the optimal solution s? in order to ensure
the minimization of the resulting forces applied by the user to maintain static equilibrium of
the planar CDPM:

minimize 1
2sTPws,

subject to −Gs ≤ −1qtmin,

over s.
(2.25)

Then, let us minimize the objective function for η − 1 = 0, . . . ,9. Computations show that P
and Pw are symmetric positive-definite for all these values of η. The distance a (see Fig. 1.16)
is set to 0.38 m, the tension threshold is set to tmin = 5 N, which is assumed to be enough
to prevent any sag in the cables and to overcome the gravity field acting on the end effector,
and q = 40(η − 1), which is largely sufficient to ensure t(c) ≥ tmin over c ∈ [0, a].

This QP yields the results shown in Figs. 2.2 and 2.3. These figures contain the ten optimized
polynomial functions, each of which corresponds to the optimal tension profile for a specific
value of η. Their related objective function values are also given, as well as their values of
the RMS of ||fr||2 over A, which is defined as

||fr||2,rms =
√

sTPs. (2.26)

As expected, we note that the value of f(s?) decreases as η increases, and the constraints are
properly satisfied, since all of the tension profiles lie above tmin = 5 N.

On Figs. 2.4 and 2.5, we can observe the isocontours of the magnitude of the resultant of
the three cable tensions over A for η − 1 = 0, . . . ,5 and η − 1 = 6, . . . ,9, respectively. As
expected, we note that a higher degree of the polynomial results in a better approximation
of the neutral equilibrium over the workspace. Moreover, the effect of the weighting function
of Eq. (2.24) is easily noted from the results, since the region reaching neutral equilibrium
around the origin O becomes larger as the degree of the polynomial increases. Also, it is
noticed that between η − 1 = 4 and η − 1 = 9, only marginal gains are made.

Finally, from Fig. 2.2, it is interesting to note that for η − 1 = 1, i.e., when a proportional-
force spring or a proportional-torque spring is selected, this optimization demonstrates that, in
order to reach an ASE over A, the highest tension in the cable must be achieved when ci = 0,
which is considered to be difficult to reproduce in practice. Indeed, this is the behaviour
opposite to that of our initial prototype (see Sub-section 1.4.1 of Chapter 1) since the tension
in a cable normally increases when the cable is unwound from its winding pulley.
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η − 1 = 0, ||fr ||2,rms = 2.9195 N, f(s⋆) = 4.4079
η − 1 = 1, ||fr ||2,rms = 2.8945 N, f(s⋆) = 4.3915
η − 1 = 2, ||fr ||2,rms = 2.4295 N, f(s⋆) = 3.0851
η − 1 = 3, ||fr ||2,rms = 2.3723 N, f(s⋆) = 2.8663
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Figure 2.2 – Tension in the cables as a function of the degree η−1 = 0, . . . ,3 of the polynomial
function.

η − 1 = 4, ||fr ||2,rms = 1.8981 N, f(s⋆) = 1.3903
η − 1 = 5, ||fr ||2,rms = 1.8490 N, f(s⋆) = 1.3724
η − 1 = 6, ||fr ||2,rms = 1.8453 N, f(s⋆) = 1.3723
η − 1 = 7, ||fr ||2,rms = 1.7989 N, f(s⋆) = 1.3317
η − 1 = 8, ||fr ||2,rms = 1.7903 N, f(s⋆) = 1.2536
η − 1 = 9, ||fr ||2,rms = 1.7286 N, f(s⋆) = 1.2190
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Figure 2.3 – Tension in the cables as a function of the degree η−1 = 4, . . . ,9 of the polynomial
function.
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(f) η − 1 = 5

Figure 2.4 – Theoretical ||fr||2 (N) over A from optimized polynomials of degree η − 1 =
0, . . . ,5.
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(a) η − 1 = 6
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(b) η − 1 = 7
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(c) η − 1 = 8
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(d) η − 1 = 9

Figure 2.5 – Theoretical ||fr||2 (N) over A from optimized polynomials of degree η − 1 =
6, . . . ,9.

2.2.3 Design of the Spring-Loaded Reels

In order to design a conservative purely-mechanical sub-system for reproducing the nonlinear
tension profiles in the cables of a three-cable two-DoF planar CDPM, we decided to combine
a four-bar mechanism and commercially-available constant-torque springs (Neg’ator® Spring
Motors marketed by SDP/SI [197]). Notice that the synthesis of four-bar linkages has been
studied extensively over last decades (see, e.g., the work of Freudenstein [237, 238], Chen [239],
Khare and Dave [240], Gosselin and Angeles [241, 242], Dudita et al. [243], and more recently
Todorov [244]). Moreover, similar designs, i.e., a combination of a four-bar linkage and
springs, have been previously used by Harmening [245] and Simionescu et al. [246] to statically
balance a mass. Cams could also be used for the same purpose (see Refs. [247, 248, 249]),
but because their manufacture is more difficult, and they generally involve more friction, we
preferred the first option.

Then, let us start from Figs. 2.2 and 2.3, from which we note that only the curves correspond-
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Figure 2.6 – Representation in 3D of theoretical ||fr||2 computed over A for η − 1 = 7.

ing to η − 1 = 0, 1, 2, 3, and 7 seem to provide behaviours reproducible by planar four-bar
linkages. Indeed, the polynomial curves of degree 4, 5, and 6 present a significant increase
of the tension level for c ∈ [0.3,0.38]. Then, the curves of degree 8 and 9 contain nonperi-
odic peak values over c ∈ [0, a], which are difficult to reproduce based on the behaviour of a
four-bar mechanism.

Moreover, it is interesting to note that the result associated with η − 1 = 0 is equivalent to
using only a constant force spring attached to each cable of the planar CDPM while η−1 = 1
is theoretically reproducible with a linear spring attached to the cables or a torsion spring
attached at the cable reel. However, even if the tension profile obtained from polynomials
of degree 0, 1, 2, and 3 seems to be easier to mechanically reproduce, they result in less
faithfull approximations of the static equilibrium of the planar CDPM over A (see Fig. 2.4).
We consequently choose to reproduce the tension profile corresponding to η − 1 = 7, which
corresponds to the following Bernstein coefficients:

s? = [ 28.607 −42.073 73.566 4.899 141.417 −101.426 26.139 32.128 ]T . (2.27)

For the sake of future comparison, Fig. 2.6 shows the tridimensional view of the evolution of
the force magnitude ||fr||2 computed over A corresponding to η − 1 = 7 (its corresponding
isocontour graph was shown in Fig. 2.5b).

Thus, we are after the crank-rocker4 four-bar mechanism that allows the best approximation
of the optimum degree-seven polynomial. Figure 2.7 presents the set of parameters over
which we are to optimize. Scalars li, i = 1, . . . ,4, represent the lengths of the rigid links of
the mechanism, while φ and ψ are its input and output angles, respectively. The variable ψi
is the initial output angle, whereas φi and φf are the initial and the final angular positions of
the input link, respectively. Here, the input is taken to be connected to both the spool of the
corresponding cable and a constant-torque spring, whereas the output is only connected to a
constant-torque spring. Then, variable τ2 represents the torque value of the constant-torque
spring attached to the input link and link 2, while τ4 is the one corresponding to the output

4Note: A crank can rotate a full 360 degrees and a rocker can rotate through a limited range of angles
which does not include 0˚or 180˚.
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Figure 2.7 – Design parameters of the four-bar mechanism with constant-torque springs.

link and link 4. Notice that the spring corresponding to τ2 is assumed to produce the mean
value of the nonlinear quasi-periodic tension profile, while the one corresponding to τ4 will
generate the required tension variations based on a specific four-bar linkage behaviour.

Determination of the Prescribed Four-Bar Linkage Behaviour

We first determine the desired relationship between the input and output angles, φ and ψ,
irrespective of the kinematic constraints imposed by the four-bar linkage. Hence, we seek to
exactly reproduce the tension profile corresponding to the polynomial of degree seven using
some ideal mechanism, which we treat as a black box.

Applying the virtual work principle on the four-bar linkage kinematic model, we obtain the
following relationship:

t(c)δc− τ2δφ = τ4δψ, (2.28)

where t(c) is the nonlinear tension function in the cable and where δc, δφ, and δψ are an
infinitesimal elongation of the cable and rotations of the input and output links, respectively.
Then, we can rearrange Eq. (2.28) to obtain the separable ordinary differential equation
(ODE):

dψ

dc
= t(c)− τ2/cφ

τ4
, (2.29)

where the relationship cφdφ = dc was used to eliminate the input angle. The variable cφ is
defined as cφ = r/rφ, where r is the pulley radius on which the cable is wound, which is set
to 0.0508 m (2 in), and rφ is the gear ratio of a spur-gear transmission between the input
link of the four-bar linkage and the pulley. However, since cφ is a function of the range of the
cable lengths ∆c ≡ cmax − cmin and the range of the input angle ∆φ ≡ φf − φi, it can be also
written as

cφ = ∆c
∆φ = cmax − cmin

φf − φi
, (2.30)

where ∆c is set to 0.38 m, which is the length of an edge of the boundary of A and, in fact,
the length of cable necessary to cover it. Hence, the only unknowns are φi and φf .
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Finally, upon solving Eq. (2.29) for ψ, we obtain the desired function ψd(φ) to generate a
specific tension profile t(c) in the cables

ψd(φ) = 1
τ4

∫ ∆c

0
(t(c)− τ2/cφ)dc+ ψi, (2.31)

and the only remaining unknowns are φi, φf , ψi, τ2, and τ4.

Optimization of the Four-Bar Linkage Parameters

Based on the work of Freudenstein [238], we may write the constraint equation of the planar
four-bar linkage as

− k1cosφ+ k2cosψ + k3 = cos(ψ − φ), (2.32)

where k1 = l1/l4, k2 = l1/l2, and k3 = (l21 + l22 − l23 + l24)/(2l2l4). For the sake of conciseness,
we rewrite Eq. (2.32) as

λTk = µ, (2.33)

where λ = [ −cosφ cosψ 1 ]T , k = [ k1 k2 k3 ]T , and µ = cos(ψ − φ).

We compute the Freudenstein parameters k that minimize the squared residual (noted R2)
of Eq. (2.33) when substituting in the desired input-output relationship ψd(φ). Since this
squared residual is to be minimized over the entire range of φ, the objective function may be
expressed as

R2 =
∫ φf

φi

(
λTk− µ

)2
dφ

= kT
(∫ φf

φi

λλTdφ

)
k− 2

(∫ φf

φi

µλTdφ

)
k

+
∫ φf

φi

µ2dφ.

(2.34)

Notice that Eq. (2.34) is a quadratic function of k ∈ R3, which is easily minimized by solving
a linear system of three equations in three unknowns.

However, in order to obtain a crank-rocker mechanism, the optimized geometry of the four-
bar linkage must always allow a real solution for ψ over the complete range of φ. Moreover,
for practical reasons, we set l1 = 0.15 m, constrain l2 and l4 within [0.015,0.15] m while l3
must allow the four-bar linkage to be assembled. Hence, mathematical constraints should be
defined to guarantee this result.

Based on the work of Gosselin and Angeles [241, 242], the two following conditions are for-
mulated, which are necessary and sufficient for the mechanism to be of the crank-rocker type:

(k1 + k3)2 ≤ (k2 + 1)2, (2.35)

(k1 − k3)2 ≤ (k2 − 1)2. (2.36)
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These quadratic inequalities are equivalent to four affine conditions, which can be expressed
as Ck ≤ d, where

C =


1 −1 1
1 −1 −1
−1 −1 1
−1 −1 −1

 , and d =


1
−1
−1

1

 . (2.37)

In turn, the bounds on the link lengths can be written as 1 ≤ k1, k2 ≤ 10.

Thence, the optimization problem is expressed as

minimize 1
2kTHk + fTk,

subject to Ck ≤ d,
ll ≤ k ≤ lu,

over k,

(2.38)

where
H = 2

∫ φf

φi

λλTdφ, and f = −2
∫ φf

φi

µλdφ, (2.39)

while ll = [ 1 1 −∞ ]T and lu = [ 10 10 ∞ ]T are the vectors containing the lower and
upper bounds for k, respectively.

Similarly to the problem of Eq. (2.25), the optimization problem defined in Eq. (2.38) forms a
QP with bound constraints. We note that the last term of Eq. (2.34) has been removed from
the QP since it has no effect on its solution. Moreover, the matrix H is easily shown to be
symmetric positive semidefinite, since kTλλTk ≡ (kTλ)2 ≥ 0 and the sum of positive values
always provides a positive result. Therefore, this optimization problem leads to a convex
QP [236].

Determination of the Optimum Nonlinear Spring Parameters

Previously, we have found the desired four-bar linkage behaviour ψd(φ) corresponding to an
arbitrary tension profile t(c) and then a reliable method to compute Freudenstein parame-
ters {k1, k2, k3}. We now set out to determine the best values of the spring properties {τ2, τ4}
and the assembly specifications {φi, φf , ψi} to reproduce the chosen seven-degree polynomial.

In order to find a suitable nonlinear spring, an optimization problem must be properly defined.
The objective function is chosen to be the RMS error between the prescribed tension profile
t7(φ) (from the polynomial of degree seven) and the resulting tension profile produced by
the nonlinear spring over the entire range of φ. Clearly, this objective function should be
minimized.

Let us first compute the resulting cable tensions generated with the spring-loaded four-bar
linkage for fixed values of {φi, φf , ψi, τ2, τ4}. The derivative of ψ with respect to φ is obtained
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from Eq. (2.32), which gives

dψ

dφ
= sin(ψ − φ)− k1sinφ

sin(ψ − φ)− k2sinψ . (2.40)

Using the Weierstrass substitution formulas5 for ψ, Eqs. (2.32) and (2.40) may be respectively
written as

uz2 + vz + w = 0, (2.41)

where

u = −k1cosφ− k2 + k3 + cosφ, (2.42)

v = −2sinφ, (2.43)

w = −k1cosφ+ k2 + k3 − cosφ, (2.44)

and
dψ

dφ
= −(k1 − 1)sinφz2 − 2cosφz + (k1 + 1)sinφ

sinφz2 + 2(cosφ− k2)z − sinφ . (2.45)

Then, solving the quadratic function of Eq. (2.41) for z gives

z1,2 = sinφ±
√

∆
u

, (2.46)

where
∆ = −(k3 − k1cosφ)2 + (k2 − cosφ)2 + sin2φ. (2.47)

Finally, upon substituting Eq. (2.46) into Eq. (2.45), and the resulting equation into Eq. (2.28),
but expressed as a function of only δφ and δψ by using the fact that cφdφ = dc, we obtain
the following relation for the cable tension profile t(φ) generated by the nonlinear spring:

t(φ)1,2 = 1
cφ

[
τ4
dψ1,2
dφ

+ τ2

]
, (2.48)

or
t(φ)1,2 = −1

cφ

[
τ4

sinφkTe±
√

∆g
sinφ∆± 1

2
√

∆h
− τ2

]
, (2.49)

where e ≡ [ e1 e2 e3 ]T , and

e1 = 1− k2u− k3cosφ (2.50)

e2 = cosφ− k3, (2.51)

e3 = k3 − k−1
3 , (2.52)

g = k1 − 1 + cosφ(k2 − k3), (2.53)

h = u2 + ∆ + sin2φ. (2.54)

5The Weierstrass substitution is the trigonometric substitution z = tan(ψ2 ) which transforms an integral
of the form

∫
f(cosψ, sinψ)dψ into one of the form

∫
f( 1−z2

1+z2 ,
2z

1+z2 ) 2dz
1+z2 .
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Notice that Eq. (2.46) yields two possible output angles for a chosen input angle. Hence, the
four-bar linkage may be assembled in two different ways, but only one of them will suitably
approximate the desired function ψd(φ) (see Eq. (2.31)).

Having found the effective tension profile of a generic four-bar linkage, we define the objective
of our synthesis algorithm. A suitable measure of the deviation of the effective tension profile
from the prescribed tension profile is its RMS error over the travel of the linkage. Symbolically,
this gives

f(x) ≡∆trms

≡

√√√√min(
∫ φf
φi

∆t(φ)2
1dφ,

∫ φf
φi

∆t(φ)2
2dφ)

φf − φi
,

(2.55)

where x ≡ [φi φf ψi τ2 τ4 ]T , ∆t(φ)1 = t(φ)1 − t7(φ), and ∆t(φ)2 = t(φ)2 − t7(φ).
Equation (2.55) means that the tension profiles of both assembly modes are compared with
the prescribed cable tension profile t7(φ), and the best approximation is kept to compute
f(x). It is important to notice that the geometric parameters k of the four-bar linkage are
not included into x because they are directly computed from φi, φf , ψi, τ2 and τ4 by solving
the QP defined in Eq. (2.38).

Since our objective function f(x) is not convex, minimizing it using descent methods (further
details will be given in Chapter 4 regarding different optimization methods available) will lead
to local solutions, which strongly depend on the initial guess x0. Hence, in order to improve the
likelihood of converging towards a practical solution, we define additional constraints. Based
on the observations of the tension profile from the seven-degree polynomial, we conclude that
we should have φf − φi ≥ 3π. Furthermore, the solution should be included into φi ∈ [0,2π],
φf ∈ [0,6π], ψi ∈ [0, π], τ2 ∈ [0.01,∞], and τ4 ∈ [0.01,∞]. Note that the lower bound for τ2

and τ4 is set to 0.01 N·m instead of 0 N·m in order to avoid mathematical singularities from
Eq. (2.31). Finally, twenty randomly-selected initial guesses belonging to the feasible set of
parameters x have been used in order to obtain a suitable final solution x?.

The function fmincon, with the interior-point algorithm, from the MATLAB® optimization
toolbox is applied to solve the problem, which is expressed as

minimize f(x),
subject to cTx ≤ d,

ll ≤ x ≤ lu,
over x,

(2.56)

where

c ≡ [1 −1 0 0 0 ]T , (2.57)

d = −3π, (2.58)
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min(~f(x))
x?, f(x?)

End

Figure 2.8 – Flowchart of the optimization method.

ll = [ 0 0 0 0.01 0.01 ]T , (2.59)

lu = [ 2π 6π π ∞ ∞ ]T . (2.60)

In summary, Fig. 2.8 shows the different steps of the algorithm devised to determine an
appropriate set of geometric parameters for the four-bar mechanism, the initial assembly
values, as well as the required constant-torque springs values attached to each driving shaft
of the linkage (input and output). First, an initial guess is sent to the optimization function
fmincon. Then, Eq. (2.31) is used to compute the prescribed function ψd(φ), which enables
reproducing the exact cable tension profile from the optimized polynomial of degree seven.
The geometric parameters of the four-bar linkage are then determined by solving the quadratic
program of Eq. (2.38), and f(x) is computed by solving Eqs. (2.49) and (2.55). Finally, these
steps are performed in loop until we have evaluated twenty different initial guesses x0. The
minimum of the twenty final results f(xj), where j = 1, . . . ,20, is chosen as the final (locally)
optimum solution x?. Tables 2.1 and 2.2 contain the twenty initial guesses x0,j and the twenty
final results, respectively, that we used to determine the final solution x? to the problem
defined in Eq. (2.56).

At the end, an appropriate set of parameters defining the spring-loaded four-bar mechanism is
obtained, which minimizes the RMS error between the prescribed and effective cable-tension
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Table 2.1 – The twenty initial guesses x0,j for the problem defined in Eq. (2.56).

φi (rad) φf (rad) ψi (rad) τ2 (N·m) τ4 (N·m)
x0,1 0.5 6.5 0.0 1.0 2.5
x0,2 0.5 9.5 1.0 1.0 2.5
x0,3 1.0 10.0 1.0 1.0 2.5
x0,4 1.5 11.0 0.5 1.0 2.5
x0,5 2.0 11.5 1.0 1.0 2.5
x0,6 2.5 12.0 1.0 1.0 2.5
x0,7 3.0 12.5 1.0 1.0 2.5
x0,8 3.5 13.0 1.0 0.8 2.5
x0,9 4.0 13.5 1.0 0.8 2.5
x0,10 4.0 13.5 1.0 1.0 2.1
x0,11 4.5 14.0 1.0 0.9 2.4
x0,12 5.0 14.5 1.0 0.9 2.4
x0,13 5.5 15.0 1.0 0.9 2.4
x0,14 6.0 15.5 1.0 0.9 2.4
x0,15 4.0 13.5 1.0 0.9 2.4
x0,16 4.0 13.5 1.1 0.9 2.4
x0,17 4.0 13.5 1.1 0.9105 2.4360
x0,18 4.0 13.5 1.2 0.9105 2.4360
x0,19 4.05 13.5 1.19 0.9105 2.4360
x0,20 4.05 13.5 1.18 0.9105 2.4360

Table 2.2 – The twenty final results xj and f(xj) for the problem defined in Eq. (2.56).

φi (rad) φf (rad) ψi (rad) τ2 (N·m) τ4 (N·m) f(xj)
x1 0.0088 9.4437 1.2244 1.1634 0.0156 12.2935
x2 1.2625 10.8717 0.8826 0.8550 0.0612 9.7751
x3 1.0498 10.5281 0.0006 0.6374 0.0166 11.0456
x4 1.5103 11.0348 0.3513 0.4395 0.6908 10.8828
x5 1.2063 11.1002 0.8048 0.8071 0.0121 9.8863
x6 1.3334 10.8426 0.5322 0.7139 0.0952 9.8134
x7 3.7693 13.5859 0.2388 0.8045 0.0196 10.1465
x8 0.0007 9.8888 0.7600 0.5748 0.0103 11.5876
x9 3.8397 13.3656 0.9811 0.9377 2.0735 3.9044
x10 3.9742 13.3990 0.9970 0.8784 2.3737 4.5723
x11 4.4858 14.0104 1.0073 0.9053 2.4094 6.7773
x12 4.9941 14.4189 1.0020 0.8978 2.4167 17.1041
x13 0.0818 9.8738 1.2791 1.2677 0.0996 14.9014
x14 5.2273 14.9431 1.7930 0.8748 0.2233 7.9539
x15 4.0786 13.6029 0.9997 0.9011 2.6243 2.6725
x16 4.0074 13.5323 1.0973 0.8956 2.3973 2.7282
x17 4.0995 13.6236 1.1831 0.9025 2.3799 2.6001
x18 3.9916 13.5110 1.2001 0.9161 2.4405 2.6066
x?19 4.0634 13.4950 1.1871 0.9105 2.4077 2.4683
x20 3.9114 13.4484 1.2198 0.8959 2.4719 2.9920
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Figure 2.9 – Comparison of the effective behaviour of ψ generated by the four-bar mechanism
with the prescribed behaviour ψd.

profiles. The optimum values, best solution x? (obtained at j = 19) from our proposed
technique, are φi = 4.0634 rad, φf = 13.4950 rad, ψi = 1.1871 rad, τ2 = 0.9105 N·m, and
τ4 = 2.4077 N·m. These values lead to a RMS error of 2.4684 N over the range [φi, φf ].
The normalized lengths of the four-bar links are l1 = 1.0 m, l2 = 0.1 m, l3 = 1.3898 m,
and l4 = 0.6018 m, and the ratio rφ is approximately 1.26. It should be noted that these
link lengths come from the corresponding optimized Freudenstein parameters (see Eqs. (2.38)
and then (2.32)), which are k? =

[
1.6617 10 −4.6474

]T
, and rφ from a cφ value of

0.0403. Figures 2.9 and 2.10 present the optimized four-bar behaviour corresponding to
the two solutions (ψ(φ)1 and ψ(φ)2) in comparison with the prescribed behaviour ψd and
the optimized effective tension profiles (t(φ)1 and t(φ)2) in comparison with the prescribed
tension profile t7(φ), respectively. We note that solution 1 is the true final solution, since it
best approximates both the prescribed four-bar behaviour and the prescribed cable tension
profile.

Figures 2.11 and 2.12 show the corresponding contours of the Euclidean-norm of the external
forces that must be applied at the end effector of the three-cable two-DoF planar CDPM
in order to perfectly reach the neutral equilibrium over the entire workspace A. Comparing
this result with the one shown in Fig. 2.5b, we note that the static equilibrium is not as
good as with the optimized polynomial, since the spring-loaded four-bar mechanism only
approximates the prescribed behaviour. Nevertheless, we observe that a vast area at the
centre of the workspace is reasonably well balanced in a purely mechanical manner with the
proposed nonlinear spring. In fact, the value of ||fr||2,rms over A is 4.1180 N for the result
shown with Fig. 2.11 instead of 1.7989 N for the result shown with Fig. 2.5b. The effective
||fr||2,rms, which was computed by numerical integration over the workspace A using the
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Figure 2.10 – Comparison of the effective tension profiles generated by the nonlinear spring
with the prescribed tension profile.
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Figure 2.11 – Effective ||fr||2 (N) over A obtained with the nonlinear spring (solution 1).

following relation:

||fr||2,rms =
√

1
A

∫
A
||fr||22dA, (2.61)

is significantly higher than the theoretical one, but over the important region of A, i.e., close
to the origin, we obtain a useful approximation of the neutral equilibrium.

Finally, for comparison purposes, we show with Figs. 2.13 and 2.14 the mapping of the norm
of the effective resultant forces over A when solution 2 is selected rather than solution 1. This
solution does not allow to reach a suitable ASE over A as it can be confirmed by looking at
Figs. 2.9 and 2.10. Indeed, the corresponding value of ||fr||2,rms is 35.8773 N for this solution
instead of 4.1180 N with solution 1 and, as seen with Fig. 2.14, a neutral equilibrium seems
to be reached at only four specific regions over A.
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Figure 2.13 – Effective ||fr||2 (N) over A obtained with the nonlinear spring (solution 2).
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Figure 2.15 – Embodiment of the devised three-cable two-DoF cable-driven pantograph.

2.2.4 Implementation of the Optimized Nonlinear Springs in a
Three-Cable Two-DoF Planar Cable-Driven Pantograph

A prototype of the three-cable two-DoF planar CDP has been built including the optimum
nonlinear springs obtained in Sub-section 2.2.3. A top view of the CAD model of this testbed
was previously shown in Fig. 2.1. This figure shows the main components of the planar
CDP. The master end-effector, which is moved by the user’s hand over the workspace A,
is constrained by three cables. The opposite end of each cable is attached to a nonlinear
spring in order to maintain the minimum cable tensions while producing the quasi-neutral
equilibrium over A. From these same nonlinear springs, another set of three cables is then
routed to the slave end-effector, which mimics the motion of the master, following a scaling
factor κs, over the workspace A′.

Prototype of a Three-Cable Two-DoF Planar Cable-Driven Pantograph

The prototype built for the implementation of the optimized nonlinear springs is identical
to the one designed and presented in Chapter 1 except for two main differences. The first
difference is the replacement of the proportional-torque spring assemblies by nonlinear spring
assemblies and the second is that an effort has been made to decrease the number of idler
pulleys guiding the set of cables from the master end-effector to the slave end-effector (from
seventeen to six pulleys (see Figs. 1.19 and 2.1)). This last modification helps to decrease
friction in our device. The resulting prototype is illustrated in Fig. 2.15.

The mechanical design of the nonlinear springs is based on the best solution x? obtained in
the previous sub-section. Hence, a constant-torque spring of 0.9105 N·m must be fixed on
the input shaft of the four-bar linkage as well as one of 2.4077 N·m on the output. However,
since these values do not correspond to commercial standards on the market, we decided to
approach them by using two assemblies of standard constant-torque springs. In this manner,
three springs of respectively 0.0384 N·m (0.34 lb · in), 0.0744 N·m (0.65 lb · in), and 0.7977 N·m
(7.06 lb · in) are attached to the input shaft (for a total of 0.9105 N·m (exact desired value
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Figure 2.16 – An exploded view of a CAD representation of the main components of the
nonlinear spring assembly.

τ2)), while three others of 0.6214 N·m (5.50 lb · in), 0.7977 N·m (7.06 lb · in), and 1.0169 N·m
(9.00 lb · in) are attached to the output shaft (for a total of 2.4360 N·m (≈ 1.2% over the
desired value τ4)). The totality of the shafts necessary to support the springs, the pulleys, and
the input-output shafts are mounted on standard ball bearings in order to minimize the effect
of friction. Furthermore, a spur-gear transmission is designed as an assembly of a standard
68-teeth and a 54-teeth spur gears. The ratio cφ obtained is 1.2593 instead of the optimal
value of 1.26.

Figure 2.16 presents in details the internal architecture of the nonlinear spring assemblies
by showing an exploded view of a CAD representation of their main components. Each of
these assemblies contains, on the left-side shaft, a master’s winding pulley on which a cable
constraining the master end-effector is attached, its counterpart for the slave and the driving
gear of the spur-gear transmission. On the center shaft (input axis of the four-bar linkage), we
have the driven gear of the spur-gear transmission and the first set of constant-torque springs
(τ2). It should be noted that this driven gear shows also an eccentric axis, for which the
centre-to-centre distance between the eccentric axis and its main axis represents the link l2
of the four-bar linkage (see Fig. 2.7). Then, links l3 and l4 of the four-bar mechanism are
respectively fixed to the eccentric axis on the driven gear and the right-side shaft (output
axis of the four-bar linkage). The link l1 is formed by the steel-design frame regrouping
the nonlinear-spring assembly (see Fig. 2.15). Finally, the output shaft contains the set of
constant-torque springs to generate the required torque τ4.
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Figure 2.17 – The experimental benchmark of the three-cable two-DoF planar CDP with the
nonlinear springs.

Results and Discussions

In order to verify the real level of neutral equilibrium reached over the workspace of the
three-cable two-DOF planar CDP, an experiment, similar to the one completed in Chapter 1,
was performed to measure the forces applied on the end effector while moving it over A.
A force-torque sensor from ATI Industrial Automation [200] was used to statically record
the balancing forces applied on the plane of motion. As for the experiment performed in
Chapter 1, 151 different positions were tested in order to cover A (see Fig. 1.26b for the
points distribution) and the force applied at each of these positions was recorded. Figure 2.17
shows a picture of the experimental testbed and the measurements are shown in Figs. 2.18
and 2.19. The RMS value of ||fr||2 over A is ≈ 10.0 N instead of the expected 4.1180 N. This
value was also determined by computing the volume under the surface formed by our set of
measurements ||fr||2 using the following relation:

||fr||2,rms =

√√√√ 1
A

p∑
i=1

Vmesh,i ≡
√

1
A

∫
A
||fr||22dA, (2.62)

where Vmesh,i is the volume of the ith irregular triangular prism associated to the mesh grid
that best fits our set of experimental measures and p is the number of discrete triangles
required to form this mesh grid (p = 285). It should be noted that each irregular triangular
prism is defined by the Cartesian position of three points belonging to A and the square of
the norm of their associated measured force, i.e., ||fr||22.

In order to explain the difference between the expected and experimental level of static equi-
librium reached over A, we enumerate the sources of errors that act inside the testbed. First
of all, using constant-torque springs leads to uncertainties on the exact torque values applied
to links 2 and 4 (see Fig. 2.7). Indeed, we based our choice of commercial constant-torque
springs on their nominal values. However, this kind of springs holds a possible error range of
±10%. Also, as mentioned above, our nominal value for τ4 is 1.2% over the optimum value
and our spur-gear ratio cφ is 1.2593 instead of 1.26. Moreover, a small error on the initial
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Figure 2.18 – Experimental ||fr||2 (N) measured over A resulting from the devised nonlinear
springs.
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Figure 2.19 – Representation in 3D of experimental ||fr||2 (N) measured over A.

input and output angles (φi and ψi, respectively) may easily lead to inaccurate forces applied
by each cable on the planar CDPM end-effector. These errors are thought to be those that are
mainly responsible for the results difference, over manufacturing, assembly and measurement
errors.

Despite these important errors, the results presented in Figs. 2.18 and 2.19 show that our
experimental prototype helps in balancing the planar CDP end-effector around the center of
its workspace A, i.e., the most useful region. Moreover, similarly to Chapter 1, we assessed
the magnitude of the input force required in order to hold the master end-effector at different
positions over A when no slave CDPM is attached to the nonlinear springs. Figures 2.20 and
2.21 show the corresponding graphs, i.e., respectively using isocontours and a tridimensional
view to represent the distribution of ||fr||2 over A. As a result, the RMS value of ||fr||2 over
A is ≈ 10.1 N, which is equivalent to the corresponding value for the full CDP. This result
proves again that, when no external force is applied on the slave end-effector of the CDP, its
presence does not alter the force that a user must apply on the master end-effector in order
to balance out the mechanism.

Finally, as future work, it would be now interesting to modify the previous method in order
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Figure 2.20 – Experimental ||fr||2 (N) measured over A resulting from the devised nonlinear
springs (master only).
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Figure 2.21 – Representation in 3D of experimental ||fr||2 (N) measured over A (master only).

to approximate the static balancing of spatial CDPs. Although this work could probably
be extrapolated from the planar to the spatial case without encountering major theoretical
hurdles, at least for a constant-orientation spatial CDP, it is not clear whether this method
would approximate sufficiently well static equilibrium in mechanisms with less symmetry
and more degrees of freedom. In fact, based on the experimental results, it is found to be
relatively difficult to reach a sufficient level of ASE for fixed-eyelet CDPs with a purely-
mechanical nonlinear-spring design based on a four-bar linkage and commercially-available
constant-torque springs, even for the simple planar case. Consequently, further work would
be necessary to clarify this matter.

2.3 Summary

In summary, this chapter reports on a novel method to approximate the static balancing of a
planar CDP, or similarly a planar CDPM, based on the design of nonlinear springs. Instead
of suitably controlling conventional electrical motors in order to produce the minimum cable
tensions required to maintain the geometry of the mechanism while generating neutral equi-
librium over its workspace, purely-mechanical nonlinear springs containing four-bar linkages
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and constant-torque springs are designed. The main advantage of this method is to increase
the level of security of CDPs or CDPMs, by ensuring a level of static equilibrium over the
workspace while removing any dependencies to electrical components. In this way, such a
mechanism can be used anywhere, even where sources of electricity are unavailable or prohib-
ited. In addition, however, if used in parallel with electrical motors, these passive nonlinear
springs can reduce to a minimum the continuous expenditure of electrical energy from motors
even when no acceleration or force is applied on the end effector.

This chapter was divided in two main sections. The first, Section 2.1, defined for the reader
the meaning of an exact static equilibrium and an approximate static equilibrium. From
there, the second section, Section 2.2, described the methodology proposed to design purely-
mechanical nonlinear springs that approximate the static balancing of a three-cable two-DoF
planar cable-driven pantograph. This method was then presented in four parts. First, in
Sub-section 2.2.1, we presented the chosen geometry of the planar CDP as a three-cable
two-DoF master-slave architecture for which the master and the slave workspaces have an
equilateral-triangle shape, following a given scaling factor of κs = 1/2, a geometry similar
to the one previously used in Section 1.4. In Sub-section 2.2.2, we have determined the
best nonlinear tension profile in the cables in order to approximate a neutral equilibrium
over the workspace of the master CDPM only, based on a principle previously established
in Chapter 1. The objective was to minimize over the workspace the Euclidean-norm of the
resultant of all forces applied on the end effector while ensuring a minimum tension in the
cables. As expected, the results show that a higher degree of the polynomial yields a better
approximation of the neutral equilibrium.

The object of the third main sub-section, Sub-section 2.2.3, was the detailed optimum design of
the nonlinear spring to reproduce the desired cable tension profile. Because the spring was to
consist of a four-bar linkage, the optimum seven-degree polynomial was chosen as the tension
profile to reproduce. This choice was explained by the quasi-periodicity of this resulting
function, its relatively low peaks of tension as well as the closeness to neutral equilibrium
reached over the workspace. Then, the desired four-bar linkage input-output relationship was
determined. Based on the work of Freudenstein, a quadratic program was then defined in
order to obtain the four-bar linkage that best corresponds to the desired behaviour. Finally,
an algorithm was proposed to optimize the values of the properties of the springs and the
assembly. The objective function was defined as the verification of the root mean square
deviation of the resulting tension from the prescribed tension. The global problem being non-
convex, different randomly-chosen initial solutions have been used in order to find a suitable
final solution to our problem.

The balance of this chapter, Sub-section 2.2.4, focused on the implementation of the optimized
nonlinear springs within a three-cable two-DoF planar CDP. A prototype of the resulting
nonlinear spring was built and tested, as well as the three-cable two-DoF planar CDP acting as
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the experimental test bench, which was the same prototype used in Chapter 1. An experiment
was performed in order to verify the closeness to the neutral equilibrium reached over the
workspace. The results have shown a RMS value of the force that the user should apply
on the end effector of ≈ 10.0 N over the entire workspace instead of the expected value of
4.1180 N. This difference has been mainly explained by inaccurate constant-torque values
provided by the chosen commercial springs, by a non-optimal spur-gear ratio and inaccurate
initial input and output angles on the manufactured nonlinear springs.

In fact, because of these factors, which are difficult to control to desired precision, one should
be careful when endeavouring to build such a complex passive spring. Here, since we added
nonlinear springs within the system, we approached the static equilibrium better on certain
regions of the workspace than on others. Nevertheless, we should mention that the mechanism
“feels” close to neutral equilibrium when manipulated over the central part of its workspace.
Indeed, in this area, the end effector can be moved about only with a small press of the finger.
It is also interesting to note that compared to the experimental results shown in Chapter 1,
i.e., a measured RMS value of ≈ 19.7 N over A, the results including the nonlinear spring-
loaded reels allowed us to decrease the required input forces at the master end-effector to
move it across its workspace by ≈ 50%.

Moreover, as previously discussed in Chapter 1, the current experimental measurements
demonstrate again that the addition of the slave part to the master-slave system does not have
a significant effect on the forces felt at the master’s end-effector when no external forces are
applied to its end effector. Also, the proposed technique for the approximate static balancing
of a planar CDP could be transposed to the spatial case, at least for a constant-orientation
spatial CDP. However, since the experimental results presented in this chapter do not allow
to reach a suitable level of ASE, even for the simple planar two-DoF case, additional work
would need to be performed in order to determine if the combination of four-bar linkages with
constant-torque springs is an efficient means of approximating neutral equilibrium over the
n-DoF workspace of a spatial CDP.

Before we investigate this open problem, it is necessary to ensure that we have the relevant
tools in order to determine the best geometry of a m-cable n-DoF spatial CDP for a given
application. The following chapter aims at providing such a tool, by which the effect on the
workspace of self-collisions within a CDPM can be visualized.
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Chapter 3

Mechanical Interferences in
Cable-Driven Pantographs

“Do not worry about your difficulties in mathematics.
I can assure you that mine are still greater.”

- Albert Einstein

In previous chapters, it was seen that the architecture of a cable-driven pantograph (CDP)
is chosen to be the assembly of two homothetic cable-driven parallel mechanisms (CDPMs).
Thence, when one aims to select the geometry of a CDP for a particular application, it is
possible to simplify the problem by focusing only on the performance evaluation of either one
of the two sides of the master-slave device.

In this chapter, we use this fact in order to facilitate the study of one major drawback associ-
ated with the selection of the geometry of a spatial CDP: the high probability of mechanical
interferences between the moving parts of both sub-mechanisms. This phenomenon is de-
scribed here under the assumption that a cable is a line segment in space. When a mechanical
contact occurs between two cables or between a cable and an edge of the end effector, these
entities necessarily lie in the same plane, and then the three-dimensional problem becomes
two-dimensional. This fact is used to simplify the equations, and leads to exhaustive descrip-
tions of the associated interference loci in the constant-orientation workspace of a CDPM. It
will be seen that these results provide a fast method to graphically represent all interference
regions in the manipulator workspace, given its geometry and the orientation of its end ef-
fector. Although this tool was initially meant to facilitate the development of cable-driven
pantographs, it is directly applicable to the design of any CDPM.

As enumerated in Chapter 1, CDPMs hold several advantages over conventional parallel mech-
anisms such as higher accelerations, modularity, and potentially larger workspaces. However,
we cannot disregard the drawbacks related to the use of this kind of mechanisms. Among

90



those, there are the vibrations, which can be observed at the end effector if the stiffness of
the mechanism is insufficient [81]. Another drawback, possibly the most important one, is the
unilaterality of the force transmission in cables, which can only pull and not push. This re-
quires a minimum of n+ 1 cables to suitably constrain n-DoF [82, 148]. Finally, interferences
between two cables or between a cable and another object in the workspace are possible. This
limitation is often as constraining as any other, but has received relatively little attention in
the literature.

For example, a group of researchers worked on the extension of the workspace of a CDPM
by permitting collisions between wires in tension [250]. Another group worked on permitting
collisions between two cables by releasing the tension in one of them [103, 251, 252]. Since
their articles are concerned with the management of cable collisions, they are complementary
to this work, which is concerned with their detection.

A few other researchers worked on the development of methods to detect and avoid inter-
ferences in CDPMs. Among them, we may cite Lafourcade and Verhoeven [106, 107], who
noted that reducing the number of attachment points on the end effector and on the base, i.e.,
regrouping attachment points together, tends to decrease the risk of interference. Others pro-
posed a hybrid method—symbolical and numerical—to verify the occurrence of interferences
between cables during specific trajectories of the end effector [79, 101, 118]. These techniques,
in general, are based on the computation of distance between line segments [253]. This way of
detecting interferences is suitable when the manipulator working trajectories are planned in
advance. It soon becomes computationally intensive, however, when there are many possible
trajectories. Another drawback is the risk of not detecting all the mechanical contacts be-
tween entities depending on the level of refinement in the discretization of the trajectories. In
summary, this is a local method and not a global one, since it does not allow to determine the
set of interference loci inside the prescribed workspace, but only those belonging to specific
trajectories.

To circumvent these problems, some symbolical and numerical approaches are proposed in
the literature to detect collision regions within the CDPM workspace. Andrade-Cetto et
al. [254] designed a wire-based active tracker and resorted to the separating axis theorem1 to
prevent wire interferences within their device. Although this technique prevents interferences,
it only indicates a risk of interference, and, therefore, it unnecessarily constrains the CDPM
workspace. Another method was proposed by Merlet [187], who symbolically expressed the
regions of interference between cables, and between a cable and a polyhedral end effector. He
used this work inside numerical algorithms to compute the constant-orientation interference
regions. More recently, a group of researchers worked on a numerical method to determine the
interference-free wrench-closure workspace while taking into account cable-mass effects, i.e.,

1The separating axis theorem (SAT) says that two convex objects do not overlap if there exists a line
(called axis) onto which the two objects’ projections do not overlap.

91



the sag of the cables [255]. Also, another group has worked on a symbolical and numerical
method to determine the interference loci (cable-cable, cable-edge of the end effector and
cable-surface of the end effector) within a CDPM workspace with a given constant-orientation
end-effector [256].

Other work was devoted to the detection of collisions inside the workspace of a conventional
parallel robot. Pott et al. [257] used methods similar to those of references [79, 101, 103, 118] to
detect rigid-link interferences inside intervals, and thence, analyzed the workspaces of parallel
kinematic machines. Ketchel et al. [258] proposed a formulation to detect self-collisions in
spatial closed chains between right circular cylindrical objects performing specific trajectories.
Finally, Merlet et al. [259] proposed algorithms based on interval analysis to detect leg-
interferences over a given workspace or trajectory. In this reference, the authors compared
three different mathematical descriptions of interferences and evaluated their equivalence in
terms of numerical efficiency.

Although the methods devised for rigid-link mechanisms may be a source of inspiration for
interference detection in CDPs or CDPMs, they cannot be applied directly. In this chapter,
the proposed approach is similar to that taken in Refs. [187, 256], while pushing further the
symbolical analysis. It was originally published in [188], after [187] and before [256]. This
approach results in a streamlined method to exhaustively compute the interference regions
between two cables and between a cable and an edge of the end effector inside the constant-
orientation workspace of any given CDPM, or by similitude, any cable-driven pantograph.
Moreover, the resulting concise symbolical expressions of the interference regions allow one
to draw general conclusions, which should prove useful at the design stage.

This chapter is organized as follows. Section 3.1 defines the phenomenon of a mechanical inter-
ference, which motivates this work. Section 3.2 examines mechanical interferences for planar
CDPMs, Section 3.3 describes the methodology proposed to determine interference regions
for constant-orientation spatial CDPMs and, finally, Section 3.4 summarizes and highlights
the main results presented in this chapter.

3.1 Definition of a Mechanical Interference

A general definition of the word interference, from the Oxford English Dictionary [3], is: the
action or fact of interfering or intermeddling (with a person, etc., or in some action). This
word has many different uses such as in electronics for the distorted portion of a received
signal, in physics for the variation of wave amplitude that occurs when different waves come
together, and also in sports for an illegal obstruction or hindrance of an opposing player.

In this work, an interference will be defined as the physical collision between two entities,
which partially or fully blocks the movement of one or both objects. This will be called a
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Figure 3.1 – Physical collision between two cables or between a cable and an edge of the end
effector.

mechanical interference. When applied to CDPMs, this phenomenon relates to the physical
contact between a pair of cables or between a cable and an object in the CDPM workspace.
This object is either the CDPM end-effector itself or its payload.

The analysis presented in this chapter concerns the determination of the interference regions
in cases of cable-cable and cable-edge contacts (edges of the end-effector geometry). The
same method can easily be adapted to the detection of mechanical interferences between a
cable and an additional object in the workspace when knowing its wire-frame model but this
task is kept for future investigations. Figure 3.1 illustrates the phenomenon of a mechanical
interference for the purpose of the current work. Before addressing mechanical interferences
for a generic CDPM, let us first explore this phenomenon for planar CDPMs.

3.2 Mechanical Interferences in Planar Cable-Driven Parallel
Mechanisms

A planar CDPM is a branch of the CDPM family which is constrained to move over a plane P
of the Cartesian space, and its reels also belong to P. The end effector of these mechanisms
may have two degrees of freedom (translational CDPM moving over P) or three degrees of
freedom (translational CDPM moving over P with an orthogonal rotational axis). It is noted
that a CDPM having only one degree of freedom is either called a linear CDPM or a purely
rotational CDPM. If a CDPM has more than three DoFs, the motion of the mechanism is no
longer constrained by a plane or its reels must be distributed in a tridimensional space and
its workspace W is rather defined as a part of (four or five DoFs) or the full Cartesian space
(six DoFs).

Based on the previous definition, Fig. 3.2 presents the two possible types of planar CDPMs.
Figure 3.2a represents the two-DoF planar CDPM {x, y} and Fig. 3.2b is the three-DoF planar
CDPM {x, y, φ}. Their end-effector and base geometries are arbitrarily chosen to be a square
and a rectangle, respectively. Moreover, as it can be observed in Fig. 3.2, both mechanisms
are fully constrained by four cables. Their workspaces W are defined as the convex hulls of
the four base anchor points, so as to avoid collisions between the end effector and the reels
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Figure 3.2 – Arbitrary planar CDPM geometries.

on the base.

Mechanical interferences for planar CDPMs do not necessarily need extensive analysis and
computations to be determined and completely avoided. Moreover, some basic rules can be
followed in order to choose a geometry with no or only a limited number of interference regions
within its planar workspace. Even if these rules or conditions might seem obvious to some
readers, we endeavour to define them rigorously, for the sake of completeness. Also, it should
be noted that, in practice, crossed cables in planar CDPMs are normally accepted by roboti-
cists, since it is possible to have them in contact with no significant effect on the mechanism’s
behaviour, provided that their diameters be relatively small. In practice, however, this kind
of cable arrangement may lead to more friction within the CDPM and potentially undesired
wrenches applied to its end effector.

In general, the idea behind the avoidance of mechanical interferences between two entities is
to keep them apart from each other for every posture of the planar CDPM. However, to the
opposite of the previous statement, Lafourcade [106] and Verhoeven [107] remarked that we
can also avoid interferences if cables share a common attachment point. Indeed, two straight
segments that are not collinear and overlapping cannot intersect at more than one point. This
rule is only true under the assumption that the tension is sufficient to keep the cables taut,
i.e., to avoid cable sag in order to be considered as straight segments.

A four-cable two-DoF planar CDPM is depicted on Fig. 3.2a. From this sketch, it is obvious
that no mechanical interferences can occur between the cables when translating the end
effector over the workspace W. Moreover, with this architecture, no collisions are expected
between a cable and an edge of the end effector. Consequently, we can say that W is free
of mechanical interferences. It is important to note that the same statement holds for every
CDPM for which the end effector is a point, because all cables attach to the same point.

In order to generate physical collisions inside W, we would have to add a new cable and to
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Figure 3.3 – Arbitrary two-DoF planar CDPM with a mechanical interference.

position its corresponding reel inside the workspace. Hence, in a specific region of W, cable-
cable or cable-edge contacts would be observed. Figure 3.3 shows the case where a mechanical
interference occurs between cables 2–5. In this figure, the initial workspace W is separated
into two distinct regions: a white region and a light gray region. The white region is free
of interferences and the light gray region represents end-effector poses for which the planar
CDPM is now unable to reach without causing a mechanical interference between two cables
or between a cable and an edge of the end effector. Collisions between the moving parts and
the fifth reel could also occur.

The boundaries of the light gray region in Fig. 3.3 are the information we must determine in
order to limit the movement of the end effector to its interference-free workspace, the white
region. The method to determine these limits can be based on pure geometry and observation.
For instance, in the specific pose of Fig. 3.3, cable 2 starts being in contact with cable 5 when
it is parallel to the segment connecting reels 2 and 5. Hence, if we move the reference point P
of the end effector in order to keep cable 2 in this angle, we draw the left limit line segment of
the mechanical interference region ofW. The right limit line is easily obtained by moving the
end effector in order to reach the position where cables 1 and 5 begin to intersect each other.
The horizontal upper limit is only defined by the line formed when the upper end-effector
edge, which contains attachment points of cables 1, 5 and 2, is in contact with the reel of
cable 5.

Now, by looking at Fig. 3.2b, a four-cable three-DoF planar CDPM, it is clear that mechanical
interferences occur for every pose {x, y, φ} of the end effector between cables 1–2 and cables 3–
4. Hence, we can say that W represents the interference region of this mechanism as it is
displayed in light gray. We also observe that a mechanical interference between two cables
only vanishes when an interference between a cable and an edge starts. From this fact, there
are only two ways to eliminate these mechanical interferences while keeping the exact same
end-effector orientation and geometry. One could either modify the attachment points on the
end effector to have one common attachment point for cables 1–2 and one common attachment
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Figure 3.4 – Arbitrary three-DoF planar CDPM with only two end-effector attachment points.

point for cables 3–4; or one could move the two upper reels (cables 1 and 2) together at the
same point and similarly for the two bottom reels (cables 3 and 4). However, the Cartesian
workspace in translation {x, y} and in rotation {φ} would then be significantly reduced.

Figure 3.4 illustrates the first option, i.e., moving together in pairs the upper and bottom
attachment points on the end effector. In this modified planar CDPM, it is easily noticed
that no interference between two cables can occur. However, for the given orientation, me-
chanical interferences between a cable and an edge of the end effector are expected. Indeed,
by observation, we can define the upper limit of the interference-free workspace simply by
drawing the line supporting the reference point P when cable 2 is collinear with the upper
edge of the end effector (the upper limit line is then parallel to cable 2). Similarly, the lower
limit line is defined by the line parallel to cable 3 when it is collinear with the bottom edge of
the end effector. We also note that an orientation of φ = 0˚, the reference orientation, leads
to an interference-free workspace identical to the one presented in Fig. 3.2a. In fact, a larger
value of φ yields a smaller interference-free workspace.

Figure 3.5 illustrates the second option, which consists in moving together the upper reels
and bottom reels. As expected, this modification leads to a workspaceW free of interferences
but with a very small area, because of the distribution of the reels on the base. The previous
workspace W is displayed in light color for comparison purposes. For the orientation shown,
the workspace W is now limited by the inability of cable 4 to pull the end effector further to
the left [148, 149] instead of being limited by mechanical interferences. The same limitation
can be observed on the right side with cable 1. This figure illustrates how, when designing
a planar CDPM, we have to find the best compromise between translational workspace,
rotational workspace and mechanical interferences, depending on the specific requirements
of the targeted application.

These two examples allow us to enumerate a few basic rules that can be applied in order to
minimize the occurrence of mechanical interferences when designing a planar CDPM:
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1. Minimize the number of cables used to constrain the end effector, keeping in mind that
a minimum of n+ 1 cables is required to fully constrain a n-DoF CDPM [82, 148];

2. Minimize the number of attachment points (on the end effector and on the base). An
anchor point can be shared by two or more cables in order to eliminate the possibility
of mechanical interferences between them [106, 107];

3. Prioritize base anchors position and end-effector attachment points to be distributed on
the surface of a convex shape. The likelihood of mechanical interference is decreased
when the base anchor points and attachment points on the end effector both have convex
geometries (see the examples of Figs. 3.2a and 3.3).

In summary, following these rules does not guarantee an interference-free workspace for a given
planar CDPM. However, these rules represent general guidelines to be taken into account
when designing new geometries. If mechanical interferences between two cables or a cable
and an edge of the end effector are expected, we saw that it is possible to easily determine
the boundaries of the interference-free workspace by observing the geometry of the planar
CDPM.

Unlike mechanical interferences for planar CDPMs, those occurring in spatial CDPMs require
some mathematical skills. The next section presents how we are able to simplify the mathe-
matical description of this phenomenon and obtain exact interference regions inside a generic
constant-orientation spatial CDPMs.

3.3 Mechanical Interferences in Spatial Cable-Driven
Parallel Mechanisms

Even if the rules enumerated in the previous section can be applied when choosing the ge-
ometry of a spatial CDPM, they are not sufficient to ensure that its workspace is free of
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mechanical interferences. This section proposes a method for the exact determination of the
interference-free constant-orientation workspace of a generic CDPM.

3.3.1 Kinematic Model of a Cable-Driven Parallel Mechanism

Let us first describe the main assumptions forming the basis for the following analysis. The
main hypothesis is that the cables are straight-line segments in space. Hence, sag is neglected,
which is a valid assumption, provided that the cable tensions are sufficiently high [196].
Moreover, we assume the cable diameter to be negligibly small when compared to its length.

Thus, in general, a CDPM can be schematized as in Fig. 3.6. The associated variables are
defined as follows:

• Vector ai represents the position of the actuated reel Ai in the fixed frame A;

• Vector bBi , expressed in frame B, represents the position of the attachment point Bi of
cable i on the moving platform;

• Vector p, which is expressed in A, represents the position of the operation point P on
the moving platform, with respect to point O;

• Vector ci points from Bi to Ai, its magnitude being the length of the ith cable.

Let Q be the matrix that rotates frame A onto frame B (see Eq. (A.17) of Appendix A.2 for
the mathematical definition of Q). Hence, we express vector bBi in the inertial frame as

bi = QbBi . (3.1)

From Fig. 3.6 and Eq. (3.1), we have

ci = ai − bi − p. (3.2)
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3.3.2 Interference Regions

From the kinematic modelling of the CDPM, we describe the conditions under which an
interference between two cables occurs. Since a six-DoF workspace cannot be represented
directly, we decided to constrain three of those DoFs. In this work, we focus on the case
where the orientation is constant, i.e., Q is fixed. This leaves us with the slice of the six-DoF
workspace over which the end effector is translated at a given orientation. Hence, the goal of
the following analysis is to determine the loci of interference between any two cables within
the constant-orientation workspace. The interference between a cable and an end-effector
edge will be discussed later in this sub-section. If one is interested in several orientations of
the moving platform, i.e., in the case where Q is not fixed, then it is always possible to apply
the following results to a sequence of distinct end-effector attitudes.

Figure 3.7 shows the cables i and j, which could potentially interfere. We also define aij ≡
aj − ai, which points from Ai to Aj , while bij ≡ bj − bi points from Bi to Bj . Moreover,
cij ≡ ci × cj is perpendicular to cables i and j.

Interference Conditions

From Fig. 3.7, we observe that an interference between cables i and j can only occur if ci
and cj are coplanar, or, similarly, if points Ai, Bi, Aj and Bj are coplanar. This necessary
condition can be expressed either as

cTijbij = 0, (3.3)

or, equivalently, as

cTijaij = 0. (3.4)

Hence, the interference locus must lie on a plane of the constant-orientation workspace of the
CDPM. Let us call this plane Pij , and provide an alternative expression, which will be useful
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at the computer implementation stage in Sub-section 3.3.3, as follows

Pij = {p ∈ R3|nTij(p− (ai − bi)) = 0}, (3.5)

where nij ≡ aij × bij . This formulation is equivalent to Eqs. (3.3) and (3.4), since it merely
states that vectors aij , bij , and −ci, should lie in the same plane.

This condition is not sufficient, however, since the lines supporting ci and cj can be coplanar
while intersecting outside segments AiBi and AjBj . They may even intersect at infinity, when
ci ‖ cj . Since the contact point must belong to the two segments AiBi and AjBj simultane-
ously for an interference to occur, an additional necessary condition must be satisfied.

Figure 3.8 shows cables i and j when an interference is occurring at the contact point C. We
observe that these cables follow the necessary condition from Eqs. (3.3) or (3.4), i.e., they
lie in the common plane Pij . Assuming that Eqs. (3.3) and (3.4) hold, the position c of the
contact point C between cables i and j can be written as

c = p + bi + dici = p + bj + djcj , (3.6)

where the variables di and dj are dimensionless parameters such that −−→BiC = dici and
−−→
BjC =

djcj .

Since point C must lie on the two segments at the same time for an interference to occur, the
following conditions are needed:

0 ≤ di ≤ 1 and 0 ≤ dj ≤ 1. (3.7)

Thus, from Fig. 3.8, Eqs. (3.3) and (3.7) are necessary and sufficient conditions for the oc-
currence of a mechanical interference between cables i and j.
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Computing Closed-Form Expressions of di and dj

With the aim of drawing general conclusions regarding the interference regions of a CDPM,
we compute closed-form expressions of di and dj . To this end, we write bj − bi as

bij = dici − djcj . (3.8)

We rewrite this linear system of equations in matrix form:

Cijdij =
[

ci −cj
] [ di

dj

]
= bij . (3.9)

In order to find the position along the cables where a contact occurs, we have to solve Eq. (3.9)
for dij . This linear system of three equations in two unknowns admits a solution if and only
if vectors ci, cj and bij are linearly dependent, i.e., coplanar. This requirement is fulfilled if
and only if Eq. (3.3) is satisfied. Moreover, we only have one solution whenever ci ∦ cj , which
is the general, non-degenerate case. Otherwise, the mechanical interference occurs at infinity,
and there is no interference.

In order to solve Eq. (3.9) for dij , we compute the left Moore-Penrose pseudoinverse of
matrix Cij [260, 261, 262],

C†ij = (CT
ijCij)−1CT

ij , (3.10)

C†ij =

[
(cTj cj)cTi − (cTi cj)cTj
(cTi cj)cTi − (cTi ci)cTj

]
(cTi ci)(cTj cj)− (cTi cj)2 . (3.11)

Finally, by using scalar and cross-product properties, the symbolic expression of dij is

dij =
[
di

dj

]
=

[
(cj × (ci × cj))T

(ci × (ci × cj))T

]
||ci||22||cj ||22 − (cTi cj)2 bij . (3.12)

Boundaries of the Interference Loci

In order to define the interference loci corresponding to the pair of cables (i, j), we first com-
pute the set of positions that bound these loci. Thus, to simplify the problem, it is practical
to verify only the extreme cases: di = 0, di = 1, dj = 0 and dj = 1 (see conditions 3.7).
Clearly, these four limiting conditions bound the loci where an interference between cables i
and j occurs on plane Pij .

First, we find the equation of the boundary corresponding to di = 0 on the plane Pij . Ac-
cordingly, we have to solve Eq. (3.12) for p as follows

di = [Cj(Cicj)]Tbij = 0, (3.13)
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where Ci and Cj are the cross-product matrices2 of ci and cj , respectively. This expression
can be rewritten as

di = (Cicj)T (CT
j bij) = 0, (3.14)

and then,

di = cTij(Bijcj) = 0, (3.15)

where Bij is the cross-product matrix of bij .

For a mechanical interference to occur, ci, cj and bij must be coplanar (see Eq. (3.3)).
Furthermore, we rule out the degenerate case where ci and cj are parallel, i.e., cij = 03, from
which we conclude that Eq. (3.15) is satisfied if and only if Bijcj = 03, that is,

Bij(aj − bj − p) = 03. (3.16)

In this equation, the rank of Bij is two (only two rows or columns are linearly independent),
its nullspace being the line spanned by bij . Consequently, in order to fulfill the condition
stated by Eq. (3.16), the associated boundary in the CDPM workspace is the line parallel to
bij and passing through point aj − bj .

The same process can be applied to the limiting case dj = 0, which gives:

dj = [Ci(Cicj)]Tbij = 0, (3.17)

dj = (Cicj)T (CT
i bij) = 0, (3.18)

dj = cTij(Bijci) = 0, (3.19)

and then,
Bij(ai − bi − p) = 03, (3.20)

i.e., the line parallel to bij and passing through ai − bi.

For the two cases di = 1 and dj = 1, the problem remains the same, with computations that
are slightly more involved. Upon substituting di = 1 into Eq. (3.12), we obtain

[Cj(Cicj)]Tbij = ||ci||22||cj ||22 − (cTi cj)2. (3.21)

From this expression, we obtain
cTij(Bijcj) = cTijcij . (3.22)

Then, since, from Fig. 3.7, bij = ci + aij − cj , the last equation becomes

cTij(Cicj + Aijcj −Cjcj) = cTijcij , (3.23)

2The cross-product matrix X of x ∈ R3 is defined as X ≡ ∂(x× y)/∂y, y ∈ R3.
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and,

cTij(Aijcj) = 0, (3.24)

or simply

Aij(aj − bj − p) = 03, (3.25)

where Aij is the cross-product matrix of aij . Thus, the boundary corresponding to di = 1 is
the line parallel to aij , and passing through the point aj − bj .

A similar method is used for the case dj = 1,

[Ci(Cicj)]Tbij = ||ci||22||cj ||22 − (cTi cj)2, (3.26)

cTij(Bijci) = cTijcij , (3.27)

cTij(Cici + Aijci −Cjci) = cTijcij , (3.28)

and,

cTij(Aijci) = 0, (3.29)

which yields Aij(ai − bi − p) = 03, the line passing through the point ai − bi.

In summary, the four lines bounding the interference loci on the plane Pij are shown in
Fig. 3.9. On this figure, it is important to note that vectors aij and bij do not appear exactly
as those presented in Fig. 3.8 to facilitate the graphical representation. We observe that the
resulting lines are parallel by pairs, which gives four different intersection points noted Dii,
Djj , D+

ij and D−ij . Dii represents the intersection point of the lines di = 0 and di = 1, Djj

is the intersection point of lines dj = 0 and dj = 1, D+
ij is the common point for lines di = 0

and dj = 1 (following positive directions of aij and bij from Dii and Djj , respectively) and
finally D−ij is the intersection point of lines di = 1 and dj = 0 (following negative directions
of aij and bij from Dii and Djj , respectively).

Since we know the equations of these four lines, we can easily compute their intersection
points. In fact, we already know that the lines corresponding to di = 0 and di = 1 both pass
through point aj − bj , which is thus the position of Dii. The same reasoning applies to the
intersection point of dj = 0 and dj = 1, and the position of Djj is ai − bi. From Fig. 3.9,
we observe that the intersection points D+

ij and D−ij can be found by following the directions
of vectors aij and bij from points Dii and Djj , respectively. In fact, we can formulate the
relations defining the intersection point D+

ij as

ai − bi + αaij = aj − bj + βbij , (3.30)
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Figure 3.9 – Conditions for interference between cables.

and similarly for D−ij

ai − bi − βbij = aj − bj − αaij , (3.31)

where α and β are dimensionless coefficients. Upon resolving these two equations for α and β,
we obtain α = β = 1. As a result, the position of D+

ij is aj − bi, and that of D−ij is ai − bj .

Determination of the Interference Regions

In this sub-section, we determine the mechanical interference regions, i.e., which regions of Pij
correspond to 0 ≤ di ≤ 1 and 0 ≤ dj ≤ 1. To this end, we analyze the infinitesimal variations
of di and dj on each of the four boundaries and determine the side of the boundary that
corresponds to an interference. Since di and dj are known functions of p, it is possible to
compute their gradient vectors with respect to p at different points.

Upon differentiating Eq. (3.8), we obtain

ci
(
∂di
∂p

)T
+ di

(
∂ci
∂p

)
− cj

(
∂dj
∂p

)T
− dj

(
∂cj
∂p

)
= ∂bij

∂p , (3.32)

which we substitute into Eq. (3.2), to obtain the following expression

ci
(
∂di
∂p

)T
− cj

(
∂dj
∂p

)T
+ (dj − di)13×3 = 03×3. (3.33)

From Fig. 3.9, if we simultaneously consider variables di and dj , we notice that the value of di
is both 0 and 1 at point Dii, and that the value of dj is 0 and 1 at point Djj . This curious
behaviour is due to discontinuities of di and dj at these points. In fact, this situation occurs
when ci ‖ cj , that is, when matrix Cij in Eq. (3.9) becomes rank-deficient. In this particular
case, we know that

cij = 03, (3.34)

and, in substituting Eq. (3.2), we obtain

(ai − bi − p)× (aj − bj − p) = 03, (3.35)
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which can be rearranged as

(ai − bi)× (aj − bj) + p× (ai − bi)− p× (aj − bj) = 03. (3.36)

This expression simplifies to

(Aij −Bij) p = (aj − bj)× (ai − bi). (3.37)

The solution to this equation is the line L parallel to aij − bij , since this vector spans the
nullspace of Aij −Bij . In substituting p = aj −bj and similarly p = ai −bi into Eq. (3.37),
we see that the equality is preserved in both cases (as for example, if p = aj−bj , (Aij−Bij)p
becomes (aij − bij) × (aj − bj) and then (aj − bj) × (ai − bi)). Hence, L passes through
points Dii and Djj . Because of this discontinuity, it is impossible to evaluate the gradients
of di and dj at these points.

Nevertheless, we can compute ∇di at points D+
ij on the line di = 0, and D−ij on the line di = 1.

Similarly, we evaluate ∇dj at the same points, but on the lines dj = 1 and dj = 0, respectively.
Since at D+

ij , p = aj − bi, di = 0, dj = 1, ci ≡ −aij and cj ≡ −bij (by substituting p in
Eq. (3.2)), Eq. (3.33) simplifies to

aij
(
∂di
∂p

)T
− bij

(
∂dj
∂p

)T
= 13×3. (3.38)

We determine the direction of ∇di by premultiplying vector aij with both sides of this equa-
tion, namely,

aij
(
∂di
∂p

)T
aij − bij

(
∂dj
∂p

)T
aij = aij , (3.39)

or, [(
∂di
∂p

)T
aij
]

aij −
[(

∂dj
∂p

)T
aij
]

bij = aij . (3.40)

Since, in general, aij ∦ bij , the only solution to this linear system of equations is(
∂di
∂p

)T
aij = 1, and

(
∂dj
∂p

)T
aij = 0. (3.41)

Moreover, since ∇di is perpendicular to the line di = 0, and its projection onto aij is positive,
we know that di increases in this direction. Since, at D+

ij , di = 0, we know the direction of
increasing di, we know that the corresponding region of Pij is one of possible interference,
because di ∈ [0,1]. Similarly, we multiply both sides of Eq. (3.38) with bij , and we find
(∂dj/∂p)Tbij = −1, i.e., dj increases in the direction opposite to bij . Finally, this procedure
is applied at point D−ij for which ci ≡ bij , cj ≡ aij , di = 1 and dj = 0. We then obtain(

∂di
∂p

)T
bij = 1, and

(
∂dj
∂p

)T
aij = −1. (3.42)
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Figure 3.10 – Regions of Pij for which di ∈ [0,1].
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Figure 3.11 – Regions of Pij for which dj ∈ [0,1].

These results are presented in Figs. 3.10 and 3.11 and they show the two potential interference
regions for each function, di and dj . Notice that the points Dii and Djj lie on line L, which
is the discontinuity locus of both functions di and dj . Finally, to complete our analysis, since
a mechanical interference between cables i and j only occurs when di ∈ [0,1] and dj ∈ [0,1]
simultaneously, the interference regions are the intersection of those represented in Figs. 3.10
and 3.11. This final result is shown in Fig. 3.12.

From Fig. 3.12, we see that the interference region associated with cables i and j is formed
of two disjoint sub-regions. Both of these sub-regions lie in plane Pij containing aij and bij ,
and may be described as a sector of Pij . It is fully determined by its apex, which is either
aj − bi or ai − bj , and its two bounding half-lines, whose positive directions are given by
aij and bij , and −aij and −bij , respectively. Hence, only the vectors ai, aj , bi and bj are
needed to compute the interference region of cables i and j.

Formally, we can define the set Cij of the interference locus corresponding to cables i and j as

Cij ≡ C+
ij

⋃
C−ij , (3.43)

where i = 1, . . . ,m, j = i+ 1, . . . ,m, and where

C+
ij = {p ∈ R3|p = aj − bi + αaij + βbij , α, β ≥ 0}, (3.44)
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Figure 3.12 – Regions C+
ij and C−ij which include interferences between cables i and j.

and
C−ij = {p ∈ R3|p = ai − bj + αaij + βbij , α, β ≤ 0}. (3.45)

In the special case where aij ‖ bij and aTijbij > 0, the cables are not crossed (for example,
see the case in Fig. 3.2a), and, from Fig. 3.12, the region becomes the line through points D+

ij

and D−ij minus the segment D+
ijD
−
ij . Finally, when aij ‖ bij and aTijbij < 0, the interference

regions fill the entire plane Pij (for example, see the case in Fig. 3.2a when φ = 0˚). This
situation should generally be avoided when designing a spatial CDPM.

Finally, in order to obtain a more concise formulation of Eqs. (3.44) and (3.45), we can regroup
these two equations in a single one, based on the fact that aij = −aji and bij = −bji. This
statement directly leads to C+

ij = C−ji and C−ij = C+
ji and allows us to define the ordered pairs of

cables (i,j) and their respective region of interferences such as Cij ≡ C+
ij and Cji ≡ C−ij . Then,

Eqs. (3.44) and (3.45) can be reformulated as

Cij = {p ∈ R3|p = aj − bi + Γijγ,γ ≥ 02}, (3.46)

where i = 1, . . . ,m, j = 1, . . . ,m (j 6= i), and where

Γij =
[

aij bij
]

and γ =
[
α β

]T
. (3.47)

Interference Between a Cable and an End-Effector Edge

Alike interferences between two cables, interferences between a cable and the moving platform
of a CDPM may considerably reduce its workspace. Therefore, it is important to mathemat-
ically define this other kind of interferences, with the aim of designing an architecture that
avoids them.

An interference between a cable and an edge of the end effector can be modelled in a way
similar to one between two cables. However, the difference is that an edge is fixed to the
end effector and its length is constant while the cable length and direction change with the
pose of the moving platform in the workspace. This has a slight effect on the mathematical
representation of the phenomenon.
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Figure 3.13 – Kinematic modelling of an end-effector edge.

In general, an end-effector edge can be represented as in Fig. 3.13, in which it is modelled
as a line segment. Curved edges may be approximated with chains of line segments, whereas
curved surfaces can be represented with wire-frame models. In such a model, the oth edge is
defined by its two end points, Eo,s and Eo,t. Vector eBo,s points from the operation point P
to the vertex Eo,s, vector eBo,t points from P to point Eo,t, and vector eBo points from Eo,s

to Eo,t, its magnitude being the length of the oth edge. We notice that all these vectors are
expressed in frame B, which is attached to the moving platform.

Thus, we can write eBo in the fixed frame A as

eo = QeBo = Q(eBo,t − eBo,s). (3.48)

From Fig. 3.14, a necessary condition for the occurrence of a mechanical interference between
a cable and an edge of the end effector is that they lie in the same plane, which can be
expressed as

vTiorio,s = 0, (3.49)

or, equivalently, as

vTiorio,t = 0, (3.50)

where vio = ci × eo, rio,s points from Bi to Eo,s, and rio,t points from Bi to Eo,t. When
Eqs. (3.49) and (3.50) are satisfied, we denote Pio the associated plane in the CDPMworkspace.

As in the case of an interference between two cables, the plane Pio is defined by Eq. (3.5),
except that nij is replaced by nio ≡ rio,s × rio,t. Still, this condition is necessary but not
sufficient for a mechanical interference to occur: the intersection point between the lines
supporting ci and eo should lie on the line segments AiBi and Eo,sEo,t.
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From Fig. 3.15, the position vector c of the contact point C between the two entities is given
by

c = p + bi + dici = p + eo,s + doeo, (3.51)

where di and do are dimensionless parameters, which are now chosen such that −−→BiC = dici
and −−−→Eo,sC = doeo. This leads to the following rearranged equation

dici − doeo = rio,s, (3.52)

and to the additional conditions:

0 ≤ di ≤ 1 and 0 ≤ do ≤ 1, (3.53)

which, along with Eq. (3.49), form a necessary and sufficient set of conditions for an interfer-
ence to occur.

However, since the edge eo and the point Bi are both fixed to the end effector, the distance
between these two entities remains constant, and is generally different from zero. Hence, it
is impossible to reach the condition di = 0. An exception occurs when Bi belongs to the line
supporting eo, but in this case, there is generally no collision from a practical viewpoint [106,
107], and we do not take this particular situation into account. However, when eo is collinear
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with ci, an interference may occur in practice, which is taken into account in the following
analysis.

As a result, we discard the case where di = 0. The necessary and sufficient conditions for the
occurrence of an interference between cable i and edge o are given by Eq. (3.49) and by

0 < di ≤ 1 and 0 ≤ do ≤ 1, (3.54)

where we have replaced the first inequality with a strict inequality.

Upon assuming that Eq. (3.49) is fulfilled, we compute di and do, the least-squares solution
to Eq. (3.52), namely,

dio =
[
di

do

]
=

[
(eo × (ci × eo))T

(ci × (ci × eo))T

]
||ci||22||eo||22 − (cTi eo)2 rio,s. (3.55)

Similarly to the case of an interference between two cables, we are first interested by the
boundaries of the interference regions. As mentioned above, the condition di = 0 cannot be
reached in general. However, one may approach arbitrarily close to di = 0 by increasing the
length of the cable i towards infinity. Therefore, we may say that the boundary corresponding
to di = 0 lies at infinity. It can never be reached, which justifies the limitation of the following
analysis to the three remaining boundaries: di = 1, do = 0 and do = 1.

Upon substituting rio,s = ci +−−−−→AiEo,t − eo in Eq. (3.55) and setting di = 1, we obtain

vTio(eo ×
−−−−→
AiEo,t) = 0, (3.56)

where −−−−→AiEo,t ≡ p + eo,t − ai. Furthermore, we rule out the degenerate case where ci and eo
are parallel, i.e., vio = 03. Then, we finally obtain

Eo(ai − eo,t − p) = 03, (3.57)

where Eo is the cross-product matrix of eo. Apparently, di = 1 corresponds to the line parallel
to eo and passing through the point ai − eo,t. A similar process is used for the case do = 0
and we obtain

vTio(Rio,sci) = 0, (3.58)

and then

Rio,s(ai − bi − p) = 03. (3.59)

For the case do = 1, by using the fact that rio,s = rio,t − eo, we find

vTio(Rio,tci) = 0, (3.60)
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Figure 3.16 – Conditions for an interference between a cable and an edge.

and this result leads to

Rio,t(ai − bi − p) = 03. (3.61)

It is noted that Rio,s and Rio,t are the cross-product matrices of rio,s and rio,t, respectively.
Hence, do = 0 is a line parallel to rio,s and passing through the point ai − bi, while do = 1 is
a line parallel to rio,t and passing through the point ai − bi as well.

Figure 3.16 represents the three lines bounding the interference regions in the plane Pio.
There are three distinct intersection points, which are noted Doo (intersection point between
lines do = 0 and do = 1), D10

io (intersection point between lines di = 1 and do = 0) and D11
io

(intersection point between lines di = 1 and do = 1). One may readily verify, through
substitutions in Eqs. (3.57,3.59,3.61), that the coordinates of Doo, D10

io and D11
io are ai − bi,

ai − eo,s = ai − bi − rio,s and ai − eo,t = ai − bi − rio,t, respectively. Indeed, each of these
three position vectors is a solution to exactly two of the three boundary equations, those of
the two lines intersecting at this point.

As in the case of interferences between two cables, we have to determine the regions of the
plane Pio shown in Fig. 3.16 containing interferences between the cable i and the edge o.
Following the same strategy, we evaluate the gradient vectors ∇di and ∇do related to p to
determine which sides of the three boundary lines (di = 1, do = 0 and do = 1) form the
interference regions.

The following equation is obtained from the differentiation of Eq. (3.52) with respect to p

ci
(
∂di
∂p

)T
+ di

(
∂ci
∂p

)
− eo

(
∂do
∂p

)T
− do

(
∂eo
∂p

)
= ∂rio,s

∂p , (3.62)

which we substitute into Eq. (3.2), to obtain the following expression

ci
(
∂di
∂p

)T
− eo

(
∂do
∂p

)T
− di13×3 = 03×3. (3.63)

We begin our analysis on point D10
io , for which di = 1, do = 0 and ci = rio,s and Eq. (3.63)

simplifies to

rio,s
(
∂di
∂p

)T
− eo

(
∂do
∂p

)T
= 13×3. (3.64)
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As for an interference between two cables, we first verify the signs of the projections of ∇di

on rio,s and we obtain

rio,s
(
∂di
∂p

)T
rio,s − eo

(
∂do
∂p

)T
rio,s = rio,s, (3.65)

or, [(
∂di
∂p

)T
rio,s

]
rio,s −

[(
∂do
∂p

)T
rio,s

]
eo = rio,s. (3.66)

Since, in general, eo ∦ rio,s, the only solution to this linear system of equations is(
∂di
∂p

)T
rio,s = 1, and

(
∂do
∂p

)T
rio,s = 0. (3.67)

Hence, we know the direction towards which di increases, i.e., perpendicular to the line di = 1
and towards the positive direction of rio,s.

Similarly, we verify the signs of the projections of ∇do on eo by multiplying both sides of
Eq. (3.64) with eo, and we find (∂do/∂p)Teo = −1, i.e., do increases in the direction opposite
to eo. It is interesting to notice that the case where eo ‖ rio,s only occurs when Bi belongs to
the line supporting eo. However, this situation is not considered as a mechanical interference
in practice.

Finally, the same method is used atD11
io with projections on rio,t and eo, respectively. Knowing

that ci ≡ rio,t, di = 1 and do = 1, we now obtain(
∂di
∂p

)T
rio,t = 1, and

(
∂do
∂p

)T
eo = −1. (3.68)

These results mean that, at D11
io , ∇di is positive following the direction of rio,t and ∇do is

positive following the direction opposite to eo.

The results are illustrated with Figs. 3.17 and 3.18, which present the positive-slope directions
of the dimensionless coefficients di and do over Pio. The regions following from the conditions
of Eq. (3.54) are shown in shading on the same graphs. Also on these graphs is the line L for
which di and do are discontinuous. In fact, this happens whenever ci ‖ eo, or, equivalently,
when

vio = 03. (3.69)

This equation can be rewritten as

Eo(ai − bi − p) = 03. (3.70)

Clearly, the solution for p of Eq. (3.70) is line L, which is parallel to eo and passes through
the point Doo of coordinates ai − bi. Furthermore, it is interesting to note that the length of
the cable i is null when the end effector reaches this specific point, that is, Ai = Bi.
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Figure 3.19 – Region Eio which includes interferences between cable i and edge o.

Moreover, when ci ‖ eo and p 6= ai − bi, the mechanical interference region is a line segment
in Pio if and only if eo lies partially or totally on ci. Otherwise, if ci ‖ eo and the two entities
are not overlapping each other, there is no mechanical interference.

Finally, Fig. 3.19 represents the intersection of the potential interference regions associated
with functions di and do, respectively. We note that D10

io (ai − eo,s), D11
io (ai − eo,t), rio,s ≡

eo,s − bi, and rio,t ≡ eo,t − bi completely define the interference region on Pio. Thus, we can
define the set Eio of the interference locus on plane Pio as

Eio = {p ∈ R3|p = ai − bi + εs(eo,s − bi) + εt(eo,t − bi), εs, εt ≤ 0,

εs + εt ≤ −1},
(3.71)

where i = 1, . . . ,m, o = 1, . . . , f , and εs and εt are dimensionless coefficients.

Moreover, similarly to Eq. (3.46), we can rewrite the previous equation in a more compact
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manner such as

Eio = {p ∈ R3|p = ai − bi + Λioλ,λ ≤ 02, λ1 + λ2 ≤ −1}, (3.72)

where

Λio =
[

(eo,s − bi) (eo,t − bi)
]

and λ =
[
λ1 λ2

]T
=
[
εs εt

]T
. (3.73)

3.3.3 Proposed Algorithm for Interference Detection

In this sub-section, we summarize the theory of Sub-section 3.3.2 in two algorithms for the
computation of the interference regions of a m-cable constant-orientation CDPM whose end
effector has f edges. First, the algorithm related to the detection of the interference region
between two cables is presented. The input data are vectors ai, bi, i = 1, . . . ,m, and a boxW
representing the considered workspace.

Compute all cable-cable interference regions Cij:

for i = 1, . . . ,m
for j = i+ 1, . . . ,m

1. Compute the equation of plane Pij (Eq. (3.5)):

aij = aj − ai,
bij = bj − bi,
nij = aij × bij .

2. Compute the coordinates of D+
ij and D−ij:

d+
ij = aj − bi,

d−ij = ai − bj .

3. Compute the four intersection points of the boundaries of C+
ij (Eq. (3.44))

and C−ij (Eq. (3.45)), with the faces of box W.

if the two points associated to C+
ij are identical then

a) C+
ij and C−ij degenerate into two rays, and C+

ij

⋂
W and C−ij

⋂
W are two line

segments.

else
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a) Compute all the intersection points between plane Pij and the edges of

box W.

b) Keep only the intersection points belonging to C+
ij

3.

c) The remaining points and D+
ij computed in step 2 are the vertices of the

polygon C+
ij

⋂
W.

d) Repeat steps (b) and (c) for C−ij.

end

end

end

The set of all interferences between two cables of the CDPM in the considered workspace

is

C
⋂
W =

m⋃
i=1
j=i+1

(
Cij
⋂
W
)
.

The algorithm used to determine the interference regions between cables and edges of the
end effector of a constant-orientation CDPM is outlined below. The required data are ai, bi,
i = 1, . . . ,m, eo,s, eo,t, o = 1, . . . , f , and W, the prescribed workspace.

Compute all cable-edge interference regions Eio:

for i = 1, . . . ,m
for o = 1, . . . , f

1. Compute the equation of plane Pio (Eq. (3.5)):

rio,s = eo,s − bi,
rio,t = eo,t − bi,
nio = rio,s × rio,t.

2. Compute the coordinates of D10
io , D11

io and Doo:

d10
io = ai − eo,s,

d11
io = ai − eo,t,

doo = ai − bi.
3The inpolygon function may be used for this purpose in MATLAB®
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3. Compute the two intersection points of the boundaries Eio (Eq. (3.72)) with

the faces of box W.

if point Bi lies on the edge eo then

a) Eio degenerates into a ray, and the interference region is a line segment

in W.

else

a) Compute all the intersection points between plane Pio and the edges of

box W.

b) Keep only the intersection points belonging to Eio4.

c) The remaining points and D10
io and D11

io computed in step 2 are the vertices

of the polygon Eio
⋂
W.

end

end

end

The set of all interferences between a cable and an end-effector edge of the CDPM

in the considered workspace is

E
⋂
W =

m⋃
i=1

 f⋃
o=1

(
Eio
⋂
W
) .

The two previous algorithms are easily implemented in scientific software such as MATLAB®.
It is possible to obtain, in a very short computation time, the set of interference loci I ⋂W ≡
(C⋂W)⋃ (E ⋂W) over the prescribed constant-orientation workspace of a given CDPM.

3.3.4 Validation of the Methodology

This sub-section shows two results obtained from the use of the algorithms described in Sub-
section 3.3.3. First, it presents an example of application for a six-degree-of-freedom CDPM
having six cables and six end-effector edges. Then it compares experimental and theoretical
data associated to a mechanical interference between two given cables of an eight-cable 31-edge
six-DoF CDPM.

4The inpolygon function may be used for this purpose in MATLAB®
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Figure 3.20 – Architecture of a generic six-cable six-edge six-DoF CDPM.

Table 3.1 – Geometric parameters ai and bBi of the architecture presented in Fig. 3.20.

a1 a2 a3 a4 a5 a6

x (m) 0.0000 0.1732 −0.1732 −0.1732 0.1732 0.0000
y (m) 0.2000 −0.1000 −0.1000 0.1000 0.1000 −0.2000
z (m) 0.1500 0.1500 0.1500 −0.1500 −0.1500 −0.1500

bB1 bB2 bB3 bB4 bB5 bB6
xB (m) −0.0260 0.0260 0.0000 −0.0260 0.0000 0.0260
yB (m) 0.0150 0.0150 −0.0300 −0.0150 0.0300 −0.0150
zB (m) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Numerical Results: a Six-Cable Six-Edge Six-DoF Cable-Driven Parallel
Mechanism

The first case-study is that of a six-cable, six-edge, six-degree-of-freedom CDPM whose ge-
ometry is shown on Fig. 3.20. Table 3.1 shows the geometric parameters ai and bBi of this
architecture, i.e., the position of the cable attachment points on the base and on the end
effector, respectively. This architecture is taken from ref. [187], where its interference regions
were traced as line segments over a slice of its constant-orientation workspace. It should be
also noted here that this spatial CDPM is not fully constrained by its cables since m � n+ 1.
However, it may serve as a simple example for the application of the algorithms described in
Sub-section 3.3.3.

Here, we trace these mechanical interference surfaces directly in the constant-orientation
workspace by the computing algorithms presented above. Indeed, Fig. 3.21 shows the inter-
ference loci for all possible combinations of cables and of a cable with an edge of the end
effector over the prescribed workspace, i.e., the set I ⋂W. Notice that the shape of the end
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Figure 3.21 – Cable-cable and cable-edge interference regions for a generic CDPM with ref-
erence orientation {θz = 0˚, θyI = 0˚, θxII = 0˚}.

effector is a regular hexagon with zero thickness. The chosen orientation corresponds to the
reference one, i.e, {θz = 0˚, θyI = 0˚, θxII = 0˚} in a ZY X Euler angles convention. The
result contains the interference regions between cables (the green regions, which appear in
light gray in black and white) and between a cable and an edge (the blue regions, which
appear in dark gray in black and white). Interestingly, the geometry of the moving platform
of the CDPM appears in the results of the detection of cable-edge interferences. This is only
natural, since vectors eo, rio,s and rio,t directly come from the geometry of the end effector.

It is worth noting that the computation time is less than 0.4 s for each algorithm: ≈ 0.38 s for
all cable-cable interferences and ≈ 0.19 s for all cable-edge ones. These algorithms were im-
plemented in MATLAB® 7.6.0 on a PC equipped with an Intel® Core™ 2 CPU 6400 running
at 2.13 GHz. In fact, the symbolic representations of the interference regions reported in this
paper are so simple that, the quasi-total of the computation time is dedicated to the inter-
section points between each interference plane and the edges of the prescribed workspace W
(see step 3 in Sub-section 3.3.3).

Additional results are presented in Fig. 3.22, which displays the evolution of the mechanical
interference regions in the workspace of this six-cable six-edge six-DoF CDPM for nine dif-
ferent attitudes of its end effector. We observe a strong inter-relation between end-effector
orientation and the resulting interference regions. These results prove useful when one is com-
paring different CDPM architectures for a prescribed range of orientations and for a specific
application. It allows the quick determination and visualization of all possible mechanical
interferences.
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Figure 3.22 – Mechanical interference regions for nine chosen attitudes {θz, θyI , θxII} of the
end effector.

Experimental Verification: an Eight-Cable 31-Edge Six-DoF Cable-Driven
Parallel Mechanism

With the aim of comparing the theoretical results against experimental ones, a second example
is included. For this test, we measured the end-effector pose of a prototype CDPM called
NELI (network-enabled locomotion interface), which has been built at the Laval University
Robotics Laboratory (see Refs. [99, 101, 102, 103, 104] and Fig. 3.23). Since this system
was originally designed to avoid mechanical interferences within its workspace, we had to
alter its geometry in order to produce a collision between cables 2 and 6 (the position of the
attachment point A6 along the Z axis has been moved from 0.733 to 1.155 metres), shown
on Fig. 3.24. The geometric parameters ai and bBi of this modified architecture are given in
Tab. 3.2. Notice that a similar method, i.e., alteration of the initial geometry, has been used
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(a) Conceptual design of NELI (b) Prototype built at the Laval University
Robotics Laboratory

Figure 3.23 – Mechanical architecture of an eight-cable 31-edge six-DoF CDPM (NELI
project).

Table 3.2 – Geometric parameters ai and bBi of the modified CDPM NELI.

a1 a2 a3 a4 a5 a6 a7 a8

x (m) −0.823 0.804 0.742 −0.740 −0.956 0.964 1.005 −1.004
y (m) −0.387 −0.390 −0.031 −0.038 −0.026 −0.023 −0.184 −0.177
z (m) 1.020 1.016 0.124 0.127 0.733 1.155 0.055 0.058

bB1 bB2 bB3 bB4 bB5 bB6 bB7 bB8
xB (m) −0.031 0.031 0.067 −0.067 −0.017 0.017 0.024 −0.024
yB (m) −0.050 −0.050 0.013 0.013 −0.399 −0.399 −0.513 −0.513
zB (m) −0.024 −0.024 0.046 0.046 −0.042 −0.042 0.056 0.056

in [103] to analyze the same interference along a specific end-effector trajectory. On Fig. 3.24,
one should note that the position of the mechanical interference between cable 2 and cable 6
is highlighted by white circles while the CDPM’s end-effector is moving on the interference
plane P26 inside its workspace with a constant orientation.

In the actual case-study, the end effector of the CDPM was translated, by hand, twelve times
along a rectangular trajectory over which the two cables remained in contact, its orientation
being constrained by the servo-actuated cables. Because the errors on the positions of the fixed
spools limit the accuracy of the estimates of the end-effector pose, an additional displacement
sensor was used. The orientation measurements of this sensor were used to compensate for
the errors on the end-effector attitude estimates computed from the encoder signals. The
displacement sensor in question is a Flock of Birds™, manufactured by Ascension Technology
Corp. [263]. We have compensated the end-effector attitude estimates by a mean orientation
of {θz = 0.96˚, θyI = −5.75˚, θxII = 4.61˚}.
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Figure 3.24 – Photographs of the experimental setup (mechanical interferences between cable 2
and cable 6).
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Figure 3.25 – Comparison of experimental measures and theoretical results.

As the end effector was moved over the chosen interference region, 3 891 sets of actuated-
joint encoder measurements were acquired. The forward kinematics problem was solved for
all these sets of joint positions, which yielded the same number of end-effector poses. The
end-effector orientation being kept approximately constant, the 3 891 positions of point P
are traced on Fig. 3.25. Apparently, the cloud of points takes the shape of a plane. We
computed the plane that fits best the cloud of points in the least-squares sense. This
plane has to pass through the centroid of the cloud of points, which was computed to
be pc =

[
−0.076 −0.023 0.597

]T
m. The normal of this measured plane is n̂ =[

0.510 0.067 −0.857
]T

. This experimentally determined plane is shown in blue (dark
gray in black and white) on Fig. 3.25.

On the other hand, the application of the algorithm to the same pair of interfering cables
yielded the plane P26 with normal vector n26 =

[
0.489 0.113 −0.865

]T
, and passing

through point a2 − b2 =
[

0.769 −0.343 1.041
]T

. This plane is shown in green (light
gray in black and white) on Fig. 3.25, and notice that it is partially shown to facilitate the
graphical representation of the other parts illustrated in this figure.

The distance between the theoretical plane and the centroid of the measured cloud of points
is 7 mm. This corroborates the proposed model of cable interferences, since a 7 mm error is
small when compared to the size of the CDPM (2.0×1.2×1.0 m3). The relative angle between
the normal vectors of the two planes is 3˚. These errors are relatively small, when considering
all possible sources of errors in this simple experiment, such as the errors of the positions of
the attachment points of the cables on the frame and end effector, and manipulation errors
when translating the end effector while maintaining a contact between cables 2 and 6. Hence,
these results are thought to validate the model and its ensuing analysis.

Finally, it is interesting to also calculate the full set of interference regions of this particular
CDPM, i.e., an eight-cable six-degree-of-freedom CDPM with an end effector composed of

122



x (m)y (m)

z
(m

)

-1.5 -1 -0.5 0 0.5 1 1.5-0.500.5

-0.5

0

0.5

1

1.5

P26

A
AU

C−
26

@@I C+
26

Figure 3.26 – All mechanical interference regions (cable-cable and cable-edge) for the CDPM
NELI with the reference end-effector orientation {θz = 0˚, θyI = 0˚, θxII = 0˚}.

31 edges. In MATLAB®, and on the same PC equipped with an Intel® Core™ 2 CPU 6400
running at 2.13 GHz, the required computation time is ≈ 0.42 s for all cable-cable inter-
ferences, and ≈ 0.76 s for all cable-edge interferences. The reference end-effector orienta-
tion {θz = 0˚, θyI = 0˚, θxII = 0˚} was used to perform this numerical experiment. This
result is shown in Fig. 3.26. It is easily observed that this CDPM was originally designed to
minimize the occurrence of mechanical interferences because interference regions all lie outside
of the prescribed translational workspace (black wire-frame box in the middle of the figure).
However, since we analyzed an altered version of this CDPM, plane P26, which supports the
two interference regions (C−26 and C+

26) corresponding to a mechanical interference between
cables 2 and 6, crosses the prescribed workspace. Finally, even if the graphical representation
of the full set of mechanical interference regions for this CDPM appears intricate, the designer
is mostly interested in the interference-free workspace, which is easily visualized.

3.4 Summary

In this chapter, the study of mechanical interferences in cable-driven pantographs has been
simplified to the study of this phenomenon in cable-driven parallel mechanisms, based on the
fact that a CDP is constituted of two CDPMs. First, we defined in Section 3.1 the meaning
of a mechanical interference, i.e., a physical collision between two entities which partially or
fully blocks the movement of one or both objects. In this current work, object calls for a cable
or an edge of the end-effector geometry of the studied CDPM.

Then, mechanical interferences for planar CDPMs were covered in Section 3.2. Even though,
in practice, crossed cables in planar CDPMs are generally accepted by roboticists, it is impor-
tant to understand the geometrical conditions for their occurrence. To this end, two examples
of four-cable planar CDPMs were used in order to determine basic rules for the design of a
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planar CDPM while keeping the interference regions to a minimum. These are, first, to mini-
mize the number of cables used to constrain the end effector; Second, to minimize the number
of attachment points; And third, to place the attachment points on the surface of convex
shapes on the base and on the end effector.

Even if these rules can be applied to spatial CDPMs as well, it is more difficult to predict
or visualize mechanical interference loci when designing a tridimensional CDPM. Hence, in
Section 3.3, we pushed further the analysis of interferences between two cables and between
a cable and an end-effector edge of a CDPM following the direction pointed in [187]. The
work presented in this section provides an exhaustive symbolical analysis of this phenomenon,
based on the assumption that a cable is a straight line segment in space. The results lead
to an exact description of the interference regions inside a constant-orientation workspace of
any given CDPM.

We first described, in Sub-section 3.3.1, the kinematic modelling of an arbitrary spatial
CDPM. In Sub-section 3.3.2, we defined the conditions for the occurrence of a mechani-
cal interference between two cables, i.e., the two cables must lie in the same plane Pij and
the contact point must simultaneously belong to the line segment of each cable. This analysis
led to the separation of each interference plane into nine regions, of which only two fulfill all
the conditions for an interference to occur between two given cables. These two regions can
be quickly computed from the simple symbolical expressions found, given the geometry of a
CDPM.

A similar approach was used to compute the interference regions between a cable and an
end-effector edge inside the constant-orientation workspace. In this case, we obtain only one
interference region in each interference plane Pio.

Furthermore, two algorithms were proposed in Sub-section 3.3.3, which summarize the anal-
ysis and compute the interference regions with scientific software such as MATLAB®. The
application of these algorithms was illustrated by two examples in Sub-section 3.3.4. The first
one yields the set I of interference regions for the constant-orientation workspace of a generic
six-cable six-edge six-DoF CDPM. The computation time associated with this result was less
than 0.4 s on a regular PC, which is faster than the running times reported in ref. [187].
The second experiment compared theoretical results with experimental data measured from
a prototype of an eight-cable 31-edge six-DoF CDPM built at the Laval University Robotics
Laboratory. Since the results obtained with the two methods are very close, their comparison
corroborates the proposed model of cable interferences.

The application of the proposed method in this chapter does not require a trajectory of the
end effector to detect interferences: it only requires the geometry of the mechanism, the
orientation of the end effector and the prescribed workspace. The resulting mathematical
description of the interference regions can be used for the design of CDPMs. Moreover,
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this work may be used to plan trajectories that avoid interference regions inside the CDPM
workspace. Two different approaches to this objective can be considered. One is to keep a
constant orientation of the end effector and, in order to move from point A to B, define an
alternative trajectory avoiding interference regions. The second is to follow a straight line
from point A to point B while modifying the end-effector attitude in order to free the chosen
path by adjusting the mechanical interference regions along the end-effector trajectory.

It is possible to extend this work to the determination of the mechanical interference regions
over ranges of end-effector orientations at the cost of an increased complexity. However, most
of the tools available for the design of CDPMs assume a constant orientation of the end
effector, e.g., the wrench-closure workspace (WCW) [148]. In the same line of thought, the
next chapter will propose an optimization algorithm that takes advantage of the proposed
constant-orientation analysis in order to synthesize spatial CDPMs, and by extension, spatial
CDPs.
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Chapter 4

Synthesis of Spatial Cable-Driven
Pantographs

“The process of preparing programs for a digital computer is
especially attractive, not only because it can be economically

and scientifically rewarding, but also because it can be an
aesthetic experience much like composing poetry or music.”

- Donald Ervin Knuth

This chapter proposes a new algorithm to optimize the geometric parameters—dimensional
synthesis—of spatial cable-driven parallel mechanisms (CDPMs) or, more specifically for the
context of this thesis, simultaneously both sides of spatial cable-driven pantographs (CDPs).
The main objective is to maximize the reachable workspace of the mechanism, which must
be sufficient to fulfill its prescribed requirements, following three different criteria. The first
criterion is based on the maximization of the wrench-closure workspace (WCW), which is
known as the region where it is possible to fully constrain a set of mechanism’s end-effector
poses with its cables. The second criterion is to maximize the reachable workspace where no
mechanical interferences can occur between any pair of cables. Then, the third one is defined
by the maximization of the region where no mechanical interferences can occur between
any cable and edge of the mechanism’s end-effector. The proposed method is thus to find
a mechanism geometry that allows the best compromise between these three criteria for a
specific application, i.e., for a prescribed workspace in translation and in rotation.

First, an overview of well-known techniques available in the literature to solve different types
of optimization problems is presented in Section 4.1. More specifically, Sub-section 4.1.1
enumerates general optimization techniques while Sub-section 4.1.2 discusses work where
optimization techniques are applied to the synthesis of CDPMs. Then, as the main ob-
jective of this chapter, a new optimization method for the dimensional synthesis of CDPs,
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and inherently CDPMs, is proposed in Section 4.2. First, the definition of the translational
workspace required to apply this novel technique is given in Sub-section 4.2.1. The theory
underneath each criterion of the proposed algorithm, i.e., the constant-orientation wrench-
closure workspace (COWCW), the constant-orientation cable-cable interference (COCCI) and
the constant-orientation cable-edge interference (COCEI), is described in Sub-sections 4.2.2,
4.2.3 and 4.2.4, respectively. The complete optimization problem is shown in Sub-section 4.2.5.
In Section 4.3, for the sake of numerical validation, this technique is applied to the synthesis
of two different mechanisms. It is first tested on an arbitrary seven-cable nine-edge six-DoF
CDPM in Sub-section 4.3.1. Afterwards, in Sub-section 4.3.2, it is applied to the optimization
of the geometric parameters of an eight-cable seventeen-edge six-DoF spatial CDP intended
for a medical application. Finally, the main outcomes of this chapter are summarized in
Section 4.4.

4.1 Overview of Optimization Techniques

Nowadays, when designing a system, engineers can count on the help of different computer-
assisted tools available on the market in order to facilitate or refine their creations. One can
easily think of mechanical design software such as Pro/ENGINEER and SolidWorks® or
dynamics, symbolical and numerical analysis software programs such as Adams, Maple™ and
MATLAB®, respectively. These tools, which contain embedded geometry and mathemat-
ics toolboxes, such as general optimization tools, are very helpful to accelerate the process
involved in the design or the performance analyses of a wide range of systems.

But when one desires to determine the architecture of the system that best fits its specific
application’s requirements, particular evaluation and comparison techniques must be still
defined by designers in order to make a judicious and final choice. In the same way, and
similarly to what was performed in Chapter 2, i.e., for the design of the nonlinear spring-
loaded reels, a rigorous selection of optimization methods combined with the elaboration of
appropriate criteria is necessary when it comes to the synthesis of cable-driven pantographs
or the synthesis of single cable-driven parallel mechanisms.

4.1.1 General Optimization Techniques

In the literature, the word optimization, as a scientific discipline, can be traced as early as to
the development of the first digital computer in the 40s [264], named ENIAC for electronic
numerical integrator and computer (see Fig. 4.1 for an archive photograph). This machine
was developed primarily for the purpose of calculating optimized artillery firing tables for the
armed forces [265]. Since this major step in the world of automated computation, optimization
techniques have been extensively studied worldwide by research groups due to their attractive
potential outcomes, i.e., the determination of the best solution—global optimum—or one of
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Figure 4.1 – The world’s first digital computer: ENIAC.

the best solutions—local optimum—to a given problem. From linear to nonlinear problems,
from unconstrained to constrained problems, in general, there is an optimization method that
now exists to help solving it. Basically, we can divide the optimization discipline in two
sub-groups: the local and the global optimization tools.

The local optimization tools are well suited for relatively simple problems, but not limited to
them. As examples, we may cite convex problems [266] such as unconstrained linear func-
tions, linear functions with linear constraints, and convex quadratic functions with linear
constraints. Indeed, finding the global optimum with a local optimization tool is always guar-
anteed with convex problems, i.e., problems that are defined by a convex objective function,
convex inequality constraints and affine equality constraints. This is because they have ei-
ther only one possible solution or no solution at all. As it is illustrated in Fig. 4.2a for a
simple one-dimensional function fα(x), the problem of minimizing an unconstrained convex
n-dimensional objective function fα(x), x ∈ Rn, is generally solved without difficulty. The
global minimum x? can easily be computed by conventional numerical derivative methods,
from any initial solution x0 within the range ∆x ≡ [x1,x2]. When the same optimization
problem is now constrained with a nonlinear convex function fβ(x), such that fβ(x) ≤ 0,
Fig. 4.2c shows that the optimum is also easily reached and that there is only one possible
solution. On the other hand, if local optimization techniques are applied to an unconstrained
non-convex problem as shown in Fig. 4.2b, depending on the initial guess x0, x0 ∈ [x1,x2],
the final solution is to be a local minimum and there is no way to verify that it is the global
minimum. Finally, in the case where a local minimization is applied to a constrained non-
convex problem as shown in Fig. 4.2d, again the resulting minimum is local, but there is no
guarantee as to its globality.

From the literature, we can logically sub-divide the local optimization approaches in two dis-
tinct groups: those intended for unconstrained problems and those for constrained problems.

128



xx1 x2

@@I global
minimum

fα(x)

◦

(a) An unconstrained convex problem

�
�
�
�
��

@
@
@
@
@
@@R

local
minima

xx1 x2

@I global
minimum

fα(x)

◦

◦
◦

(b) An unconstrained non-convex problem

xx1 x2

@@R

global
minimum

fi(x)

0
◦

fα(x)

fβ(x)

(c) A constrained convex problem
(fα(x), fβ(x) ≤ 0)

A
A
A
A
A
AAU

local
minimum

xx1 x2

A
AAU

global
minimum

fi(x)

0
◦

◦
fα(x)

fβ(x)

(d) A constrained non-convex problem
(fα(x), fβ(x) ≤ 0)

Figure 4.2 – Simple illustration of four different types of minimization problems, with arbitrary
one-dimensional functions fi(x), i = α and β, x ∈ [x1, x2], and their associated minima.

For the unconstrained problems, among all of the local optimization techniques, Newton’s
method is considered one of the most powerful algorithms for solving them [267]. It relies on
the approximation of the solution by computing the second-order Taylor expansion in order
to find the stationary point of a function f(x), i.e., ∂f(x)/∂x = 0n, where x ∈ Rn. An initial
solution x0 is required to initialize this iterative method. Also, one should note that the New-
ton’s method can be used to solve unconstrained linear problems and, in this particular case,
the approximation of the solution is computed by using the first-order Taylor expansion only.
A second algorithm is the Gradient method [264], also known as Steepest-Descent method.
This technique is considered as a basic method for unconstrained optimizations and it is gov-
erned by the direction of the negative of the first-order derivative of the function f(x). This
approach is suitable for functions with undefined second-order derivative, i.e., to which New-
ton’s method is inapplicable. If one uses the Gradient method instead of Newton’s method
for a nonlinear problem for which the second derivative ∂2f(x)/∂x2 exists, an optimum will
still be reached, but often at a slower pace.

Regarding local optimization algorithms for constrained problems, the simplex methods family
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is one of the first technique that takes into account linear inequalities [268, 269]. In fact, this
method relies on the finding of a series of basic solutions toward an optimal basic solution
and is one of the most efficient algorithms to solve linear programming problems [264]. Ge-
ometrically, the method consists in following the boundary of the set of feasible solutions, a
polyhedron where each vertex is a potential solutions. The optimum is reached when both
the feasibilities of the primal and the dual problems1 are verified. A second family of algo-
rithms for constrained problems is that of interior-point methods [270]. These methods are
normally applied to linear and convex nonlinear problems but some varieties are suitable to
solve non-convex nonlinear problems as well [271]. Basically, the interior-point methods seek
to approach the optimal solution through a sequence of points, as do the simplex methods.
The difference, however, is that instead of following the edges of the set of feasible solutions,
this technique reaches an optimal solution by traversing the interior of the feasible set. In
general, this decreases the computation time required to reach an optimum. Another family
of algorithms is that of sequential quadratic programming (SQP) methods [272]. As stated
in [264], this approach can be viewed as a generalization for constrained optimization of New-
ton’s methods for unconstrained optimization in that it finds a step away from the current
point by minimizing a quadratic model of the problem. The basic idea of SQP methods is
to model the nonlinear optimization problem at a given point as a quadratic programming
sub-problem, and then to use the solution to this sub-problem as a better estimate of the
optimum. This process is iterated to create a sequence of approximations that, it is hoped,
converges to the global optimum of the original problem [273]. The SQP is often reported as
the most successful method for solving nonlinearly constrained optimization problems.

On the other hand, global optimization techniques can also be separated in two different sub-
divisions: those leading to a guaranteed optimum, also known as exact techniques, and those
leading to a non-guaranteed optimum, known as heuristic techniques. In general, the use of
global optimization tools is restricted to cases where the use of local optimization tools is not
sufficient to result with the global minimum. This is the case with non-convex optimization
problems (unconstrained or constrained) as illustrated with Figs. 4.2b and 4.2d. Finding
the global optimum with non-convex problems is not an easy task, since the result highly
depends on the choice of the initial guess x0. When a minimization problem is defined by a
non-convex n-dimensional function f(x), x ∈ Rn, the global optimum x? is not guaranteed
with conventional local optimization tools. In most cases, a local optimum different from the
global optimum for the given range ∆x ≡ [x1,x2] is to be obtained. Moreover, optimization
algorithms that aim at approaching the global optimum are, in general, computationally

1In summary, the primal of a linear problem can be seen as the original problem and the dual problem
its alternative, i.e., two different viewpoints to approach a given problem. For instance, if the primal problem
is the minimization of an objective function cTx, where x is a vector of n variables and c ∈ Rn, subject to
m inequality constraints Ax ≤ 0m, where A ∈ Rm×n, its corresponding dual problem is the maximization
of a null function, i.e., 0, subject to n equality constraints ATy + c = 0n, where y ∈ Rm, and m inequality
constraints y ≥ 0m. In fact, the optimal solution x = 0n is reached when the primal problem is infeasible, or
alternatively, when the dual problem is feasible (see Farka’s lemma [235]).
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time consuming and additional attention must be directed to rigorously choose the evaluation
criteria.

From the literature, available global optimization tools with guaranteed convergence to the
global optimum are efficiently applicable, in general, to a specific group of optimization prob-
lems only, or when problems with a limited number of dimensions are involved. The Cutting
Plane methods are among them as they provide tools for the solution of convex, concave
and structured non-convex global optimization problems [274, 275]. Basically, when solving
global optimization problems, cuts are used as a device to discard portions of the feasible set
of solutions where it is known that no optimal solution can be found. Each cut is defined
as an additional inequality constraint to the initial problem and iteration after iteration, the
feasible set is refined until the global or the exact solution is obtained. Another technique
that guarantees optimality of the solution is the family of Branch and Bound methods [276].
These global optimization techniques are suitable to find exact solutions of non-convex prob-
lems. In these methods, the feasible set of the original problem is decomposed into subsets of
smaller sizes. Each subset is further partitioned until each smaller problem is either solved or
proved not to yield an optimal solution of the original problem. This proof can be obtained by
determining lower or upper bounds on the objective value over the subset. If the upper bound
in a given subset is lower than the lower bound in another subset, then the global minimum is
necessarily outside that subset. Thus, this subset can be excluded from the search. In [264],
it is reported that very successful techniques designed to solve a wide variety of optimization
problems, while providing a guarantee of optimality, are based on the combination of the two
techniques above. These methods are known as the Branch and Cut methods. In addition,
another variety of global optimization tools is the Homotopy methods [277]. These strate-
gies have the objective of visiting all stationary points of the objective function. This search
effort then leads to the list of all optima (global and local). These methods are applicable
to smooth2 global optimization problems but they can be computationally intensive. Other
methods can also be found in the literature such as the Bayesian Search algorithms [278].

When guaranteed-optimum global optimization tools are not suitable for a given problem,
e.g., when it contains a large number of variables and constraints or the computational time
available is limited, one may want to choose a global optimization tool among the numer-
ous unguaranteed-optimum global optimization techniques. Here, we cite just a few that
are well known in literature. One of the well-known methods is the Simulated Annealing
techniques [279]. Theses techniques are based on the physical analogy of cooling crystal
structures that spontaneously arrive at a stable configuration characterized by—globally or
locally—minimal potential energy. During the optimization process, solutions with poor ob-
jective function values, or temperature, can be allowed in order to avoid being trapped by

2A smooth optimization problem, in general, contains an objective function and constraint functions that
have derivatives of second order, i.e., it is possible to compute their gradient and their Hessian for the full
range of the problem variables.
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local solutions that are close to the initial guesses. Other strategies are based on evolution
theory, such as Genetic Algorithms [280]. Evolutionary optimization approaches heuristically
mimic biological evolution models. The basic idea is to evolve a population of candidate solu-
tions to the given problem, using operators inspired by natural genetic variations and natural
selection such as reproduction, crossover and mutation between genes (variables) of evaluated
candidates (solutions). Other evolutionary methods are reported in the literature such as
Scatter Search methods and Ant Colony Optimization methods [264]. An additional variety
of global optimization approaches is the Multi-Start methods [281]. As their name indicates,
the main idea here is to start the optimization process from various initial solutions covering
the domain as much as possible, which generally increases the probability of reaching a global
optimum. There are three key elements in Multi-Start methods. The first is the Memory,
which is used to empirically identify the factors that lead to good solutions. The second is
the Randomization, which is the method of selection of the multi-start initial solutions, and
generally varies between fully randomized guesses and completely systematic algorithms. The
third element is the Degree of Rebuild, which indicates the elements that remain fixed from
one iteration to the next. It is clear that heuristic approaches for global optimization can be
used to solve or approximate the solution to any global optimization problem. While they can
also rapidly become time-consuming when applied to problems containing high numbers of
variables and constraints, they remain relevant when the use of exact methods is, in practice,
impossible.

In this brief overview, as the reader can easily imagine, the author described only a few of
all the techniques available to solve local and global optimization problems. For a more ex-
haustive list, the reader is referred to the books of Pardalos and Resende [264], Boyd and
Vendenberghe [235], Dattorro [282] and Bertsekas [283] for convex optimization techniques
and to the books of Horst et al. [284] and Pardalos and Romeijn [278] for non-convex opti-
mization methods.

In the continuity of this section, the following part now focuses on the optimization techniques
applied to the synthesis of CDPMs. A short overview of the literature on that specific topic
is presented.

4.1.2 Optimization Techniques for the Synthesis of Cable-Driven Parallel
Mechanisms

The dimensional synthesis of CDPMs only represents a tiny portion of the wide range of
possible applications of the optimization techniques described above, since this relatively
recent subject of interest did not receive much attention so far. Basically, it can be summarized
as that of finding the best positions in the Cartesian space of the attachment points Ai and
Bi of all cables of a CDPM (see Fig. 4.3 for an example with seven cables), which is to be
used inside a prescribed workspace Wp corresponding to the intended application. The main
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Figure 4.3 – Position of attachment points Ai and Bi, i = 1, . . . ,7, of a generic seven-cable
spatial CDPM.

difficulty of this problem lies in the strong nonlinearity of the equations related to CDPMs in
regards to the decision variables, i.e., the coordinates of points Ai and Bi.

Even though designer intuition can lead to high-performance CDPMs (see [190] for an example
of an ultra-high speed CDPM reported in the mid 90s), the use of a more systematic method
to synthesize such a mechanism can reveal optimal solutions that would have been difficult
to envision otherwise. Among all of the research scientists who work on CDPMs, only a few
have published results on their synthesis. Here, a summary of the literature on that matter
is presented, mostly based on what has been previously reported in [285, 77].

It seems that one of the first reported work on the synthesis of CDPMs comes from Tadokoro et
al. [286]. The authors proposed to perform the CDPMs synthesis through the enumeration of
a heuristically chosen set of geometries. These geometries are then filtered by considering in
sequence the size of their workspaces and a set of criteria, which includes a verification of ca-
ble interferences by numerically computing the shortest distance between each pair of cables.
Another publication on that matter is the work of Hay and Snyman [168]. In this paper,
the dexterous workspace of a planar CDPM is defined as the intersection of all constant-
orientation workspaces for a given set of rotations, while cable tensions are constrained to lie
within a given range, and cable lengths are greater than a given minimum. Their main goal
is to maximize the area of the dexterous workspace by finding the locations of fixed points of
the manipulator along the fixed rectangular frame of the base, while the attachment points
on the end effector have already been assumed. In [99, 100, 101], a numerical optimization,
which combines a sequential algorithm and a genetic algorithm, was used to synthesize an
eight-cable 31-edge six-DoF CDPM while ensuring wrench capabilities and avoiding mechan-
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ical interferences. These mechanical interferences (cable-cable and cable-edge) were analyzed
following a few given trajectories of the end-effector position and orientation. In this work,
both the attachment points on the base and on the CDPM end-effector are optimized, while
preserving rules of symmetry in the mechanism geometry in order to decrease the number of
variables of the synthesis problem. Another group of researchers, Abdelaziz et al. [124, 287],
has worked on the synthesis of a planar CDPM for a given wrench-feasible workspace (WFW)
while minimizing the manipulator overall size. This group used zonotopes3 to represent the
wrench space of their CDPM and applied the hyperplane shifting method in order to ensure
that the CDPM can generate the prescribed set of wrenches, as proposed in [146]. More
recently, the dimensional synthesis of planar CDPMs was mathematically formulated using
a global optimization method, i.e., the convex relaxations [173, 288]. The optimization ob-
jective was to maximize the intersection region of the constant-orientation wrench-closure
workspace (COWCW) of an arbitrary planar CDPM for a given set of end-effector rotations.
Afterwards, this concept was generalized by the same researchers and applied to the dimen-
sional synthesis of spatial CDPMs in [285, 289]. In the work of Gagliardini et al. [290, 291],
the optimal design of a CDPM devised for the maintenance of large industrial structures was
proposed. This group chose the volume occupied by the CDPM as the objective function to
be minimized while ensuring the wrench feasibility of the manipulator poses with respect to
a given set of wrenches, avoiding interferences between cables and between the cables and an
external structure, and following a prescribed accuracy, all of this for a given trajectory of the
moving platform. Their synthesis aimed to determine the optimal position of the attachment
points Ai on the base only, the attachment points Bi on the end-effector geometry being
assumed to be fixed. The mechanical interferences are detected by numerically computing
the minimal distance between two entities by means of Lumelsky’s approach [253]. Finally,
Gouttefarde et al. have recently published a paper on the geometry selection of a six-DoF
cable-suspended parallel robot that is redundantly actuated and intended for heavy-load ma-
nipulation [292]. Their geometry selection process is divided in two phases: Generating and
testing a large discrete number of possible CDPM geometries and then refining their best
result using a gradient-based optimization. In this work, they introduced a new performance
index defined as the maximum acceptable horizontal distance between the centroid of the end
effector and the center of mass of the end effector and its payload, which is relevant when
dealing with crane-type CDPMs where the payload can vary. Their dimensional synthesis
method allows to optimize both the attachment points of the CDPM’s cables on its base
and on its end effector and includes a numerical collision-detection method similar to that
previously proposed by Gagliardini et al.

Based on the literature, and to our best knowledge, among the few researchers who have tack-
3A zonotope is a set of points in n-dimensional space constructed from vectors vi by taking the sum of

aivi, where each ai is a scalar between 0 and 1. Different choices of scalars give different points, and the
zonotope is the set of all such points.
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led the dimensional synthesis of CDPMs, none has combined into a single synthesis algorithm
an exact geometric interference index (as presented in Section 3.3 of this thesis), which is
not based on given trajectories, with a wrench workspace index, such as the wrench-closure
workspace. This type of particular synthesis method is devised in this chapter, and its precise
formulation is the topic of the next section.

4.2 Proposed Synthesis Method

Similar to what was performed in Chapter 3, instead of working directly on the synthesis
of cable-driven pantographs, the following synthesis technique rather focuses on the optimal
design of a single generic cable-driven parallel mechanism, which forms the basis of our CDP
concept. Consequently, this section presents the proposed technique for the dimensional
synthesis of spatial CDPMs or, similarly, for the dimensional synthesis of simultaneously
both parts—the master and the slave—of spatial CDPs.

Here, the prescribed workspace in translationWp,t of the CDPM is mapped to an ellipsoidWe

and the prescribed workspace in rotation Wp,r of the CDPM is discretized into q constant
orientations Qk, k = 1, . . . , q. This optimization problem is based on three different criteria.
The first criterion requires that We be fully included inside the COWCW of the CDPM, for
all Qk. The second criterion requires thatWe be free of mechanical interferences between any
pair of cables attached to the CDPM end-effector, for all Qk. The third criterion requires
that We be free of mechanical interferences between any combination of a cable and an edge
of the CDPM’s end-effector, for all Qk. The global objective of the optimization problem
is then to maximize We in order that We ⊃ Wp,t, for ai and bBi , i = 1, . . . ,m, which are
the attachment points on the base and on the end effector (represented in a mobile reference
frame B attached to the end effector), respectively, of the m cables of the CDPM.

4.2.1 Translational Workspace: An Ellipsoid

When designing a generic spatial m-cable f -edge n-DoF CDPM, in general, one must define
the prescribed workspace Wp of the CDPM in translation and in rotation, Wp,t and Wp,r,
respectively, for the envisioned application. Since it is difficult to graphically represent a
workspace in more than three dimensions, it is proposed to optimize the geometry of a CDPM
(the position of points ai and bBi of the m cables of the CDPM) by maximizing its workspace
in translation Wt in order to cover Wp,t for q constant orientations Qk, k = 1, . . . , q, which
cover Wp,r. It should be noted that, for a spatial CDPM, Qk is a 3 × 3 orthogonal matrix,
which may be decomposed into three successive rotations {θx,k, θyI,k, θzII,k}. These angles
are the three components of the vector θk ∈ R3 representing the rotation of the CDPM
end-effector, which here follows the Euler angles convention XY Z.

In this work, we decided to rely on the parametric equation of an ellipsoid in order to represent
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Figure 4.4 – Example of a prescribed workspace in translation Wp,t and its corresponding
ellipsoid We (κ = 1).

Wp,t, and, by extension, the resulting CDPM workspace in translation Wt. In reality, this
ellipsoid is to supersede the prescribed workspace, sinceWp,t is often a box with p = 8 vertices,
i.e., p points pw = [ xw yw zw ]T , w = 1, . . . , p. We constrain these points to lie on the
surface of the ellipsoid (see Fig. 4.4, where white circles represent the eight points pw lying on
the surface ofWe and black circles represent the six intersection points between the ellipsoid’s
surface and its three main axes {Ae, Be, Ce}). Even though an ellipsoid over-estimates Wp,t,
this choice was made in order to minimize the number of constraints required to define the
workspace in translation. With only one parametric equation, it is possible to completely
define an ellipsoid, which is not true if one desires to define the six surfaces of a box.

The general equation of the surface of an ellipsoid is

(x− x0)2

a2
e

+ (y − y0)2

b2e
+ (z − z0)2

c2
e

= 1, (4.1)

where {ae, be, ce} are the semi-axis parametric constants of the ellipsoid, {x, y, z} are the
coordinates of a point lying on the surface of the ellipsoid and {x0, y0, z0} are the coordinates
of the reference point of the ellipsoid, i.e., its centroid.

In order to represent an ellipsoid in Cartesian space, one can express Eq. (4.1) as

(x− x0)2

a2
e

+ (y − y0)2

b2e
+ (z − z0)2

c2
e

= κ2, (4.2)

where κ is a scaling factor, κ ∈ [0,∞]. Notice that this representation only applies to ellip-
soids with their principal axes aligned with the coordinate axes. This equation can also be
rearranged as follows

pTΠp + 2fTp + g = 0, (4.3)

136



where

Π ≡


1/a2

e 0 0
0 1/b2e 0
0 0 1/c2

e

 , (4.4)

p ≡
[
x y z

]T
, (4.5)

f ≡ −Πp0, (4.6)

g ≡ pT0 Πp0 − κ2, (4.7)

and,

p0 ≡
[
x0 y0 z0

]T
. (4.8)

Finally, the set We of points p contained within an ellipsoid, for a given κ, is defined as

We = {p ∈ R3|pTΠp + 2fTp + g ≤ 0}. (4.9)

In order to determine the smallest ellipsoid We that contains Wp,t, i.e., min(We) ⊃ Wp,t, we
find the value of each semi-axis parametric constant {ae, be, ce} that defines the prescribed
ellipsoid by computing the following nonlinear problem with linear equalities:

minimize We = 4π
3 (v1v2v3)−1/2,

subject to Υυ = 1p,

for υ ≡
[
v1 v2 v3

]T
=
[

1/a2
e 1/b2e 1/c2

e

]T
,

(4.10)

where

Υ ≡


(x1 − x0)2 · · · (xw − x0)2 · · · (xp − x0)2

(y1 − y0)2 · · · (yw − y0)2 · · · (yp − y0)2

(z1 − z0)2 · · · (zw − z0)2 · · · (zp − z0)2


T

. (4.11)

This problem aims at minimizing the volume of the target ellipsoid that matches the set
of p points pw (in general, p = 8) defined from Wp,t. The solution provides the value of
parametric constants {ae, be, ce} that allow vertices of Wp,t to lie on the ellipsoid surface
when κ = 1.

Once the parametric constants of We are determined, in general, for a given CDPM, i.e., for
constant ai and bBi , if κ ≥ 1, we can assume that the resulting n-DoF CDPM workspace W
includes the prescribed n-DoF workspaceWp, at least for every evaluated CDPM attitude Qk.
Also, it is interesting to note that if Wp,t can be represented by a cube, the resulting
workspace We is a sphere, i.e., ae = be = ce.

The main optimization problem, as previously said, is based on three embedded optimization
sub-problems. Each of these problems is described in the following sub-sections.

137



4.2.2 First Criterion: Constant-Orientation Wrench-Closure Workspace

Our first criterion for the synthesis of spatial m-cable f -edge n-DoF CDPMs is the size of
its constant-orientation wrench-closure workspace (COWCW). This property is important,
as it allows to verify whether a given CDPM can hold all positions of Wp,t for a particular
attitude Qk of its end effector. The merit of using the COWCW over the other similar criteria
is its simplicity of implementation within an optimization programming, since it involves a
relatively low number of constraints4. Then, if a CDPM can hold every positions of its Wp,t

for every end-effector’s orientations of itsWp,r, we may call this workspace its wrench-closure
workspace (WCW).

Thus, from [148], an end-effector’s pose of a m-cable n-DoF CDPM (m ≥ n + 1) belongs to
the COWCW if and only if

rank(W) = n, (4.12)

and
∃t ∈ ker(W)|t > 0m, (4.13)

where W is the pose-dependent matrix—or the Jacobian matrix—of the CDPM and t is the
vector containing the magnitude of the tension in its m cables.

For a more practical definition, we can express Eq. (4.13) as the condition for the CDPM to
be in static equilibrium:

∃t ≥ 0m|Wt = 0n,1Tmt = 1. (4.14)

This linear problem5, which is convex, means that, for a given t ≥ 0m, there must be always
a cable that can pull in the opposite direction of the resulting force and wrench generated by
the m− 1 other cables of the CDPM. In such case, the end-effector’s pose is fully constrained
and it is inside the COWCW. Moreover, in order to avoid the trivial solution t = 0m, the
linear constraint 1Tmt = 1 is added, so that the sum of the m cable tensions must always be
1. Consequently, we restrict the solution of the ith cable tension to be anywhere between 0
and 1, i.e., ti ∈ [0,1], but the solution t = 0m does not satisfy the set of constraints.

In this work, and as explained above, we choose to evaluate the COWCW of a CDPM q

times, i.e., for each chosen end-effector attitude Qk that spans Wp,r. This choice is directly
related to the matrix W, since it is a function of Qk. In fact, for the need of our optimization
problem, instead of using the matrix W as defined in Eq. (A.32) of Appendix A.2, we rather
use its simplified version, i.e., W�

k = −JTk (noted here with the index k because W must be
4It should be noted that another suitable measure could have been its constant-orientation wrench-feasible

workspace (COWFW), if the intended application of the mechanism is known and a set of prescribed wrenches
can be defined. In this case, however, additional constraints would be necessary to the current synthesis
problem. In this research, for the sake of simplicity, the COWCW is preferred over the COWFW.

5For the sake of completeness, the dual of the problem of Eq. (4.14) is derived in Appendix B.1, since this
alternative has been previously explored in preliminary attempts to design the synthesis problem.
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computed for each Qk). Consequently, we define the ith column of this new matrix as follows

w�k,i =
[

ai − p−QkbBi
QkbBi × (ai − p−QkbBi )

]
, i = 1, . . . ,m, (4.15)

and then

W�
k =

[
w�k,1 · · · w�k,i · · · w�k,m

]
=
[

A− p1Tm −QkB
Ek + PQkB

]
, (4.16)

where

A ≡
[

a1 · · · ai · · · am
]
, (4.17)

B ≡
[

bB1 · · · bBi · · · bBm
]
, (4.18)

P ≡ cpm(p), (4.19)

Ek ≡
[

(QkbB1 )× a1 · · · (QkbBi )× ai · · · (QkbBm)× am
]
. (4.20)

This simplification is possible since the exact values of the cable tensions are not required
to determine whether the wrench-closure condition is satisfied. Indeed, matrices W�

k and
Wk are related by a post-multiplication with a positive-definite diagonal matrix. Hence their
nullspaces have the same number of dimensions, and the components of the vectors share
the same signs. For the purpose of our synthesis problem, this simple trick leads to the
exact same result and allows to decrease the computation time corresponding to this part
of the algorithm. It should be noted that this mathematical shortcut would not have been
directly applicable if the constant-orientation wrench-feasible workspace (COWFW) method
was used instead of the COWCW, because cable tensions must belong to a prescribed range
ti ∈ [tmin, tmax] with COWFW and consequently the computation of the Jacobian Wk would
have been, in general, mandatory to determine the exact cable tensions.

Furthermore, as explained in Sub-section 4.2.1, we approximated the prescribed workspaceWp,t

of the CDPM with an ellipsoid We with κ = 1. So we need to determine the ellipsoid that is
fully included within its COWCW for the q given Qk. One possible way consists in selecting
a set of nb points pε,0, ε = 1, . . . , nb, that belong to the surface of We when κ = 1 and assess
their corresponding points pε for κ ∈ [0,∞] (note that, here, pε ≡ p in Eq. (4.16)). The
relation for pε is expressed as follows

pε = p0 + κ(pε,0 − p0). (4.21)

The idea is thus to modify points ai and bBi to maximize κ while ensuring that the nb points
pε are inside the CDPM COWCW for every Qk.

For practical reasons, we choose to set nb = 14. These points are separated in two groups:
the first group of six points pε,0 represents the intersection points between the three principal
axes of the ellipsoid and its surface (see the black circles in Fig. 4.4), and the second group,
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which contains the remaining eight points pε,0, are the eight vertices of the box representing
Wp,t, i.e., the points pw defined in Sub-section 4.2.1 (see the white circles in Fig. 4.4). Using
this set of strategic points, and knowing that they lie in the CDPM COWCW for all Qk, we
can, in general, assume We to be included in the WCW of the mechanism, taking as a fact
that we span Wp,r with a representative set of q attitudes Qk. Moreover, if it is found that
We is not fully included in the WCW even when all points pε are included, it is probable that
Wp,t should be completely contained in the CDPM’s WCW, taking into account that Wp,t is
over-estimated in the proposed scheme and the inclusion of all pε.

Finally, the optimization problem related to this first criterion can be formulated as follows:

κCOWCW,k = maximize κ,

subject to W�
k,εtk,ε = 0n, (4.22a)

−tk,ε ≤ 0m, (4.22b)

1Tmtk,ε = 1, (4.22c)

pε = p0 + κ(pε,0 − p0), (4.22d)

for κ, ai, bBi , pε and tk,ε.

In summary, this problem requires to maximize the volume of an ellipsoid by maximizing its
scaling factor κ and modifying accordingly the CDPM geometry while satisfying the wrench-
closure constraints of the nb evaluated points pε. Moreover, if we cover Wp,r with a repre-
sentative set of q CDPM’s end-effector attitudes Qk, we assume that the resulting CDPM
workspace W is equivalent or a subset of the CDPM’s WCW.

4.2.3 Second Criterion: Constant-Orientation Cable-Cable Interference

The second criterion considered in the synthesis of spatial m-cable f -edge n-DoF CDPMs is
the possibility of interference between two cables, more specifically, the constant-orientation
cable-cable interference (COCCI). The potential occurrence of mechanical interferences be-
tween the cables constraining the end-effector pose of a CDPM is often under-estimated when
designing it. As demonstrated in Chapter 3, the interference regions are highly dependent on
the CDPM end-effector attitude and can significantly limit its reachable workspace. Here, we
include this verification into our dimensional synthesis problem.

Let us recall that the interference region between the ith and jth cables of a CDPM, for a
given end-effector attitude Qk, is defined as the union of two two-dimensional polytopes, i.e.,
a first polygon associated to the ordered pair of cables (i, j), named Ci,j,k, and a second for the
opposite pair (j, i), named Cj,i,k, which can be both mathematically expressed by the single
relation

Ci,j,k = {p ∈ R3,γ ∈ R2
+|p = si,j,k + Si,j,kγ}, (4.23)
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where

Si,j,k ≡
[

aj − ai Qk(bBj − bBi )
]
, (4.24)

si,j,k ≡ aj −QkbBi , (4.25)

and where R2
+ represents the set of all non-negative real numbers, i = 1, . . . ,m, and j =

1, . . . ,m (j 6= i).

Then from Eqs. (4.9) and (4.23), we want to find a set of constraints which, when satisfied,
guarantees that the intersection between the polygon Ci,j,k and the ellipsoid We is an empty
set.

First, we can start by writing the constraints that generate a non-empty set for the intersection
between Ci,j,k andWe—the primal problem—which is an easier problem to formulate. Indeed,
by substituting the relation of p defined with Eq. (4.23) into Eq. (4.9), we obtain the following
constraints:

satisfy γTHi,j,kγ + 2hTi,j,kγ + hi,j,k ≤ 0,

for γ ≥ 02,
(4.26)

where

Hi,j,k ≡ STi,j,kΠSi,j,k, (4.27)

hi,j,k ≡ STi,j,kΠsi,j,k + STi,j,kf , (4.28)

hi,j,k ≡ sTi,j,kΠsi,j,k + 2sTi,j,kf + g. (4.29)

If we write the previous set of satisfactory constraints as a minimization problem, we obtain

p?C = minimize
γ

f(γ) = γTHi,j,kγ + 2hTi,j,kγ,

subject to −γ ≤ 02.
(4.30)

When this problem has a solution, it means that Ci,j,k intersectsWe, if and only if p?C ≤ −hi,j,k.

On the other hand, the dual problem of Eq. (4.30) can be formulated as follows (see Ap-
pendix B.2 for its mathematical derivation):

d?C = maximize
λ

g(λ) = − 1
4λ

TH−1
i,j,kλ+ hTi,j,kH−1

i,j,kλ− hTi,j,kH−1
i,j,khi,j,k,

subject to λ ≥ 02.

(4.31)

When this problem is found feasible, this means that Ci,j,k does not intersect We, if and only
if d?C > −hi,j,k. With the assumption that the ellipsoid We is not degenerate and the fact
that our original problem is convex, Slater’s condition holds [235], and we know that we have
strong duality between both problems—the primal and the dual—so that we may write that
d?C ≡ p?C .
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Thence, if we can demonstrate that d?C > −hi,j,k, we will have demonstrated that Ci,j,k
⋂
We =

∅. To demonstrate d?C > −hi,j,k, we merely have to resolve the following problem of constraint
satisfaction, where λ has been replaced by µ + 2hi,j,k in order to simplify the notation pre-
sented in Eq. (4.31):

satisfy µTH−1
i,j,kµ− 4hi,j,k < 0,

for µ+ 2hi,j,k ≥ 02.
(4.32)

When the problem of Eq. (4.32) has a solution, there is no intersection between Ci,j,k andWe.
Otherwise, such an intersection exists and the evaluated pair of cables (i,j) is in interference
for that specific end-effector pose in We.

Finally, the optimization problem related to this second criterion can be formulated as follows:

κCOCCI,i,j,k = maximize κ,

subject to µTi,j,kadj(Hi,j,k)µi,j,k − 4hi,j,kdet(Hi,j,k) ≤ 0, (4.33a)

−µi,j,k − 2hi,j,k ≤ 02, (4.33b)

for κ, ai, bBi and µi,j,k.

It is noted here that adj(Hi,j,k) and det(Hi,j,k) represent the adjoint and the determinant of
the matrix Hi,j,k, respectively. This modified mathematical expression is used in order to avoid
the repetitive computation of the inverse of a matrix within our optimization algorithm, which
normally increases the computation time. Also, we set the first constraint of this optimization
problem, i.e., Eq. (4.33a), as a non-strictly negative constraint, which allows the surface of
our solution ellipsoid to correspond directly to a locus where a cable-cable interference first
appears.

In summary, for each end-effector’s attitude Qk, these constraints must be satisfied for every
ordered pair of cables i and j. In this optimization problem κ is maximized by modifying
the CDPM geometry while avoiding any intersection between the cable-cable interference
loci Ci,j,k and the prescribed ellipsoid We. Moreover, as we cover Wp,r with a representative
set of q CDPM’s end-effector attitudes Qk, we assume that the workspace W of the solution
CDPM is free of any cable-cable interference.

4.2.4 Third Criterion: Constant-Orientation Cable-Edge Interference

The third criterion for the synthesis of spatial m-cable f -edge n-DoF CDPMs is the constant-
orientation cable-edge interference (COCEI). In addition to Sub-section 4.2.3, the occurrence
of mechanical interferences between the CDPM cables and edges of its end effector can also
limit its reachable workspace. We then choose to include this verification within the current
dimensional synthesis problem.
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We recall that the interference region between the ith cable and the oth end-effector’s edge
of a CDPM, for a given end-effector attitude Qk, is defined by a two-dimensional polytope,
named Ei,o,k, which can be mathematically expressed as follows

Ei,o,k = {p ∈ R3,α ∈ R2
−|p = ri,o,k + Ri,o,kα, α1 + α2 ≤ −1}, (4.34)

where

Ri,o,k ≡
[

Qk(eBo,s − bBi ) Qk(eBo,t − bBi )
]
, (4.35)

ri,k ≡ ai −QkbBi , (4.36)

and where R2
− represents the set of all non-positive real numbers, eBo,s and eBo,t represent

the starting and ending points, respectively, of the oth edge of the end-effector geometry
(expressed in the mobile reference frame attached to the CDPM’s end-effector), i = 1, . . . ,m,
and o = 1, . . . , f . It should be noted that the set of edges is intended to represent only the
wire-frame model of the CDPM end-effector and its payload. Consequently, interferences with
an arbitrary object added inside the CDPM’s workspace cannot be directly evaluated using
the proposed technique, since its pose relative to the CDPM end-effector varies across the
workspace, a case that was not taken into account in Chapter 3.

Similarly to what was done in Sub-section 4.2.3, we want to find from Eqs. (4.9) and (4.34) a
set of constraints which, when satisfied, guarantee that the intersection between the polygon
Ei,o,k and the ellipsoid We is the empty set.

First, we start by defining the constraints that generate a non-empty set for the intersection
between Ei,o,k and We—the primal problem. By substituting the relation of p defined with
Eq. (4.34) into Eq. (4.9), we obtain the following constraints:

satisfy αTNi,o,kα+ 2nTi,o,kα+ ni,k ≤ 0,

for Cα+ c ≤ 03,
(4.37)

where

Ni,o,k ≡ RT
i,o,kΠRi,o,k, (4.38)

ni,o,k ≡ RT
i,o,kΠri,k + RT

i,o,kf , (4.39)

ni,k ≡ rTi,kΠri,k + 2rTi,kf + g, (4.40)

C ≡
[

1 1 0
1 0 1

]T
, (4.41)

c ≡
[

1 0 0
]T
. (4.42)

If we write the constraints above as a minimization problem, we obtain

p?E = minimize
α

f(α) = αTNi,o,kα+ 2nTi,o,kα,

subject to Cα+ c ≤ 03.
(4.43)
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When this problem has a solution, it means that Ei,o,k intersectsWe, if and only if p?E ≤ −ni,k.

Moreover, the dual problem of Eq. (4.43) can be formulated as follows (see Appendix B.3 for
its mathematical derivation):

d?E = maximize
φ

g(φ) = − 1
4φ

TCN−1
i,o,kC

Tφ+ (cT − nTi,o,kN−1
i,o,kC

T )φ

− nTi,o,kN−1
i,o,kni,o,k,

subject to φ ≥ 03.

(4.44)

When this problem is found feasible, we know that Ei,o,k does not intersect We, if and only
if d?E > −ni,k. Again, with the assumption that the ellipsoid We is not degenerate and given
the fact that our original problem is convex, Slater’s condition holds and we therefore have
strong duality between the primal and dual problems, i.e., d?E ≡ p?E .

Therefrom, if we can demonstrate that d?E > −ni,k, we will have demonstrated that Ei,o,k
⋂
We =

∅. To demonstrate d?E > −ni,k, we simply need to resolve the following constraint satisfaction
problem, where φ has been replaced with D−1(η − 2zi,o,k) in order to simplify the notation
of Eq. (4.44):

satisfy ηTZi,o,kη − 4(cTη + ni,k) < 0,

for D−1(η − 2zi,o,k) ≥ 03,
(4.45)

where

D ≡
[

cT

CT

]
, Zi,o,k ≡

[
0 0T2
02 N−1

i,o,k

]
, and zi,o,k ≡

[
0

ni,o,k

]
. (4.46)

When the problem of Eq. (4.45) has a solution, there is no intersection between Ei,o,k and
We. Otherwise, such an intersection exists and the evaluated pair composed of a cable i and
an edge o is in interference for that specific end-effector pose in We.

Finally, the optimization problem related to this third criterion can be formulated as follows:

κCOCEI,i,o,k = maximize κ,

subject to ηTi,o,kZai,o,kηi,o,k − 4det(Ni,o,k)(cTηi,o,k + ni,k) ≤ 0, (4.47a)

−D−1(ηi,o,k − 2zi,o,k) ≤ 03, (4.47b)

for κ, ai, bBi and ηi,o,k,

and where

Zai,o,k ≡
[

0 0T2
02 adj(Ni,o,k)

]
. (4.48)

It is noted here that adj(Ni,o,k) and det(Ni,o,k) represent the adjoint and the determinant of
the matrix Ni,o,k, respectively. As we did for the previous criterion, we set the first constraint
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of this optimization problem, i.e., Eq. (4.47a), as a non-strict inequality, which allows the
solution ellipsoid to share one point with a locus where an cable-edge interference first occurs.

In summary, for each CDPM’s end-effector attitude Qk, these constraints must be satisfied for
every combination of a cable i and an edge o. This optimization problem allows to maximize
κ while modifying the CDPM geometry, as long as the evaluated points p ∈ R3 imply that
the cable-edge interference constraints are fully satisfied. Moreover, we discretize Wp,r with
a representative set of q CDPM end-effector attitudes Qk, and assume from there that the
workspace W of the solution CDPM is free of any cable-edge interference.

4.2.5 Synthesis Problem

The complete dimensional synthesis problem can be formulated as follows, when one desires
to test for a given set of CDPM end-effector orientations Qk, k = 1, . . . , q, that the CDPM
has m cables, and that its end effector, with possibly its attached payload, is represented by
a total of f edges:

maximize κ,

subject to Eqs. (4.22a, 4.22b, 4.22c, 4.22d), k = 1, . . . , q, ε = 1, . . . , nb,

Eqs. (4.33a, 4.33b), i = 1, . . . ,m, j = 1, . . . ,m, i 6= j, k = 1, . . . , q,

Eqs. (4.47a, 4.47b), i = 1, . . . ,m, o = 1, . . . , f, k = 1, . . . , q,

for κ, ai, bBi , pε, tk,ε, µi,j,k and ηi,o,k.

(4.49)

In this problem, we recall that Eqs. (4.22a,4.22b,4.22c,4.22d) represent the constraints to be
satisfied in order to guarantee that at least nb points on the surface of the ellipsoid We are
inside the CDPM COWCW. Notice that there is one scaling factor κ for all orientations Qk.
Equations (4.33a,4.33b) represent the constraints to be satisfied in order to guarantee that
none of the interference regions associated with ordered pairs of cables (i, j) intersects the
interior of ellipsoid We for each attitude Qk. Since each pair of cables is ordered, the in-
terference region corresponding to the pair (j, i) is different from the one corresponding to
the pair (i, j). Equations (4.47a,4.47b) represent the constraints to be satisfied in order to
guarantee that none of the interference regions associated with cable-edge pairs intersects
with the interior of ellipsoid We for each attitude Qk.

It is also important to note that κ represents the objective function of this optimization
problem, which needs to be maximized. The vectors ai and bBi , which define the geometry
of the CDPM, are to be modified in order to allow this maximization. Finally, variables pε,
tk,ε, µi,j,k and ηi,o,k are internal variables which must be optimized in order to verify that the
entire set of constraints is fully satisfied. This optimization problem, devised for the synthesis
of CDPMs, and inherently CDPs, is numerically implemented in the following section as a
proof of it relevance and practicability.
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4.3 Numerical Applications

In order to program the synthesis problem described in the previous section, we use the
Optimization Toolbox available with the MATLAB® package. Since our problem contains
inequality and equality nonlinear constraints, the minimization tool fmincon is found suit-
able for our purpose. In such a way, the maximization problem of Eq. (4.49) can easily be
reformulated as a minimization problem as follows:

f(v) = minimize − κ,

subject to cineq(v) ≤ 0(3(m2−m)q+4mfq)×1,

ceq(v) = 0(nqnb)×1,

Aeq,(3nb+qnb)×dimv = beq,(3nb+qnb)×1,

lb ≤ v ≤ ub,

for v ≡
[
κ aT bB T pTaug tTaug µTaug ηTaug

]T
dim×1

,

(4.50)

where

Aeq ≡
[
−(paug − p0,aug) 03nb×6m 13nb×3nb 03nb×mqnb 03nb×dim1

0qnb×1 0qnb×6m 0qnb×3nb U 0qnb×dim1

]
, (4.51)

beq ≡
[

pT0,aug 1Tqnb
]T
, (4.52)

p0,aug ≡
[

pT0 · · · pT0
]T
3nb

, (4.53)

U ≡


1Tm · · · 0Tm
... . . . ...

0Tm · · · 1Tm


qnb×mqnb

, (4.54)

lb ≡
[

0 aT3m bB T3m −∞T
3nb 0Tmqnb −∞T

2(m2−m)q −∞T
3mfq

]T
, (4.55)

ub ≡
[
∞ aT3m bB T3m ∞T

3nb 1Tmqnb ∞T
2(m2−m)q ∞T

3mfq

]T
, (4.56)

a ≡
[

aT1 · · · aTi · · · aTm
]T

3m
, (4.57)

bB ≡
[

bB T1 · · · bB Ti · · · bB Tm
]T

3m
, (4.58)

paug ≡
[

pT1 · · · pTε · · · pTnb
]T

3nb
, (4.59)

taug ≡
[

tT1,1 · · · tT1,q · · · tTnb,q
]T
mqnb

, (4.60)

µaug ≡
[
µT2,1,1 · · · µTm,1,1 µT1,2,1 µT3,2,1 · · · µTm−1,m,q

]T
2(m2−m)q

, (4.61)

ηaug ≡
[
ηT1,1,1 · · · ηT1,f,1 ηT2,1,1 · · · ηTm,f,q

]T
3mfq

, (4.62)

dim ≡ 1 + 6m+ 3nb+mqnb+ dim1, (4.63)
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and

dim1 ≡ 2(m2 −m)q + 3mfq. (4.64)

For the sake of clarity, the details of the inequality and equality nonlinear constraints, cineq(v)
and ceq(v), respectively, are presented in Appendix C.1. Moreover, it should be noted that, a
bounding box limiting the positions of the attachment points of them cables should be defined
when one desires to optimize the geometry of a CDPM for a particular application. Here these
constraining values are represented by a, bB, a and bB, which are vectors of dimensions 3m
and contain the lower and the upper bounds for each vector ai and bBi , respectively.

As for the majority of complex engineering problems, this dimensional synthesis problem is
nonlinear and non-convex. Consequently, the resulting optimum is known to be strongly
dependent on the initial guess solution and there is no guarantee that a global optimum will
be ever reached. From this fact, we choose to follow an approach similar to the heuristicMulti-
Start methods, which was discussed in Sub-section 4.1.1, in order to improve the likelihood
to generate the best solution. A total of ms initial guesses are generated and each ιth guess,
ι = 1, . . . ,ms, is to be optimized using the program of Eq. (4.50). Figure 4.5 illustrates the
flowchart of this proposed CDPM synthesis technique.

The first step when one desires to develop a CDPM for a specific application is to define
its requirements. These expected specifications, here, are the prescribed workspace Wp of
the envisioned CDPM, which represents both the prescribed workspaces in translation and
in rotation, Wp,t and Wp,r, respectively, the bounding box where each attachment point
ai and bBi can be placed, i.e., a, bB, a, and, bB, the reference position p0—normally the
centroid of Wp,t—of the reference point P fixed to the CDPM’s end-effector, the reference
orientation Q0—normally the centroid of Wp,r—of the frame B attached to the end effector,
the chosen number of degrees of freedom n, the total number of cables m (m ≥ n + 1) and
the total number of edges f . In addition, we also need to choose the number of end-effector
orientations q, the number of checkpoints nb on the ellipsoid surface, the maximum allowed
number of iterations mr, and the number of initial guesses ms selected to span the domain of
solutions. These selections are directly based on the constraints of the intended application
for the CDPM and on the experience of the designer.

From the given prescribed workspace in translation Wp,t, the second step is to determine the
parametric constants of the target ellipsoid We that best represents Wp,t, with κ = 1, by
using Eq. (4.10). This ellipsoid serves then as a threshold to know if the resulting geometry
fulfills its performance requirements, i.e., we ultimately seek for κ ≥ 1.

The third step is the generation of the ιth initial solution. This step is separated into two sub-
steps: a randomly-selected CDPM geometry, i.e., aι,r and bBι,r, and its corresponding closest-
feasible solution vι,0. The random selection of the CDPM’s initial geometry is performed

147



CDPM requirements:
Wp,a,bB,a,b

B,p0,Q0,
n,m,f ,q,nb,mr,ms.

Dimensional synthesis
program

Target ellipsoid We (κ = 1)
(problem of Eq. (4.10))

ι = 1

Initial solution

Randomly-selected CDPM’s geometry
aι,r,bBι,r (see Eq. (4.65))

Closest-feasible solution vι,0
(see Eqs. (4.66-4.71))

vι,0

Optimization program: fmincon
(problem of Eq. (4.50))

v∗

vι,f , f(vι,f )

ι = ι+ 1
ι ≥ msNo

Yes

min(~f(v))

v∗, f(v∗)

Convergence No

Yes

ι = ι+ 1

v?, f(v?)

End

Figure 4.5 – Flowchart of the CDPM dimensional synthesis method.
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using the function random from the Statistics Toolbox of the MATLAB® package. We chose
a uniform distribution for this random selection in order to obtain attachment points aι,r and
bBι,r, that fulfill the following constraints:

aι,r ∈ [a, a] , and bBι,r ∈
[
bB, bB

]
. (4.65)

In order to initialize the optimization algorithm from a feasible starting point, we must first
ensure that the resulting random geometry represents a feasible initial geometry, i.e., that at
minimum the reference position p0 of this given CDPM end-effector belongs to its WCW, at
least for the q orientations Qk. This is ensured by computing its projection on the domain of
feasible solutions before launching the optimization program of Eq. (4.50). To do so, we first
find the closest-feasible geometry by solving the following problem:

minimize f(xι,0) ≡ ||xι,0 − xι,r||22 = (xι,0 − xι,r)T (xι,0 − xι,r),
subject to W�

k,ι,0tk,ι,0 = 0n,
−tk,ι,0 ≤ 0m,

1Tmtk,ι,0 = 1,

for xι,0 and tk,ι,0,

(4.66)

where xι,0 ≡ [ aTι,0 bB Tι,0 ]T and xι,r ≡ [ aTι,r bB Tι,r ]T , two vectors of dimension 6m. This
minimization problem can easily be solved with the function fmincon from MATLAB®. The
purpose of the problem of Eq. (4.66) is to minimize the square norm of the difference between a
feasible CDPM’s geometry and the random-selected geometry, i.e., to find the closest feasible
geometry, while satisfying the COWCW constraints for each Qk, k = 1, . . . , q, at p = p0.

Furthermore, since a feasible initial solution for the synthesis problem presented in Eq. (4.50)
is given by vι,0 and not only xι,0, we then need to determine the corresponding values for
κι,0, paug,ι,0, taug,ι,0, µaug,ι,0 and ηaug,ι,0. To do this, we must solve the following series of op-
timization sub-programs, assuming κι,0 = 0, and consequently, paug,ι,0 = [ pT0 · · · pT0 ]T3nb
from Eq. (4.22d):

minimize f(tk,ε,ι,0) ≡ fT tk,ε,ι,0,
subject to W�

k,ε,ι,0tk,ε,ι,0 = 0n,
−tk,ε,ι,0 ≤ 0m,

1Tmtk,ε,ι,0 = 1,

for tk,ε,ι,0,

(4.67)

which can be solved with the function linprog for k = 1, . . . , q and ε = 1, . . . , nb, in order to
obtain taug,ι,0. It should also be noted that f ≡ 1mqnb in this case. Then, in order to obtain

149



µaug,ι,0:

minimize f(µi,j,k,ι,0) ≡ µTi,j,k,ι,0adj(Hi,j,k,ι,0)µi,j,k,ι,0,

subject to −µi,j,k,ι,0−2hi,j,k,ι,0 ≤ 02, (4.68)

for µi,j,k,ι,0,

which can be solved with the function quadprog for i = 1, . . . ,m, j = 1, . . . ,m (i 6= j) and
k = 1, . . . , q. We must also verify that the constraint of Eq. (4.33a) is also satisfied:

µTi,j,k,ι,0adj(Hi,j,k,ι,0)µi,j,k,ι,0 − 4hi,j,k,ι,0det(Hi,j,k,ι,0) ≤ 0. (4.69)

Finally, in order to obtain ηaug,ι,0, we must

minimize f(ηi,o,k,ι,0) ≡ ηTi,o,k,ι,0Zai,o,k,ι,0ηi,o,k,ι,0 − 4det(Ni,o,k,ι,0)cTηi,o,k,ι,0,
subject to −D−1(ηi,o,k,ι,0−2zi,o,k,ι,0) ≤ 03, (4.70)

for ηi,o,k,ι,0,

which can be solved with the function quadprog for i = 1, . . . ,m, o = 1, . . . , f and k = 1, . . . , q.
Again, one must verify that the constraint of Eq. (4.47a) is satisfied:

ηTi,o,k,ι,0Zai,o,k,ι,0ηi,o,k,ι,0−4det(Ni,o,k,ι,0)(cTηi,o,k,ι,0 + ni,k,ι,0) ≤ 0. (4.71)

In summary, from the third step, we obtain the following feasible initial solution for our
CDPM dimensional synthesis problem:

vι,0 ≡
[
κι,0 aTι,0 bB Tι,0 pTaug,ι,0 tTaug,ι,0 µTaug,ι,0 ηTaug,ι,0

]T
. (4.72)

The fourth step is to find the ιth solution vι,f , which is obtained by solving the optimization
program described with Eq. (4.50) and using the feasible initial solution vι,0 as a starting
point. As previously stated, the optimization tool fmincon included in the Optimization
Toolbox of the software MATLAB® is used to solve this program. More specifically, the
interior-point algorithm is preferred from other options since it is a large-scale algorithm6,
which does not need to store matrices and allows to exploit their sparsity pattern in order
to improve speed and reduce memory cost. In fact, although we stated in Sub-section 4.1.1
that SQP is often reported as the most successful method for solving nonlinear constrained
optimization problems, it has the demerit to be a medium-scale algorithm. This is seen as
a strong inconvenient when one aims at solving synthesis problem with a high number of

6From [201], an optimization algorithm is said large scale, by opposition to medium scale, when it uses
linear algebra that does not need to store, nor operate on, full matrices. This may be done internally by
storing sparse matrices, and by using sparse linear algebra for computations whenever possible. Furthermore,
the internal algorithms either preserve sparsity, such as a sparse Cholesky decomposition [293], or do not
generate matrices, such as a conjugate gradient method [294].
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variables and constraints and that involves large sparse matrices, such as the dimensional
synthesis of CDPMs. Furthermore, sub-problems of the interior-point algorithm are set to
be solved with the Conjugate Gradient method [294], which is derived from the family of
the Gradient methods and known to be an efficient method for large unconstrained nonlinear
problems. Also, in order to reduce computation time, gradients of the objective function and
nonlinear constraints have been analytically formulated and provided to the CDPM synthesis
program. Since our objective function, shown in Eq. (4.50), is simple:

f(v) = −κ, (4.73)

the associated gradient is easily expressed as follows:

∇f(v) ≡ ∂f(v)/∂v =
[
−1 0T6m+3nb+mqnb+2(m2−m)q+3mfq

]T
. (4.74)

As for the gradients of the nonlinear inequality and equality constraints, which can be ex-
pressed as ∇cineq(v) ≡ ∂cineq(v)/∂v and ∇ceq(v) ≡ ∂ceq(v)/∂v, their mathematical deriva-
tion is more involved and it is left in Appendix C.2. Once the optimization process is com-
pleted, the ιth final solution is obtained:

vι,f ≡
[
κι,f aTι,f bB Tι,f pTaug,ι,f tTaug,ι,f µTaug,ι,f ηTaug,ι,f

]T
. (4.75)

Finally, in order to define a suitable stopping criterion for the algorithm, we set a maximum
number of iterations mr. Moreover, there are additional stopping options inherent to the
use of the fmincon function such as the tolerance on the constraint violation (TolCon), the
termination tolerance on the function value (TolFun) and the termination tolerance on the
solution v (TolX). TolCon, TolFun and TolX were set to 1e−6, 1e−4 and 1e−5, respectively,
their default values in MATLAB® being 1e−6, 1e−6 and 1e−10, respectively. It is noted that
these values have been increased in order to relax the tolerance constraints of the optimization
tool and consequently reduce the overall computation time required to obtain an acceptable
final solution.

The third and fourth steps have to be performed until ι = ms, where ms is the chosen
number of initial guesses set for the multi-start method applied to this CDPM synthesis
problem. When this number is reached, the solution v∗ that best minimizes the objective
function f(v) is determined by finding the solution that generates f(v∗) over the ms final
solutions, i.e., f(v∗) ≡ min(f(vι,f )), where ι = 1, . . . ,ms.

Finally, the last step is to verify the level of convergence of the solution v∗. To do so, we
first verify if the number of iterations required to obtain this solution reached the maximum
allowed mr. In the negative, this solution represents the optimum solution v? generated by
our dimensional synthesis program for the given problem, i.e., our best CDPM’s geometry
for the given requirements. In the affirmative, however, this solution is fed back into the
optimization program directly as a feasible initial solution vι+1,0 and a new final solution v∗
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is then obtained. This action is applied unless it is found that the corresponding value f(v∗),
based on the evolution of the objective function, has barely changed over the last one-hundred
iterations and that the optimization program’s step size for each of these iterations is very
small. In other words, the solution is considered optimal if there are sufficient iterations to
indicate that the optimization process would have stopped soon after the mrth iteration and
that only unsignificant changes would have been done on the resulting CDPM geometry.

In all, this makes for an algorithm that requires minimal human interventions. This can
be seen in Fig. 4.5, where only the first and the last two steps of the flowchart have to be
manually performed by the designer. These steps are shown outside the central block (dashed
lines) named Dimensional synthesis program. The first part is the determination of the CDPM
requirements based on the intended application and the functional parameters of the synthesis
programming and the second part is the determination of the necessity of an additional run
into the optimization algorithm in view of the probability of improving the result f(v∗).

For the sake of numerical validation, the proposed technique is applied to the dimensional
synthesis of two different mechanisms. It is first tested on an arbitrary seven-cable nine-edge
six-DoF CDPM in Sub-section 4.3.1 and then, in Sub-section 4.3.2, to the optimization of the
geometric parameters of an eight-cable seventeen-edge six-DoF CDP intended for a medical
application. Since the envisioned CDPMs are spatial cable-driven mechanisms, the number
of degrees of freedom is fixed to n = 6 in both examples. Also, as previously mentioned in
Sub-section 4.2.2, the number of checkpoints on the ellipsoid surface for the evaluation of the
COWCW is set to nb = 14. We decided to span the prescribed workspace in rotation Wp,r

with nine different end-effector attitudes Qk, i.e., q = 9. In general, Wp,r can be represented
as a box in the tridimensional space of rigid-body rotations. For this reason, the first eight
orientations Qk correspond to the eight vertices ofWp,r, while the ninth orientation is consid-
ered to be the reference, Q0, which is generally represented by the 3×3 identity matrix 13×3.
With this set of strategic CDPM attitudes, we assess all the possible combinations of the
extrema of the range of rotations as well as the reference orientation. We assume that any
intermediary attitude Q is reachable when these nine end-effector attitudes Qk are reachable,
with respect to our three evaluation criteria and for every displacement in translation inside
the CDPM workspace. If one wishes a more refined discretization of Wp,r, it is possible to do
so by adjusting the value q accordingly. However, one must be aware that the required com-
putation time to evaluate a single iteration of the synthesis program would be consequently
increased. Then, as per the multi-start method, we chose to start our synthesis algorithm
from ms = 14 initial guesses vι,0, ι = 1, . . . ,ms, for the first example and from ms = 100 for
the second one.
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4.3.1 An Arbitrary Seven-Cable Nine-Edge Six-DoF Cable-Driven
Parallel Mechanism

As a first numerical application of the proposed synthesis program, we decided to tackle the
design of a generic spatial CDPM. In fact, suppose we seek a spatial seven-cable nine-edge
six-DoF CDPM whose WCW must contain a three-dimensional prescribed box Wp,t within a
given range of orientations Wp,r.

Here, we choose

Wp,t ≡ p ∈
[

(0.4)13 (0.6)13
]
(m), (4.76)

and,

Wp,r ≡ θ ∈
[
−π
12 13

π
1213

]
(rad), (4.77)

where θ ≡
[
θx θyI θzII

]T
represents the XY Z Euler angles.

The number of cables is set to seven, which is the minimum required for a COWCW to exist.
The geometry of the CDPM is constrained inside the following bounds:

a = 03m and a = 13m (m), (4.78)

and,

bB = (−0.1)13m and bB = (0.1)13m (m). (4.79)

Moreover, the number of degrees of freedom is naturally set to n = 6, the number of end-
effector orientations Qk used to spanWp,r is set by default to q = 9, the number of assessment
points to ensure thatWe ⊆ COWCW is chosen to be nb = 14 as specified in Sub-section 4.2.2
and the number of edges defining the wire-frame model of its end effector is chosen to be
f = 9 (see Fig. 4.3 for an illustration of a CDPM with the chosen end-effector geometry).
Table 4.1 presents the coordinates of the starting and ending points of each edge.

The reference position p0 of point P on the CDPM end-effector is set to the centroid of Wp,t,
i.e., p0 ≡ (0.5)13 (m). Similarly, the reference orientation Q0 of the frame B attached to the
end effector is set to the centroid of Wp,r, i.e., Q0 ≡ 13×3.

As for the adjustable parameters of the dimensional synthesis program, we set the maximum
number of allowed iterations for each trial to mr = 5 000 and, as previously mentioned, the
maximum number of trials toms = 14, which is the total number of initial solutions chosen for
the multi-start method. Obviously, ms could be set to a higher number so as to better span
the domain of solutions, but in order to limit the computational time required to complete
this synthesis program, we decided to limit ms to 14, which can be normally computed within
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Table 4.1 – Coordinates of the starting and ending points of the set of edges that form the
geometry attached to the CDPM’s end-effector of the first example.

Edge
eBo,s eBo,t

x (m) y (m) z (m) x (m) y (m) z (m)

1 0.00 −0.15 0.00 0.00 0.00 0.05
2 −0.05 0.05 0.00 0.00 0.00 0.05
3 0.05 0.05 0.00 0.00 0.00 0.05
4 0.00 −0.15 0.00 −0.05 0.05 0.00
5 0.00 −0.15 0.00 0.05 0.05 0.00
6 −0.05 0.05 0.00 0.05 0.05 0.00
7 0.00 −0.15 0.00 0.00 0.00 −0.15
8 −0.05 0.05 0.00 0.00 0.00 −0.15
9 0.05 0.05 0.00 0.00 0.00 −0.15

a few days, using a standard PC equipped with an Intel® Quad-Core™ i7−2600 CPU running
at 3.4 GHz. It should be noted that the first thirteen guesses follow the method described
above, i.e., they are formed by improving a random selection of the initial geometries. The last
initial guess, the fourteenth, is rather formed from the designer’s intuition. In addition, the
interior-point algorithm of MATLAB® allows for the adjustment of two optional parameters
when applied to problems with a large number of variables. These optional parameters, when
properly tuned, alleviate numerical problems associated with variables of completely different
scales. The first option is called InitBarrierParam and it is fixed to 0.15 (default value: 0.1)
and the second is InitTrustRegionRadius and it is set to

√
2 000 (default value:

√
v, where

v is the number of variables, and in this example, v = 3 424). It is normally suggested to
respectively increase and decrease these parameters in order to improve the efficiency of the
algorithm in cases like ours [201].

Table 4.2 presents the summary of the fourteen potential solutions generated by our dimen-
sional synthesis program. It can be observed, for each ιth trial, the negative value of the final
objective function f(vι,f ), which is equivalent to κι,f , the number of iterations and the time
required to solve the optimization program as well as the message indicating the reason why
it stopped. The reader should note that the entire set of optimizations has been completed
in less than 24 hours (23.42 hours).

For this example, the best result—the global minimum over the fourteen local minima—
belongs to Trial 14, which is marked by a star in Tab. 4.2. This result reports a CDPM’s
geometry with a three-dimensional workspace in translation that can be illustrated by an
ellipsoid We with κ = 1.5192 (see Eq. (4.2)). Our synthesis program ensures us that at least
fourteen strategically distributed points lying on this ellipsoid surface are included in the
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Table 4.2 – Summary of the results obtained from the dimensional synthesis of a seven-cable
nine-edge six-DoF CDPM.

Trial ι κι,f = −f(vι,f ) Iterations Time (s) Stop Message

1 0.4798 966 3 875.6 Local minimum found
2 0.7679 1 249 5 089.8 Local minimum found
3 0.4657 382 1 498.5 Local minimum found
4 0.3240 1 148 4 935.6 Local minimum found
5 1.0306 2 644 8 475.1 Local minimum found
6 0.6066 456 1 686.2 Local minimum found
7 0.6063 746 3 092.0 Local minimum found
8 0.6468 3 456 8 646.8 Local minimum found
9 1.4468 929 4 059.6 Local minimum found
10 1.4430 2 056 8 568.8 Local minimum found
11 0.5408 5 000 18 137.0 Maximum iterations reached
12 1.4457 2 751 10 567.0 Local minimum found
13 1.3924 769 3 722.3 Local minimum found

14 (?) 1.5192 458 1 961.1 Local minimum found

CDPM WCW, at least for nine different end-effector orientations Qk. We also know that, for
each Qk, this workspace is free of any cable-cable and cable-edge interferences.

In order to demonstrate the practicability of our dimensional synthesis program, the following
analysis will be mainly focused on the best solution v?, from Trial 14, even if any trial could
have been used for this purpose. First, consider Fig. 4.6a, which illustrates the evolution
of the objective function f(v14) with its corresponding step size, namely, the length of each
displacement in v. In Fig. 4.6b, for comparison, the same results are shown but for Trial 9,
which also generated an interesting final value of the objective function. It is observed here
that both graphics of the objective function start from f(v0) = 0 and then gradually decrease
until it reaches a local minimum—remember that we aim at minimizing −κ as stated in
Eq. (4.50). In general, as it can be seen in Tab. 4.2, a random initial solution requires more
iterations in order to be transformed in a “good” solution, i.e., with a final κ ≥ 1 (see Trials 5,
9, 10, 12 and 13 in comparison with Trial 14). From Fig. 4.6, we notice that slightly more
than twice the number of iterations are required to optimize the modified random-selected
initial geometry of Trial 9 in comparison to the designer-reflected initial solution of Trial 14.
Also, as it can be expected, the step size value decreases as the optimization progresses in
both cases, since both converge to a local optimum. It should be noted that, in general, a
step size that does not decrease is the sign of an unsuccessful optimization.

In Fig. 4.7, we then show the difference between the WCWs of the initial and final CDPM
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Figure 4.6 – Evolution of the objective function and step size values corresponding to the
optimization performed in the fourteenth and ninth trials of the first example.
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Figure 4.7 – Comparison of the results obtained from the initial and the final CDPM’s ge-
ometries (Trial 14).

geometries corresponding to Trial 14. Figure 4.7a also contains the ellipsoid representing the
prescribed workspace in translation We with κ = 1 while Fig. 4.7b contains the final ellipsoid
with κ? = 1.5192. Even if the initial CDPM geometry of Trial 14 was devised from the
designer’s intuition, its WCW does not fully cover the prescribed ellipsoid for all of the nine
chosen end-effector orientations Qk. On the other hand, the final ellipsoid is covered by the
WCW of the final CDPM geometry, at least at the fourteen strategically-selected points on
the ellipsoid surface and for the given set of Qk. Figure 4.8 shows, from three different views
of the final ellipsoid with its corresponding WCW, which demonstrates that We ⊆ WCW.
From Figs. 4.7b and 4.8, it is clear that the final ellipsoid surface is limited by the WCW
boundary.

156



x (m)

y
(m

)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) An XY view
x (m)

z
(m

)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) An XZ view
y (m)

z
(m

)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c) An Y Z view

Figure 4.8 – Demonstration of the coverage of the final geometry’s ellipsoid by its correspond-
ing WCW (Trial 14).

Now that we demonstrated that the WCW of the final CDPM geometry is indeed a con-
straining criterion for the evolution of the resulting ellipsoid, the same analysis needs to be
performed in the case of the mechanical interferences between the moving parts of the CDPM.
Figures 4.9 and 4.10 show the mechanical interference regions for every cable pair and for ev-
ery cable-edge pair, respectively, in the case of the initial geometry of Trial 14, and for the
nine chosen attitudes Qk. Similarly, Figs. 4.11 and 4.12 show the mechanical interference
regions for every cable pair and for every cable-edge pair, respectively, in the case of the final
geometry of Trial 14, for the nine chosen attitudes Qk.

From these figures, however, it is hard to assess whether the dimensional synthesis program
has increased the size of the interference-free workspace of the evaluated CDPM. In order to
prove that it did undoubtedly, we decided to illustrate the evolution of all pairs of cables {i, j}
that constrain the expansion of the interference-free workspace, from the initial to the final
CDPM geometry of Trial 14. We also did the same exercise for all cable-edge pairs.

First, Figs. 4.13 to 4.16 compare the four combinations of two cables at specific orientation that
either cross or limit the prescribed ellipsoid—initial geometry—or the resulting ellipsoid—
final geometry. In Fig. 4.13a, it can be observed that the plane P24, which supports the
two interference regions (C−24 and C+

24) corresponding to a mechanical interference between
cables 2 and 4, slightly crosses the prescribed ellipsoid for the initial CDPM geometry of
Trial 14. Once the optimization of this CDPM geometry is completed, it is apparent from
Fig. 4.13b that the corresponding interference regions no longer limit the motion of the final
CDPM within its workspace. In Fig. 4.14, we see that the interference region C−36 cuts the
prescribed ellipsoid with the initial geometry while C+

36 acts as a limitating region plane for the
final CDPM. Then, with Figs. 4.15 and 4.16, a similar phenomenon occurs: the interference
regions supported by planes P15 and P16 do not interfere with the prescribed ellipsoid but
they constrain the optimized ellipsoid of the final CDPM geometry (see C+

15 and C−16).
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(a) {−15o, −15o, −15o} (b) {−15o, −15o, 15o} (c) {−15o, 15o, −15o}

(d) {−15o, 15o, 15o} (e) {15o, −15o, −15o} (f) {15o, −15o, 15o}

(g) {15o, 15o, −15o} (h) {15o, 15o, 15o} (i) {0o, 0o, 0o}

Figure 4.9 – Mechanical interference regions between two cables for the nine chosen attitudes
{θx, θyI , θzII} of the end effector of the initial seven-cable nine-edge six-DoF CDPM.
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(a) {−15o, −15o, −15o} (b) {−15o, −15o, 15o} (c) {−15o, 15o, −15o}

(d) {−15o, 15o, 15o} (e) {15o, −15o, −15o} (f) {15o, −15o, 15o}

(g) {15o, 15o, −15o} (h) {15o, 15o, 15o} (i) {0o, 0o, 0o}

Figure 4.10 – Mechanical interference regions between a cable and an edge for the nine chosen
attitudes {θx, θyI , θzII} of the end effector of the initial seven-cable nine-edge six-DoF CDPM.
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(a) {−15o, −15o, −15o} (b) {−15o, −15o, 15o} (c) {−15o, 15o, −15o}

(d) {−15o, 15o, 15o} (e) {15o, −15o, −15o} (f) {15o, −15o, 15o}

(g) {15o, 15o, −15o} (h) {15o, 15o, 15o} (i) {0o, 0o, 0o}

Figure 4.11 – Mechanical interference regions between two cables for the nine chosen attitudes
{θx, θyI , θzII} of the end effector of the final seven-cable nine-edge six-DoF CDPM.
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(a) {−15o, −15o, −15o} (b) {−15o, −15o, 15o} (c) {−15o, 15o, −15o}

(d) {−15o, 15o, 15o} (e) {15o, −15o, −15o} (f) {15o, −15o, 15o}

(g) {15o, 15o, −15o} (h) {15o, 15o, 15o} (i) {0o, 0o, 0o}

Figure 4.12 – Mechanical interference regions between a cable and an edge for the nine chosen
attitudes {θx, θyI , θzII} of the end effector of the final seven-cable nine-edge six-DoF CDPM.
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Figure 4.13 – Evolution of the mechanical interference regions between cable 2 and cable 4 of
the seven-cable nine-edge six-DoF CDPM.
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Figure 4.14 – Evolution of the mechanical interference regions between cable 3 and cable 6 of
the seven-cable nine-edge six-DoF CDPM.
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Figure 4.15 – Evolution of the mechanical interference regions between cable 1 and cable 5 of
the seven-cable nine-edge six-DoF CDPM.
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Figure 4.16 – Evolution of the mechanical interference regions between cable 1 and cable 6 of
the seven-cable nine-edge six-DoF CDPM.

Likely, the same analysis can be performed for the mechanical interference between a cable
and an end-effector edge. For this purpose, Figs. 4.17 to 4.25 show the evolution of all pairs of
a cable and an edge that cross or intersect the surface of the prescribed and final ellipsoids. In
Figs. 4.17 to 4.23, it can be observed that the interference regions E11, E11, E12, E12, E13, E13,
E39, respectively, pass through the prescribed ellipsoid for the initial CDPM geometry and
are disjoint from the ellipsoid associated to the final geometry. In Fig. 4.23b, the interference
region E39 is far behind the resulting ellipsoid. From Fig. 4.24, it is seen that the interference
region E28, which is generated from the contact between the cable 2 and the edge 8, completely
intersects the prescribed ellipsoid in Fig. 4.24a and then becomes a limitating plane for the
ellipsoid corresponding to the final CDPM geometry in Fig. 4.24b. Finally, from Fig. 4.25, the
region of workspace restricted by the interference of cable 4 with edge 7 lies far in front of the
prescribed ellipsoid in the initial case and then becomes a limitating plane for the optimized
CDPM workspace.

Based on the results and the analysis presented above, we empirically verified that the pro-
posed dimensional synthesis program of Eq. (4.50) seeks and often finds a local minimum
representing a compromise between our three criteria, and also that these three criteria are
relevant for the synthesis of the geometry of a CDPM. Indeed, it was shown that the WCW
and the interference regions associated to the contact between two cables and between a
cable and an edge of a CDPM end-effector can all be constraining elements of its reach-
able workspace. It should be noted by the reader that all the combinations of two moving
parts—cable or edge—that were not presented in this particular example did not generate any
interference regions restricting the evaluated workspace. This is why they were not displayed
in this analysis.

In addition, for the sake of completeness, the Cartesian coordinates of the attachment points of
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Figure 4.17 – Evolution of the mechanical interference regions between cable 1 and edge 1 of
the seven-cable nine-edge six-DoF CDPM.

x (m) y (m)

z
(m

)

c1

c2
c3 c4

c5

c6

c7

0
0.5

1
00.51

0

0.5

1

E11

(a) Initial CDPM {15o, 15o, 15o}
x (m) y (m)

z
(m

)

c1

c2
c3

c4

c5

c6

c7

0
0.5

1
00.51

0

0.5

1 E11

(b) Final CDPM {15o, 15o, 15o}

Figure 4.18 – Evolution of the mechanical interference regions between cable 1 and edge 1 of
the seven-cable nine-edge six-DoF CDPM.

x (m) y (m)

z
(m

)

c1

c2
c3 c4

c5

c6

c7

0
0.5

1
00.51

0

0.5

1

E12

(a) Initial CDPM {15o, −15o, −15o}
x (m) y (m)

z
(m

)

c1

c2
c3

c4

c5

c6

c7

0
0.5

1
00.51

0

0.5

1

E12

(b) Final CDPM {15o, −15o, −15o}

Figure 4.19 – Evolution of the mechanical interference regions between cable 1 and edge 2 of
the seven-cable nine-edge six-DoF CDPM.
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(b) Final CDPM {15o, 15o, 15o}

Figure 4.20 – Evolution of the mechanical interference regions between cable 1 and edge 2 of
the seven-cable nine-edge six-DoF CDPM.
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(b) Final CDPM {15o, −15o, −15o}

Figure 4.21 – Evolution of the mechanical interference regions between cable 1 and edge 3 of
the seven-cable nine-edge six-DoF CDPM.
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(b) Final CDPM {15o, 15o, 15o}

Figure 4.22 – Evolution of the mechanical interference regions between cable 1 and edge 3 of
the seven-cable nine-edge six-DoF CDPM.
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(b) Final CDPM {−15o, −15o, −15o}

Figure 4.23 – Evolution of the mechanical interference regions between cable 3 and edge 9 of
the seven-cable nine-edge six-DoF CDPM.
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(b) Final CDPM {−15o, 15o, 15o}

Figure 4.24 – Evolution of the mechanical interference regions between cable 2 and edge 8 of
the seven-cable nine-edge six-DoF CDPM.
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(b) Final CDPM {15o, 15o, −15o}

Figure 4.25 – Evolution of the mechanical interference regions between cable 4 and edge 7 of
the seven-cable nine-edge six-DoF CDPM.
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the randomly-generated, closest-feasible initial and final architectures for all fourteen trials are
presented in Appendix D.1. Furthermore, a graphical representation of the initial geometry,
the final geometry and the final one with its WCW are included. Over the fourteen trials,
six are deemed successful, since their final κ ≥ 1 (Trials 5, 9, 10, 12, 13 and 14). For these
optimizations, three additional graphics following three different views (XY , XZ, and Y Z)
are added in Appendix D.1 in order to facilitate the analysis of their final CDPM geometry.

It is indeed interesting to analyze these six local minima in order to detect any tendency in
the positioning of their attachment points ai and bBi , i = 1, . . . ,m. In general, it is noticed
that, from the initial to the final positioning of points ai on the base frame, the optimization
program tends to expand the volume occupied by these attachment points until they approach
a limit (either a or a) for one, two or all of their Cartesian coordinates. This behaviour is
easily explained by the need to increase the reachable workspace of the CDPM. Indeed, the
higher the ratio between the volume of the base and the end effector, the larger the reachable
workspace in translation. Regarding the positioning of the points bBi , it is generally observed
that, for at least one coordinate direction, the attachment points on the end effector are
on the opposite side of the axis compared to their counterpart on the base. This is also a
relevant behaviour since it normally allows to increase the range of rotation of the CDPM’s
end-effector along the corresponding axis. From our results, no new specific pattern seems
to be exactly reproduced from one trial to the other but it is clear that the optimization
program tends to find the best compromise between the minimization of the volume occupied
by the CDPM’s end-effector to increase its workspace in translation and the maximization
of the cables crossing to increase its workspace in rotation, while minimizing the mechanical
interferences among its cables themselves and between these cables and the end-effector edges.

It should also be noted that, based on the different results obtained during this work, having
two coincident attachment points does not seem desirable for the design of all CDPMs. This
seems contradictory with common practice, where coinciding attachment points are often seen
as a simple and efficient way to avoid mechanical interferences. We observed here that this
geometric characteristic has rarely been generated within the final solutions since it is, in
general, better to have crossed cables in order to increase the WCW of a CDPM, at least
when the prescribed workspace in rotation is relatively large and no additional interferences
are consequently introduced.

Finally, from the best result κ? = 1.5192, it is clear that the CDPM’s requirements of this
first example could have been slightly more demanding since the threshold to fulfill these
requirements is κ ≥ 1. Either the range of the CDPM end-effector orientations Wp,r or the
range of the end-effector positions Wp,t, or both, could have been increased. In this way,
the next example proposes a more constraining and realistic application for our dimensional
synthesis program.
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(a) a double-donut configuration (b) a C-shaped configuration (c) a cylindrical configuration

Figure 4.26 – The three different types of available MRI devices.

4.3.2 An Eight-Cable Seventeen-Edge Six-DoF Cable-Driven Pantograph
Intended for a Medical Application

The example presented in this sub-section corresponds to the envisioned application that
initially led to the concept of cable-driven pantographs, which is described in the Introduction
of the thesis. This application requires to manipulate needles inside an MRI scanner in order
to perform image-guided punctions or simple biopsies on patients.

From the three different types of magnetic resonance imagers available, the standard cylin-
drical MRI system is the one that best suits this application, since it normally provides the
highest image quality. This is attributed to its strong MR signal (in general, from 1.5 to 3 tes-
las) and its field homogeneity. The C-shaped and double-donut configurations, on the other
hand, normally produce electro-magnetic fields with magnitudes below 1 tesla. These two last
imaging devices offer however the best accessibility to the patient while cylindrical models
present a much confined space around the patient, leaving little room for a robotic system to
perform medical interventions, as it can be seen in Fig. 4.26. The closed bore of the cylin-
drical MRI scanner represents severely restrictive geometric constraints that must be taken
into account when developing a mechanism for magnetic-resonance-guided percutaneous—
through the skin—interventions such as biopsies, drainage, and insertion of energetic probes
for tumour ablation.

From the literature, there are specific design criteria, in addition to geometric constraints,
that must be taken into account when developing a medical robotic system to be used inside a
MRI device. The FDA has published in 1997 a draft guidance on safety and compatibility rec-
ommendations between MRI scanners and other medical devices [295]. Thence, two different
levels of compatibility must be followed. The first one is that the designed mechanism must
be MR-safe. A MR-safe system is one that presents no additional risk to the patient when
used in the MR environment, but that may affect the quality of the diagnostic information.
The second one is that the mechanism must be MR-compatible. This term means that the
device, when used in the MR environment, is MR-safe, and has been demonstrated to neither
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significantly affect the quality of the diagnostic information nor have its operations affected
by the MRI scanner.

From a more practical standpoint, these necessary qualities for a mechanism to be compatible
with MRI scanners are obtained by a proper selection of materials, actuators and sensors.
More specifically, materials must be non-magnetic and non-conductive, as are titanium, plas-
tic, ceramic, fibreglass and carbon fibre [296]. Actuators installed inside the MRI device
must be designed from pneumatic, hydraulic or ultrasonic technologies and sensors must be
of the optical type [297]. In general, all conventional electric motors working from electro-
magnets are proscribed as well as conventional electrical sensors. Sometimes, such devices
can be installed outside of the scanner room or at least physically isolated from the MRI
electromagnetic field using Faraday cages.

As previously discussed, another design limitation is that the major parts or the entire slave
mechanism must fit inside the limited available space constrained by the dimensions of the
bore of the standard cylindrical MRI scanner. This workspace is even more limited by the
presence of the patient, with whom no mechanical contact unwarranted by the intervention
can be tolerated in order to be MR-safe [298, 299].

Over the past twenty years, several groups of researchers have worked on the design of MR-
compatible systems to perform image-guided interventions on patients directly from the cen-
tre of standard cylindrical MRI scanners. One of the first published work in the field of
MRI-compatible interventional robotics is that of Masumane et al., who designed a six-DoF
manipulator actuated with ultrasonic motors and dedicated to stereotactic7 neurosurgical
applications [301]. Early in 2000, a Canadian team has developed a MR-compatible haptic-
enabled master-slave system that has eight-DoF (including tool actuation) intended to per-
form image-guided micro-neurosurgical tasks [27, 28]. This device is based on the well-known
SCARA architecture in order to reduce the number of joints affected by the gravity and
thereby improve its positional accuracy. Its main structural components are made of tita-
nium and polyetheretherketone plastic (PEEK). Other projects have been reported for human
neurological studies, e.g., the design of a spherical two-DoF haptic-interface device made en-
tirely from polymers and suitable for use within a MR environment [302], a planar two-DoF
manipulandum actuated by ultrasonic motors to perform studies on finger movements [45],
a planar two-DoF master-slave haptic interface to investigate the human neural control of
arm movements based on a hydrostatic transmission [194]. Two comparable haptic interface
devices, one with hydrodynamic and another with pneumatic actuation, were developed to
control one-DoF translational movements of a user performing functional magnetic resonance
imaging (fMRI)8 tasks [304].

7Stereotactic: involving, being, utilizing, or used in a surgical technique for precisely directing the tip of a
delicate instrument (as a needle) or beam of radiation in three planes using coordinates provided by medical
imaging in order to reach a specific locus in the body [300].

8Functional magnetic resonance imaging or functional MRI (fMRI) is a functional neuro-imaging procedure
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Similarly to the research cited above, medical interventions such as biopsy, puncture and
placement of radioactive seeds (brachytherapy) may also take advantage from the combina-
tion of imaging technologies such as MRI scanners and robotics. For example, Taillant et
al. have developed a five-DoF pneumatically-actuated robotic architecture to perform ab-
dominal image-guided puncture interventions within the bore of a closed MRI scanner [305].
Another group has worked on the design of a fully automated image-guided seed injector for
brachytherapy interventions [306, 307]. This system has five-DoF, is pneumatically driven and
optical sensors provide position feedback to ensure its MR compatibility. Another project,
from Fischer et al., proposes the design of a six-DoF robotic assistant to accurately target
planned tissue sites. The purpose of the device is to minimize needle misplacement effects
for transperineal9 prostate interventions such as the positioning of the needle in image-guided
biopsies [308, 309]. This system is actuated by MR-compatible pneumatic cylinders com-
bined with optical encoders, while the needle is manually inserted by the physician. Moreover,
Melzer et al. have designed a five-DoF pneumatically-driven robot attached to a 180˚-orbiting
ring that is mounted on the patient table of the scanner. This device is meant for various
percutaneous interventions inside the MRI gantry [310]. Song et al. also used pneumatic ac-
tuators to develop a four-DoF MRI-compatible robotic system for MRI-guided transperineal
prostate interventions [311]. Christoforou et al. and Tsekos et al. have developed a seven-DoF
remotely controlled manipulator to perform minimally invasive diagnostic and therapeutic in-
terventions in the abdominal and thoracic area with real-time magnetic resonance imaging
guidance inside clinical cylindrical scanners [44, 49, 312]. This system is actuated by ultra-
sonic motors and it is connected to the MR scanner to receive the MR images and send the
coordinates of the end effector for dynamic control of the imaged plane.

Chapuis et al. have demonstrated in 2007 that plastic or composite cables can transmit
forces to the bore of a standard MRI scanner over a distance of several metres in the case of
a one-DoF haptic interface [51]. Since then, some groups of researchers have investigated this
avenue with a variety of designs. For example, consider the work from Abdelaziz et al., where
a two-DoF planar CDPM was proposed to accurately position a needle manually inserted by
the physician in prostate cancer cryotherapy under MRI guidance [123, 124, 52, 287]. This
MRI-compatible robotic assistant contains optical sensors to measure the cable tensions and
conventional electrical motors with rotary encoders are also used since they can be placed
outside the MRI room. Another group, Salimi et al., has similarly worked on the design of a
four-DoF cable-driven MRI-compatible robotic platform for intracardiac interventions under
beating-heart conditions [313, 314]. The primary mission for this manipulator is to safely steer
the cardiac catheters inside the left ventricle to reach any desired target points under MRI
guidance. The four active joints are also actuated by motors through a cable transmission

using MRI technology that measures brain activity by detecting associated changes in blood flow. This
technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the
brain is in use, blood flow to that region also increases [303].

9Transperineal is the region of the male body between the scrotum and the rectum.
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system in order to place the conventional motors far from the MRI scanner.

On the other hand, some groups have rather worked on purely mechanical devices in order
to ensure MR compatibility. For instance, Beyersdorff et al. demonstrated the practicability
of a purely-mechanical serial device to assist the positioning of a needle. This mechanism,
which was made of polyoxymethylene, was designed to perform transrectal biopsies of the
prostate under MRI guidance [315]. Another group, Christoforou et al., has also built a
manually-actuated system [316, 299]. This device has five degrees of freedom and is designed
to perform general minimally-invasive interventions under direct MRI guidance.

In this thesis, as stated in the Introduction, we follow the same direction of these previous work
by seeking to develop a purely mechanical six-DoF cable-driven master-slave architecture that
would be suitable to perform simple interventions such as abdominal punctures and biopsies
under MRI guidance. In this sub-section, however, the focus is pointed on the geometric
constraints only, the others—such as MR compatibility—being left to further investigations.
Thus, this work aims at determining a suitable geometry for a CDP to perform such a task.
To this end, we resort to our previously developed methods to dimensionally synthesize a
CDPM—here the slave part of the CDP—that fits inside the bore of a conventional MRI
scanner. The workspaceW of the CDPM must be sufficiently large to perform simple medical
spatial tasks such as image-guided biopsies while avoiding internal mechanical interferences
(between cables and between cables and the end effector).

To do so, we decided to use geometric constraints similar to those established in Refs. [298,
299]. From these papers, typical gantry dimensions for cylindrical MRI devices are 60−70 cm
for the bore diameter and 1.2 − 2.0 m for its length. They also provide an analysis of the
free space available within the gantry of this type of imager while a patient lays inside the
bore. Figure 4.27 shows their results presented in Ref. [299] when using a 60-cm bore gantry.
This figure displays the radial distances between a subject of moderate body size (height of
1.65 m, weight of 71 kg, chest periphery of 92 cm and abdominal periphery of 95 cm) and the
gantry wall measured on a transverse MR image at the abdominal area.

Based on Fig. 4.27, it is seen that, for a moderate body-size patient, we can in general assume
an available workspace of 20 cm, 18 cm and 14 cm along the vertical axis, the oblique axes
(45˚and −45˚) and the horizontal axis, respectively. Notice that all these axes pass through
the centre of the 60-cm bore. Our current analysis is based here on a more recent model of
cylindrical MRI devices manufactured by Siemens [50]: The MAGNETOM® Skyra three-tesla
MRI system (see Fig. 0.10). This three-tesla MR imager presents an increased bore diameter
of 70 cm and a length of 1.73 m. From these dimensions, we assume for the design of our CDP
a free space over the patient’s abdominal wall of 25 cm in the vertical direction, 23 cm in the
oblique directions and 19 cm in both horizontal directions. Also, with a length of 1.73 m, we
consider that we should be able to place attachment points over a range of at least 1.60 m.
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Figure 4.27 – Example of results for a free space analysis on a transverse MR image of the
thoracic area of a human subject reported in published literatures.

Figures 4.28 and 4.29 respectively show transverse and longitudinal views of the considered
free space with the prescribed workspace of the CDP. We used a patient body size similar to
that of ref. [299] in order to determine the space available within the bore of the MRI device.
It can also be seen that the prescribed workspace in translation (red boxes in the figures) is

Wp,t ≡ p ∈


[−0.085, 0.085]
[−0.30, 0.30]

[−0.0375, 0.0375]

 (m). (4.80)

Moreover, we assume that the following prescribed workspace in rotation would be sufficient
for the intended application:

Wp,r ≡ θ ∈


[−π

12 ,
π
12
][−π

4 ,
π
4
][−π

18 ,
π
18
]
 (rad), (4.81)

where θ ≡
[
θx θyI θzII

]T
represents the XY Z Euler angles.

The number of cables is set to eight in order to increase the likelihood of the existence of a
COWCW. Recall that the minimum number of cables is seven when one desires to perform
a six-DoF task at the end effector. The geometry of the CDPM is constrained inside the
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Figure 4.28 – Transverse view of the free space and workspace of the envisioned CDP.
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Figure 4.29 – Longitudinal view of the free space and workspace of the envisioned CDP.

following bounds:

ai =


−0.80
−0.35
0.00

 and ai =


0.80
0.35
0.35

 (m), (4.82)

and,

bBi =


−0.04
−0.04
0.00

 and bBi =


0.04
0.04
0.16

 (m). (4.83)
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Figure 4.30 – Illustration of the CDP’s end-effector geometry and its corresponding wire-frame
model used for the synthesis optimization.

As for the previous example, the number of degrees of freedom is set to n = 6, the number of
end-effector orientations Qk used to span Wp,r is set by default to q = 9 and the number of
assessment points to ensure that We ⊆ COWCW is chosen to be nb = 14 as specified in Sub-
section 4.2.2. The number of edges defining the wire-frame model of the end effector is here
chosen to be f = 17 (see Fig. 4.30 for the illustration of the end-effector geometry of the CDP
(4.30a and 4.30b) and its corresponding wire-frame model used for the synthesis optimization
(4.30c)), which allows to suitably represent the space covered by or under the end effector
where no cable must be found while moving the CDP’s slave end effector. Table 4.3 contains
the corresponding coordinates of the starting and ending points of each edge. It should be
observed that the positioning of the attachment points on the end effector has been set to a
slightly larger acceptable volume compared to the limited volume of the expected tool, i.e.,
0.08 × 0.08 × 0.16 m3 and 0.05 × 0.05 × 0.16 m3, respectively. This choice allows the cables
attachment points to be slightly outside the end-effector geometry. Moreover, the height of
the end-effector geometry is chosen to ensure that no contact occurs between the tool and the
internal wall of the MRI gantry, for the prescribed workspace.

The reference position p0 of point P on the CDPM end-effector is set to

p0 ≡
[

0.0000 0.0000 0.1225
]T

(m), (4.84)

and the reference orientation Q0 of the frame B attached to the end effector is set to the
centroid of Wp,r, i.e., Q0 ≡ 13×3. As for the adjustable parameters of the optimization
algorithm, we set the maximum number of allowed iterations for each trial to mr = 10 000
and, as previously mentioned, the maximum number of trials to ms = 100, which is the total
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Table 4.3 – Coordinates of the starting and ending points of the set of edges that form the
geometry attached to the CDPM’s end-effector of the second example.

Edge
eBo,s eBo,t

x (m) y (m) z (m) x (m) y (m) z (m)

1 −0.025 −0.025 0.160 0.025 −0.025 0.160
2 −0.025 −0.025 0.160 −0.025 0.025 0.160
3 −0.025 0.025 0.160 0.025 0.025 0.160
4 0.025 0.025 0.160 0.025 −0.025 0.160
5 −0.025 −0.025 0.160 −0.025 −0.025 −0.150
6 −0.025 0.025 0.160 −0.025 0.025 −0.150
7 0.025 0.025 0.160 0.025 0.025 −0.150
8 0.025 −0.025 0.160 0.025 −0.025 −0.150
9 −0.025 −0.025 0.000 0.025 −0.025 0.000
10 −0.025 −0.025 0.000 −0.025 0.025 0.000
11 −0.025 0.025 0.000 0.025 0.025 0.000
12 0.025 0.025 0.000 0.025 −0.025 0.000
13 0.000 0.000 0.160 0.000 0.000 −0.150
14 0.000 −0.025 0.160 0.000 −0.025 −0.150
15 −0.025 0.000 0.160 −0.025 0.000 −0.150
16 0.000 0.025 0.160 0.000 0.025 −0.150
17 0.025 0.000 0.160 0.025 0.000 −0.150

number of initial solutions chosen for the multi-start method. The first ninety-nine guesses
follow the method described above, i.e., they are formed from an improved random selection
of the initial geometries, and the last one, the hundredth, is formed from a human-reflected
geometry based on the designer’s intuitions. The two other options, i.e., InitBarrierParam

and InitTrustRegionRadius, are fixed to 0.15 (default value: 0.1) and
√

4 000 (default value:
√
v, where v is the number of variables, and in this example, v = 5 779), respectively.

Moreover, since the goal of this example is to generate a CDP that would be installed within
the bore of a cylindrical MRI, the attachment points on the base frame must fulfill additional
constraints in order to fit within the geometry of the MRI gantry and stay out of the space
allowed for the patient. Figure 4.31 illustrates the seven chosen linear constraints that are
used here to restrict the position of points ai of the CDP’s geometry, where they are identified
as ε = 1, . . . ,7. The light blue region in this figure represents the set of acceptable positions
for the attachment points ai in the plane X−Z. The first six constraints are mathematically
represented as follows:

ai,z ≤ αεai,x + βε, (4.85)
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Figure 4.31 – Illustration of the additional geometric constraints on the CDP’s attachment
points ai inside the MRI gantry.

Table 4.4 – Values corresponding to the α’s and β’s of the additional linear constraints for
the synthesis problem.

ε α β

1 −0.1317 35.0000
2 −0.4142 37.5596
3 −0.7673 43.7391
4 −1.3032 57.0019
5 −2.4142 90.6770
6 −7.5958 265.8514
7 −1.1292 18.0665

where i = 1, . . . ,4 and ε = 1, . . . ,6, which restrict the CDP to be inside the cylindrical MRI.
The linear constraint that forbids the points ai to be positioned within the space reserved for
the patient is the following:

− ai,z ≤ −α7ai,x − β7, (4.86)

where i = 1, . . . ,4. The values corresponding to the α’s and β’s are provided in Table 4.4.

As the reader may notice, the additional linear constraints defined above only restrict the
first four attachment points of the base of the CDP in X and Z coordinates. In order to act
on the entire set of points, we decided to force the existence of symmetry rules in the CDP’s
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geometry. These linear constraints are defined as follows:

a1,x = −a5,x, a1,y = −a4,y, a1,z = a5,z, (4.87)

a2,x = −a6,x, a2,y = −a3,y, a2,z = a6,z, (4.88)

a3,x = −a7,x, a5,y = −a8,y, a3,z = a7,z, (4.89)

a4,x = −a8,x, a6,y = −a7,y, a4,z = a8,z. (4.90)

These symmetry-type constraints can be observed in Fig. 4.32, which shows the initial ge-
ometry corresponding to the best result obtained from our synthesis program. Of course,
these constraints limit the freedom of the optimization program to synthesize new types of
CDP architectures but, on the other hand, they ensure a certain quality and higher level of
practicability of the resulting geometry.

It should be noted that we defined the above linear constraints (both the inequality and equal-
ity types) since these types of constraints are known to be easily fulfilled by our optimization
program, which would not have been the case with nonlinear constraints.

Finally, the synthesis problem associated to the current example is defined slightly differently
from that of Eq. (4.50), namely,

f(v) = minimize − κ,

subject to cineq(v) ≤ 0(3(m2−m)q+4mfq)×1,

ceq(v) = 0nqnb×1,

Aineq,28×dimv ≤ bineq,28×1,

Aeq,(3nb+qnb+12)×dimv = beq,(3nb+qnb+12)×1,

lb ≤ v ≤ ub,

for v ≡
[
κ aT bB T pTaug tTaug µTaug ηTaug

]T
dim×1

,

(4.91)

where the linear inequality and equality constraints are now expressed as

Aineq ≡
[

028 Aineq,sub 028×3m 028×(dim−1−6m)

]
, (4.92)

bineq ≡
[
β11T4 β21T4 β31T4 β41T4 β51T4 β61T4 −β71T4

]T
, (4.93)

Aeq ≡


−(paug − p0,aug) 03nb×6m 13nb×3nb 03nb×mqnb 03nb×dim1

0qnb 0qnb×6m 0qnb×3nb U 0qnb×dim1

012 Aeq,sub 012×3nb 012×mqnb 012×dim1

 , (4.94)

beq ≡
[

pT0,aug 1Tqnb 0T12

]T
, (4.95)

where, for the inequality constraints, we have

Aineq,sub ≡
[

Λ1 · · · Λε · · · Λ7
]T
, (4.96)

177



and where

Λε ≡


αTε 0T3 0T3 0T3 0T12
0T3 αTε 0T3 0T3 0T12
0T3 0T3 αTε 0T3 0T12
0T3 0T3 0T3 αTε 0T12


T

, ε = 1, . . . ,7, (4.97)

and

αε ≡
[
−αε 0 1

]T
, ε = 1, . . . ,6, (4.98)

α7 ≡
[
α7 0 −1

]T
, (4.99)

and for the equality constraints,

Aeq,sub ≡



eT1 0T3 0T3 0T3 eT1 0T3 0T3 0T3 0T3m
0T3 eT1 0T3 0T3 0T3 eT1 0T3 0T3 0T3m
0T3 0T3 eT1 0T3 0T3 0T3 eT1 0T3 0T3m
0T3 0T3 0T3 eT1 0T3 0T3 0T3 eT1 0T3m
eT2 0T3 0T3 eT2 0T3 0T3 0T3 0T3 0T3m
0T3 eT2 eT2 0T3 0T3 0T3 0T3 0T3 0T3m
0T3 0T3 0T3 0T3 eT2 0T3 0T3 eT2 0T3m
0T3 0T3 0T3 0T3 0T3 eT2 eT2 0T3 0T3m
eT3 0T3 0T3 0T3 −eT3 0T3 0T3 0T3 0T3m
0T3 eT3 0T3 0T3 0T3 −eT3 0T3 0T3 0T3m
0T3 0T3 eT3 0T3 0T3 0T3 −eT3 0T3 0T3m
0T3 0T3 0T3 eT3 0T3 0T3 0T3 −eT3 0T3m



, (4.100)

where

e1 =
[

1 0 0
]T
, (4.101)

e2 =
[

0 1 0
]T
, (4.102)

e3 =
[

0 0 1
]T
. (4.103)

From the flowchart shown in Fig. 4.5, notice that these new geometrical constraints must be
applied to the steps where the closest-feasible solution vι,0 (more specifically in Eq. (4.66))
is determined and where the solution vι,f is determined by solving the general optimization
program of Eq. (4.91) instead of Eq. (4.50).

Table 4.5 presents the summary of the hundred runs of our dimensional synthesis program.
This table contains the negative value of the final objective function f(vι,f ) of each trial ι,
its number of iterations, its duration, and the message indicating the reason why it stopped.
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Figure 4.32 – Illustration of the initial geometry corresponding to the best result obtained
with the synthesis program (Trial 100).

It is important to note that it has been decided to stop the progress of a solution when
its objective function value falls below κι,f = 0.25 after 500 iterations in order to reduce the
overall computation time, since these trials are unlikely to produce interesting results. It took
270.56 hours (approximately eleven days and seven hours) to compute the hundred trials of
this example.

Trial ι κι,f = −f(vι,f ) Iterations Time (s) Stop Message
1 −−− 500 5 572.7 Rejected solution
2 −−− 500 5 528.8 Rejected solution
3 −−− 500 7 162.3 Rejected solution
4 −−− 500 8 214.9 Rejected solution
5 0.3982 1 274 13 747.1 Local minimum found
6 0.6913 10 000 86 412.2 Maximum iterations reached
7 0.8942 5 149 38 190.0 Local minimum found
8 −−− 500 7 285.7 Rejected solution
9 −−− 500 4 970.9 Rejected solution
10 0.4933 1 523 12 112.8 Local minimum found
11 −−− 500 6 808.3 Rejected solution
12 −−− 500 6 660.3 Rejected solution
13 −−− 500 4 459.3 Rejected solution
14 −−− 500 4 453.7 Rejected solution
15 0.2516 249 9 984.2 Local minimum found
16 −−− 500 5 540.1 Rejected solution
17 −−− 500 4 567.0 Rejected solution
18 −−− 500 5 390.9 Rejected solution
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19 −−− 500 5 290.9 Rejected solution
20 0.4892 8 313 71 808.3 Local minimum found
21 0.1559 401 3 652.5 Local minimum found
22 −−− 500 5 320.0 Rejected solution
23 −−− 500 4 655.1 Rejected solution
24 −−− 500 5 500.6 Rejected solution
25 −−− 500 6 979.1 Rejected solution
26 −−− 500 4 834.4 Rejected solution
27 −−− 500 6 582.9 Rejected solution
28 0.5384 4 378 45 324.3 Local minimum found
29 0.6959 1 943 21 614.9 Local minimum found
30 −−− 500 5 655.7 Rejected solution
31 0.1720 409 3 566.5 Local minimum found
32 −−− 500 4 251.5 Rejected solution
33 −−− 500 5 624.3 Rejected solution
34 −−− 500 5 395.8 Rejected solution
35 −−− 500 6 331.9 Rejected solution
36 0.6166 1 581 15 964.3 Local minimum found
37 −−− 500 6 172.3 Rejected solution
38 −−− 500 5 019.5 Rejected solution
39 0.6083 647 6 784.1 Local minimum found
40 −−− 500 4 460.7 Rejected solution
41 0.6533 4 161 23 144.9 Local minimum found
42 −−− 500 4 912.4 Rejected solution
43 −−− 500 4 555.2 Rejected solution
44 −−− 500 5 137.4 Rejected solution
45 0.6745 5 109 28 650.9 Local minimum found
46 −−− 500 4 833.7 Rejected solution
47 −−− 500 5 326.4 Rejected solution
48 −−− 500 3 996.4 Rejected solution
49 −−− 500 6 925.3 Rejected solution
50 −−− 500 4 728.3 Rejected solution
51 −−− 500 6 738.6 Rejected solution
52 −−− 500 5 377.4 Rejected solution
53 0.2534 223 2 231.8 Local minimum found
54 −−− 500 6 588.0 Rejected solution
55 −−− 500 4 726.0 Rejected solution
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56 −−− 500 6 441.7 Rejected solution
57 −−− 500 4 954.7 Rejected solution
58 −−− 500 4 857.2 Rejected solution
59 −−− 500 6 690.3 Rejected solution
60 0.2860 638 6 655.5 Local minimum found
61 −−− 500 5 209.1 Rejected solution
62 −−− 500 6 148.9 Rejected solution
63 −−− 500 4 520.7 Rejected solution
64 0.9835 2 601 18 325.4 Local minimum found
65 −−− 500 6 209.1 Rejected solution
66 0.6203 4 018 22 354.7 Local minimum found
67 −−− 500 8 110.2 Rejected solution
68 −−− 500 5 620.1 Rejected solution
69 −−− 500 5 635.4 Rejected solution
70 0.4358 2 506 15 496.7 Local minimum found
71 −−− 500 5 131.2 Rejected solution
72 −−− 500 5 443.6 Rejected solution
73 −−− 500 4 755.6 Rejected solution
74 −−− 500 5 982.4 Rejected solution
75 0.2061 325 3 126.6 Local minimum found
76 −−− 500 4 564.6 Rejected solution
77 −−− 500 5 278.9 Rejected solution
78 0.3588 2 596 19 433.7 Local minimum found
79 −−− 500 5 332.0 Rejected solution
80 −−− 500 4 703.4 Rejected solution
81 0.7443 10 000 75 665.3 Maximum iterations reached
82 −−− 500 6 576.6 Rejected solution
83 −−− 500 6 105.3 Rejected solution
84 −−− 500 6 152.7 Rejected solution
85 −−− 500 6 486.7 Rejected solution
86 −−− 500 4 792.9 Rejected solution
87 −−− 500 5 247.7 Rejected solution
88 −−− 500 4 737.1 Rejected solution
89 0.1632 165 1 919.6 Local minimum found
90 −−− 500 6 080.9 Rejected solution
91 −−− 500 6 462.0 Rejected solution
92 −−− 500 5 618.4 Rejected solution
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93 −−− 500 7 140.7 Rejected solution
94 −−− 500 6 567.3 Rejected solution
95 −−− 500 6 759.9 Rejected solution
96 0.1972 186 2 114.5 Local minimum found
97 −−− 500 5 046.6 Rejected solution
98 −−− 500 6 433.9 Rejected solution
99 −−− 500 4 738.8 Rejected solution

100 (?) 1.0880 301 2 675.8 Local minimum found

Table 4.5 – Summary of the results obtained from the dimensional synthesis of an eight-cable
seventeen-edge six-DoF CDPM.

From Tab. 4.5, notice that the best result—the global minimum over the hundred local
minima—belongs to Trial 100, which is marked by a star. This result reports a CDPM
geometry with a three-dimensional workspace in translation that can be illustrated by an
ellipsoid We with κ = 1.0880 (see Eq. (4.2)). Our synthesis program ensures us that at min-
imum fourteen strategically distributed points lying on this ellipsoid’s surface are included
in the CDPM WCW, at least for the nine different evaluated end-effector orientations Qk.
We also know that this workspace is free of cable-cable and cable-edge interferences for each
orientation Qk. It is also interesting to note that over the hundred tested geometries, the
synthesis program has produced twenty-five solutions for which a local minimum has been
found or the maximum iterations limit was reached. Among them, twelve trials have a final
κ ≥ 0.5 and three of them are close to or higher than κ = 0.9.

As for the first numerical application, the reader will find in Appendix D.2, for the twelve best
results generated from the hundred trials, the Cartesian coordinates of the randomly-selected
architectures, the closest-feasible initial solutions and their corresponding geometries after
optimization. Furthermore, a graphical representation of the initial geometry, the final geom-
etry and its WCW are included. Over the twelve trials, three represent a “good” optimization
since their final values are close to or higher than 0.9 (Trial 7 with κ = 0.8942, Trial 64 with
κ = 0.9835 and Trial 100 with κ = 1.0880). For these given optimizations, three graphs are
added in Appendix D.2 in order to facilitate the analysis of their final CDPM geometries from
different views: XY , XZ, and Y Z.

As for the analysis of these results, we decided to focus on the two best ones, i.e., Trial 64 and
Trial 100. Figures 4.33a, 4.33c and 4.33e respectively illustrate the evolution of the objective
function and step size values, the initial WCW with the prescribed ellipsoid and the final
WCW with the final reachable ellipsoid for Trial 64 while Figs. 4.33b, 4.33d and 4.33f are for
Trial 100. It can be observed that even if the proposed synthesis program starts from a quasi-
random—closest-feasible solution from the random solution—initial solution, it is possible to
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converge towards a suitable final solution that almost fully fulfills the prescribed requirements
of the intended application with a κ value of 0.9835. As expected, from observations noted in
Sub-section 4.3.1, when the initial solution is set by the designer, it normally leads to a smaller
number of iterations required to reach a local minimum, as it can be seen with Trial 100. Both
Trials 64 and 100 also show step sizes that decrease over time, which shows that the program
converged towards minima in the two cases. Globally, from Fig. 4.33, it is easily noticed that
the dimensional synthesis program drastically improved the WCW coverage of the prescribed
ellipsoid if we compare the initial and final solutions for both trials. Trial 100 provided a
slightly better solution than did Trial 64. It is also interesting to note that the resulting
pattern for the position of the attachment points ai is relatively similar for both trials.

In order to analyze these two trials with respect to the interference-free regions, Figs. 4.34-
4.41 present the interference regions between two cables and between a cable and an end-
effector edge for the nine end-effector attitudes, for the initial and final solutions of each
trial. Figure 4.34 shows the cable-cable interference regions for the initial solution of Trial 64,
while Fig. 4.35 shows the same results for its final solution. Figure 4.36 shows the cable-edge
interference regions for the initial solution of Trial 64, and Fig. 4.37 shows the same results
for its final solution. The interference regions between two cables for the initial solution of
Trial 100 are shown in Fig. 4.38, while Fig. 4.39 shows the same results for its final solution.
Finally, the interference regions between a cable and an end-effector edge for the initial solution
of Trial 100 are presented in Fig. 4.40 and the same results for its final solution are shown in
Fig. 4.41. It is noted here that no exhaustive analysis is presented on these results, since it
would lead to similar conclusions than the analysis completed in Sub-section 4.3.1. In short,
no mechanical contact occurs within the ellipsoid of the final solutions, at least for the nine
evaluated end-effector attitudes.

However, even if no interference between two cables and between a cable and an end-effector
edge are observed in those results, there is still a chance that a mechanical contact occurs
within the final ellipsoid. This possibility is due to the set of nine discrete end-effector
attitudes to cover the prescribed range of rotations Wp,r. This method does not assess every
possible end-effector attitude. Even if this strategically-selected set of orientations contains
the vertices and centroid of the box representing Wp,r, it cannot guarantee the absence of
mechanical interferences between a pair of cables or between a cable and an end effector when
passing from one orientation to the other. Finely-discretized trajectories could be used to
further analyze the final geometry, or a higher number of end-effector attitudes could be used
to cover Wp,r, at the cost of a drastic increase of the required computation time.

In light of the results obtained with this example, we demonstrated that a suitable CDPM
architecture can be found to perform simple image-guided biopsies inside the geometrically-
constrained volume of a conventional MRI system. As stated at the beginning of this sub-
section, we only optimized the architecture of the slave part of the intended eight-cable
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Figure 4.33 – Illustration of the results obtained from the optimization of CDP’s geometries
corresponding to Trial 64 and Trial 100.
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.34 – Mechanical interference regions between two cables for the nine chosen atti-
tudes {θx, θyI , θzII} of the end effector of the initial eight-cable seventeen-edge six-DoF CDP
(Trial 64).
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.35 – Mechanical interference regions between two cables for the nine chosen atti-
tudes {θx, θyI , θzII} of the end effector of the final eight-cable seventeen-edge six-DoF CDP
(Trial 64).
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.36 – Mechanical interference regions between a cable and an edge for the nine chosen
attitudes {θx, θyI , θzII} of the end effector of the initial eight-cable seventeen-edge six-DoF
CDP (Trial 64).
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.37 – Mechanical interference regions between a cable and an edge for the nine chosen
attitudes {θx, θyI , θzII} of the end effector of the final eight-cable seventeen-edge six-DoF
CDP (Trial 64).
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.38 – Mechanical interference regions between two cables for the nine chosen atti-
tudes {θx, θyI , θzII} of the end effector of the initial eight-cable seventeen-edge six-DoF CDP
(Trial 100).
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.39 – Mechanical interference regions between two cables for the nine chosen atti-
tudes {θx, θyI , θzII} of the end effector of the final eight-cable seventeen-edge six-DoF CDP
(Trial 100).
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.40 – Mechanical interference regions between a cable and an edge for the nine chosen
attitudes {θx, θyI , θzII} of the end effector of the initial eight-cable seventeen-edge six-DoF
CDP (Trial 100).
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(a) {−20o, −45o, −10o} (b) {−20o, −45o, 10o} (c) {−20o, 45o, −10o}

(d) {−20o, 45o, 10o} (e) {20o, −45o, −10o} (f) {20o, −45o, 10o}

(g) {20o, 45o, −10o} (h) {20o, 45o, 10o} (i) {0o, 0o, 0o}

Figure 4.41 – Mechanical interference regions between a cable and an edge for the nine chosen
attitudes {θx, θyI , θzII} of the end effector of the final eight-cable seventeen-edge six-DoF
CDP (Trial 100).
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seventeen-edge six-DoF CDP. We know, however, from previous chapters, that the master
part will have the same geometry as the slave part, up to a scaling factor κs. The selection of
the optimal scaling factor is left for further work. Also, more analyses need to be completed
in order to confirm that no mechanical interference can occur within its workspace and to
determine a method, possibly based on the one presented in Chapter 2, to statically balance, in
an approximate manner at least, this geometrically optimum CDP. Finally, a suitable selection
of non-magnetic and non-conductive materials should be performed in order to manufacture
such a mechanism, keeping in mind that ultimately it has to be MR-compatible.

4.4 Summary

The main purpose of this chapter is to present to the reader a new algorithm for the dimen-
sional synthesis of cable-driven pantographs. Since the conceptual design of CDPs is based
on the assembly of two fully-constrained CDPMs, this technique is inherently well suited for
the dimensional synthesis of any CDPM, except those of the suspended type, which use the
gravity effect to keep their cables under tension.

The first section served to survey the variety of tools available in the literature to solve the
different types of optimization problems; which we divided into the two categories of local
and global optimization techniques. It was also shown that each category can be sub-divided
in two distinct branches, i.e., local optimization tools intended for unconstrained problems
(for instance, Newton’s method and the Gradient method) or for constrained problems (for
instance, the Simplex methods, the Interior-Point methods and the SQP methods) and global
optimization tools leading to guaranteed optimum (for instance, the Cutting Plane methods,
the Branch and Bound methods and the Homotopy methods) or non-guaranteed optimum (for
instance, the Simulated Annealing techniques, the Genetic Algorithms and the Multi-Start
methods). The last part of this section provided an overview of published work specifically
focusing on the application of optimization techniques to the synthesis of CDPMs. This review
of literature has highlighted the fact that, to our best knowledge, no research group has yet
combined an exact geometric interference index, which is not based on given trajectories, with
a wrench workspace index, such as the wrench-closure workspace, into a single algorithm to
optimize the full geometry—both attachment points of all cables—of a spatial CDPM for a
prescribed workspace.

The second section described the new synthesis technique proposed to optimize the geomet-
ric parameters of spatial CDPs and spatial CDPMs. First of all, it was explained that the
prescribed six-DoF workspace is divided in two parts: a three-DoF workspace in transla-
tionWp,t, and a three-DoF workspace in rotationWp,r. For simplicity reasons, it was decided
to determine the required mathematical relations at discrete orientations of the CDPM end-
effector in order to coverWp,r, which is common practice in the literature. ForWp,t, however,
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it was shown in Sub-section 4.2.1 that the prescribed workspace in translation is mapped
to an ellipsoid instead of the box commonly used. This has the advantage of requiring a
single relation to fully define the CDPM workspace in translation, as compared to the six
relationships required for a box. The consequence of this choice was presented in the follow-
ing sub-sections, where the three main criteria of the proposed algorithm were defined. In
Sub-section 4.2.2, the constant-orientation wrench-closure workspace is presented as the first
criterion. This workspace represents the set of end-effector positions where the CDPM is fully
constrained by its cables for a given orientation. Its corresponding maximization problem is
defined in Eq. (4.22). Sub-section 4.2.3 presented the second criterion which is the constant-
orientation cable-cable interference. Its corresponding maximization problem, see Eq. (4.33),
was derived by combining the ellipsoid relation with the mathematical definition of the inter-
ference regions between two cables obtained in Chapter 3. The last criterion was described
in Sub-section 4.2.4 as the constant-orientation cable-edge interference. Its corresponding
maximization problem is shown in Eq. (4.47) and it has been determined following the same
process as that followed for the previous criterion. Finally, the complete problem describ-
ing the proposed dimensional synthesis algorithm was illustrated with Eq. (4.49). The main
goal of this technique is to satisfy these three main criteria while optimizing the geometric
parameters of the CDPM.

The following section focused on the numerical applications of the proposed algorithm. The
initial part shows how the synthesis problem has been reformulated as a minimization problem,
and solved using the MATLAB® Optimization Toolbox. In particular, the fmincon function
was used, as it is suited for nonlinear constrained problem. The flowchart of the CDPM
dimensional synthesis method was presented along with its constituting steps, which follow a
Multi-Start approach. In Sub-section 4.3.1, the first numerical application of the algorithm
was reported, i.e., the dimensional synthesis of an arbitrary seven-cable nine-edge six-DoF
CDPM. This example was intended to show the behaviour of our proposed method. Among
the fourteen trials that were launched during this first test (thirteen from random initial
geometries and one from a human-reflected geometry), six resulted with a κ ≥ 1 (κ being
the negative of the objective function value) of which the best value was κ? = 1.5192. These
results tend to prove that our proposed method can significantly improve the CDPM geometry
while satisfying the three chosen criteria. A complete analysis was then performed in order
to compare the initial geometry with the final ones among the most promising trials. These
analyses easily demonstrated the superiority of the optimized solution. The set of fourteen
trials of this first numerical example was fully computed in less than 24 hours.

Finally, in Sub-section 4.3.2, a second example was proposed to the reader, i.e., the di-
mensional synthesis of an eight-cable seventeen-edge six-DoF CDP intended for a medical
application. The envisioned application was the manipulation of needles inside a MRI scan-
ner in order to perform simple image-guided punctions or biopsies on patients. From the
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three different types of existing MRI scanners, the cylindrical model was the one chosen in
order to define the workspace limitations for the positioning of the attachment points of the
cable-driven mechanism. This choice was based on the fact that the cylindrical MRI scanner
model presents the strongest MR signal and best field homogeneity, which generate the best
image quality compared to the C-shaped and double-donut configurations. A short review
of the literature demonstrated that many devices have been designed by other researchers in
order to perform tasks inside the gantry of these cylindrical imagers. A majority of them
used ultrasonic motors, optical sensors, hydrostatic transmissions, hydrodynamic or pneu-
matic actuators in order to render their systems MR-compatible. In this work, we rather
relied on a purely-mechanical cable-driven master-slave architecture, or, in other words, a
CDP. Since the purpose of this chapter was to elaborate a dimensional synthesis program
to synthesize the CDP, emphasis was put on the geometric constraints. Based on a recent
model of a MRI system, i.e., the MAGNETOM® Skyra three-tesla by Siemens, and data
provided in Refs. [298, 299], we defined the workspace requirements for the targeted appli-
cation (see Figs. 4.28 and 4.29). We then added linear constraints to our problem in order
to restrict the search to symmetric optimized geometries, which led to the formulation of
the synthesis problem corresponding to this particular example with Eq. (4.91). Solving this
new optimization program using the Multi-Start approach with a hundred initial guesses took
270.56 hours. Among the hundred trials (ninety-nine from random initial geometries and one
from a human-reflected geometry), three resulted in a κ value close or higher than 0.9, the
best result being that of Trial 100, with κ? = 1.0880. Because its objective value is greater
than one, this local solution represents a suitable CDP geometry for the intended application.
Indeed, its wrench-closure workspace includes the prescribed ellipsoid We and no cable-cable
and cable-edge interferences occur within its final workspace, at least for the nine evaluated
end-effector attitudes Qk, k = 1, . . . ,9. Even if the results shown in this sub-section seem
promising, the reader must be aware that further design work still needs to be completed, such
as the determination of the best scaling factor κs between the master and the slave parts, for
a prototype of this eight-cable seventeen-edge six-DoF CDP to be usable and MR-compatible.
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Conclusion

“Life is pretty simple: You do some stuff. Most fails. Some works.
You do more of what works. If it works big, others quickly copy it.

Then you do something else. The trick is the doing something else.”
- Leonardo da Vinci

This thesis presented the first steps towards the development of a new family of mechanisms,
which we call cable-driven pantographs (CDPs). These mechanisms can be seen as of the tele-
manipulator or teleoperator type since they are based on a master-slave architecture. Both
parts—the master and the slave—are represented by a single cable-driven parallel mecha-
nism (CDPM) with identical geometries, except for a given scaling factor which is selected
based on the requirements of the intended application. Force transmission within a CDP is
ensured by the cables constraining the moving platforms and their corresponding nonlinear
spring-loaded assemblies, which are specifically designed to generate the required tensions.

The main objective here was, as described in the Introduction, to develop relevant tools in
order to assess and enhance CDP capabilities as well as to optimize their geometries for given
applications. But more specifically, the initial idea that carries this work was to initiate the
development of a low-cost, safe and reliable telemanipulator system that could be used within
the bore of a magnetic-resonance imaging (MRI) scanner to remotely perform simple needle
manipulations on patients, such as punctions and biopsies. From this application, a purely-
mechanical design for the CDPs has been preferred to the conventional actuator-driven type
to ultimately lead the device to be MRI-compatible.

From an academic perspective, the work presented in this thesis was intended to contribute to
the scientific progress under five distinct topics. Firstly, the general objective was to develop
and describe the new family of telemanipulators, i.e., the CDPs. Secondly, it was sched-
uled to elaborate their kinematic and kinetostatic models. Thirdly, the development and the
evaluation of a methodology allowing to reach as close as possible the static equilibrium of
a CDP over a given workspace was proposed. Fourthly, it was planned to develop a gen-
eral method to geometrically determine the workspace regions where mechanical interferences
involving the cables constraining the pose of the CDP end-effector occur. Lastly, a system-
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atic approach was proposed to dimensionally synthesize the CDP geometry while satisfying
geometric requirements based on the intended application.

This closing section summarizes for the reader the proposed methodologies and results de-
scribed throughout this thesis while highlighting their main contributions. Then, with the
objective of encouraging further research on CDPs, the author proposes ideas and guidelines
for interested students to pursue and improve this work.

Summary and Contributions

In Chapter 1, the concept of cable-driven pantographs was unveiled as well as their work-
ing principle. Previous pantographs relied on rigid links, as it was the case for the pla-
nar two-dimensional pantograph reported in 1631 by Scheiner, or the more recent market-
available three-dimensional devices designed for pure translations, or even the patented three-
dimensional version that produces pure rotations. The work presented in this thesis innovates
by using only cables—through a CDPM architecture—to transmit forces and fully constrain
the pantograph motions within a six-dimensional workspace (three directions of translation
and three axes of rotation).

The main advantages of CDPs over conventional telemanipulators are that they are purely
mechanical and they are formed with CDPMs. Consequently, a CDP can be seen as a low-
cost and reliable solution when no other sources of power is accessible or compatible with
the working environment. The use of passive springs, which are directly linked to each cable-
winding pulley, is found suitable to maintain the mechanism geometry over its workspace, i.e.,
to provide the minimum torques to keep the cables taut. Moreover, they exhibit advantages
similar to those of CDPMs, such as lower inertia of the moving parts, potentially larger
workspace and better portability.

This chapter also proposed a mathematical approach to derive the input-output displacement
relationship, the input-output load relationship and the kinetostatic models for this new
family of telemanipulators. As a result, the following rules were established. The geometry
of the slave is proportional to that of the master through a constant scaling factor. The
slave point-displacements are also in proportions with those of the master through the same
scaling factor, and the slave rotations correspond exactly to those of the master. Moreover,
if we consider that no friction acts on the cables connecting the master and slave moving
platforms and that springs maintain a perfect equilibrium of the device over its workspace,
we demonstrated that a given force at the slave end-effector would be balanced out by a
force at the master end-effector in the opposite direction and proportional to the inverse of
the scaling factor. On the other hand, a torque applied at the slave would be balanced by a
torque equal in magnitude and opposite in direction at the master. The symbolic formulation
for the kinetostatic model was also derived, for a two-cable one-DoF CDP and for a three-
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cable two-DoF CDP. These equations were obtained using the assumption that a cable can slip
without friction on its drum, so that the complete length of each cable undergoes deformation
under a corresponding tension.

Preliminary validations of the CDP concept were completed in this chapter by building the
first prototype of a three-cable two-DoF planar CDP using proportional-torque reel assemblies
that link the master part to the slave one. The accuracy of input-output displacements
between the master and the slave end-effectors was assessed and confirmed to be ≈ 0.49 and
≈ 0.50 along two orthogonal directions of the working plane, compared to the scaling factor
of 0.5 that was chosen for this CDP. Also, using a force-torque sensor attached to the master
end-effector, it was demonstrated that the force required from the user to statically hold the
master end-effector in place was null only at the centre of the workspace. This result was
expected since it is impossible to statically balance this system by using only springs at the
drums. When moving the CDP end-effector over its workspace and away from this centre
point, consequently, it was showed that the required forces were relatively high, even if slightly
lower than the theoretical values. Indeed, the root mean square (RMS) value of the norm of
the theoretical force over the CDP workspace was 24.7678 N and the experimental equivalent
was ≈ 19.7 N. These differences were explained by the possible sources of errors involved
in this type of measurements, such as assembly and measurement errors or the presence of
friction within the mechanism. Overall, these preliminary experiments demonstrated the
practicability of the CDP concept.

As it was clear from Chapter 1 that the devised CDP does not hold static equilibrium over
its entire workspace, the focus of Chapter 2 was on the determination of a method to ap-
proximate as closely as possible the neutral equilibrium over the three-cable two-DoF CDP
workspace. This novel approach relies on the design of passive nonlinear spring assemblies
that are attached in parallel to the cables winding pulleys. These assemblies were formed by
a four-bar linkage and a set of commercially-available constant-torque springs. They were
designed to generate the required minimum cable tensions to preserve the system geometry
and to minimize its potential energy fluctuations over the chosen CDP workspace.

The proposed method contains a series of four steps that must be completed to reach an
optimum design of the passive nonlinear springs. Firstly, considering a given CDP geometry,
the desired tension profile, which was shown as a function of the cable unwound length,
has to be determined in order to minimize the norm of the resultant wrench acting at the
master end-effector of the CDP. This tension profile was defined here as a polynomial of the
Bernstein form, a linear combination of Bernstein bases, and it was obtained by solving a
convex quadratic problem over the range of cable lengths. Secondly, knowing the kinematic
model of a generic four-bar linkage, the determination of its prescribed behaviour was possible,
i.e., the angular position of its output link as a function of the angular position of its input link,
in order to produce the desired tension profile. Thirdly, a second convex quadratic problem
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has to be solved to determine the best crank-rocker four-bar linkage system that can reproduce
the prescribed input-output behaviour. Fourtly, a non-convex optimization problem has to
be finally solved to completely define the remaining parameters of the nonlinear spring, i.e.,
the constant-torque values of the input and output links, their initial angular positions and
the final angular position of the input link.

As a proof of concept, this new method was used to build the first prototype of a three-
cable two-DoF CDP containing three passive nonlinear spring assemblies to maintain its
geometry and to approximate a neutral equilibrium over its workspace. In order to determine
a suitable solution for the design of the nonlinear springs, the suggested method was used
to iterate over twenty different initial solutions and the best of all optimized solutions was
kept. As in Chapter 1, a force-torque sensor was used to measure the forces that a user
must apply at the end effector of the master to maintain a position. Experimental results
demonstrated an improvement of approximately 50% compared to previous results where
conventional proportional-torque springs were used. In theory, however, an improvement
of approximately 75% was expected. This result, though still a significant step forward to
the reach of the neutral equilibrium of CDPs, demonstrated that approximating a perfect
static balancing using passive nonlinear springs can be, in practice, a difficult task due to all
potential sources of errors. In light of the complexity of the nonlinear springs it involves, it
is not clear whether such a balancing system would be of practical interest.

Since CDPs are formed with CDPMs, another problem needed to be addressed in this thesis,
i.e., mechanical interferences between the moving parts of a CDPM. The technique proposed
in this thesis distinguishes itself from others found in the literature, which rely on numerical
methods to detect the occurrence of collisions between cables. In Chapter 3, the focus was
rather on the development of a general method to geometrically determine in closed form
the locus of mechanical interferences between all cables within the Cartesian workspace of a
CDPM. Mechanical interferences in the planar case were first covered. Two examples of four-
cable planar CDPMs were used to determine basic rules that can be applied when designing
such a mechanism while aiming to keep the interference regions to a minimum. From the
presented analysis, three basic rules were enumerated: First, minimize the number of cables
used to constrain the CDPM. Second, minimize the number of attachment points at the base
and at the end effector. Third, place the attachment points on the surface of a convex shape
on the base and on the end effector.

The spatial case was then tackled in Chapter 3, which proved to be mathematically more
involving. But as previously said, compared to other work found in the literature, the proposed
method has the merit of taking advantage of the geometric properties of the phenomenon of
mechanical interference in order to simplify the problem. As it was demonstrated in this
chapter, for a mechanical interference to occur between a pair of cables, their attachment
points must lie on the same plane in the CDPM workspace. This fact allows the simplification
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of the problem from three dimensions to two dimensions, when the end-effector attitude of the
CDPM is constant. It was also shown that this plane can be divided in nine distinct regions,
only two of which involve a contact between the two cables considered. Then, an analogous
mathematical derivation allowed to determine the interference region within the constant-
orientation workspace between a cable and an edge of the end-effector. This derivation yielded
similar results, except that the interference plane is now divided into seven regions and only
one of them represents the locus where a collision occurs. Applying this method to each pair
of cables of the CDPM and each combination of a cable and an edge of the end effector, for a
given orientation, this approach proved to be a powerful tool to rapidly determine the locus
of mechanical interferences for an arbitrary CDPM. Consequently, this tool can easily be used
to design a CDPM or to plan Cartesian trajectories that avoid the interference regions within
its workspace.

In order to validate the proposed methodology, two examples of application were presented to
the reader. The first one was the analysis of the mechanical interference regions for a six-cable
six-edge six-DoF CDPM and the second was the analysis of an eight-cable 31-edge six-DoF
CDPM. These two examples were used to demonstrate the performances of the designed
tool. With the first example, the set of regions containing the mechanical interference loci
for all pairs of cables and all combinations of a cable and an end-effector edge were shown for
nine different end-effector attitudes of the analyzed CDPM. The time required to compute
and display the final results was less than a second, using a conventional computer, since the
method is based on the exact geometry of the problem and does not need any iterative process
or discretization. The second example was rather completed to compare the theoretical results
obtained from the suggested method with experimental data measured on a CDPM prototype.
In order to perform this experiment, a collision between two cables constraining the CDPM
end-effector was generated within the mechanism workspace, for a given orientation, and the
moving platform was moved while keeping the two cables in contact. The corresponding
data was collected, i.e., the actuated-joint encoders of all cables, and compared, using the
forward kinematic model, with the results obtained from the proposed methodology for the
same pair of cables and the same end-effector attitude. This validation served as a proof of
the efficiency of the geometric approach to predict the loci where the mechanical interferences
between the two given cables occur since it was shown that the resulting interference planes—
both experimental and theoretical—shared a similar normal vector and were almost passing
through the same points in the CDPM workspace.

With the results obtained in Chapter 3, it was then clear that the suggested method to de-
termine the mechanical interferences between the moving parts of a CDPM could be used as
a tool to facilitate their synthesis. Consequently, the objective of Chapter 4 was the devel-
opment of a global methodology to dimensionally synthesize the geometry of CDPMs, and
inherently CDPs, that fulfill application-based requirements. First, an exhaustive overview of
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the mathematical methods available in the literature to solve unconstrained and constrained
local and global optimization problems was presented to the reader. Then a focus was set
on the few researches that have been published on the synthesis of CDPMs, which, for the
collision detection part, are mostly based on the use of Cartesian trajectories to determine
the likelihood of moving-part collisions to occur. The innovation of the proposed synthesis
method was to combine into the same optimization problem the exact geometry-based tech-
nique developed in Chapter 3 to detect mechanical interferences and a well-known index to
design CDPMs, i.e., the wrench-closure workspace (WCW).

The approach suggested to dimensionally synthesize CDPMs, or CDPs, was based on the fact
that the translational workspace is defined as an ellipsoid and the rotational workspace is
discretized into a given number of constant end-effector attitudes. The choice of the ellipsoid
was explained by the need of minimizing the required number of constraints to define the
mechanism workspace, i.e., a single equation can be used to fully define the geometry of an
ellipsoid compared to a set of equations for the definition of a box. Three different criteria were
mathematically derived, and formulated as three distinct maximization problems, in order to
present the bases of the global optimization algorithm: The constant-orientation wrench-
closure workspace (COWCW), the constant-orientation cable-cable interference (COCCI),
and the constant-orientation cable-edge interference (COCEI). Once combined, the global
optimization problem was shown to be a minimization problem that aims at maximizing the
size of the ellipsoid, where all constraints of the COWCW, the COCCI and the COCEI are
fulfilled, for each given attitude of the CDPM end-effector, while modifying the attachment
points of all cables. It was then proposed to solve this optimization problem by following a
Multi-Start approach. In such a scheme, a classical descent method is ran several times from
different initial guesses, leading to as many locally optimum solutions. The best of these local
optima is retained and yields the synthesized CDPM geometry.

Finally, two examples of application for the proposed synthesis methodology were presented
to the reader: The synthesis of an arbitrary seven-cable nine-edge six-DoF CDPM and the
synthesis of an eight-cable seventeen-edge six-DoF CDP intended for a medical intervention.
In the first example, the objective was to demonstrate the relevance and efficiency of this tool
to optimize the geometry of a CDPM. The algorithm ran for slightly less than 24 hours, used
a Multi-Start method with fourteen initial solutions, and a set of nine different end-effector
attitudes to cover the prescribed workspace in rotation. Five of the fourteen optimizations
ultimately converged to a final geometry that allows the ellipsoid to fulfill the prescribed
workspace in translation. Then, an exhaustive analysis was proposed to the reader in or-
der to validate the work accomplished by the synthesis program, i.e, for the best geometry
among the fourteen trials, a comparison between the performances of the initial and the fi-
nal solutions. From these results, it was clear that the optimization program allows to find
the best compromise between the wrench-closure workspace, the cable-cable interference-free
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workspace, and the cable-edge interference-free workspace, all at once, since significant im-
provements were observed between the initial and the optimized solutions. The same exercise
was completed with the second example, which required to fulfill much more demanding con-
straints. The CDPM, which acts as the slave part of a CDP, has to be inserted inside the
bore of a cylindrical MRI device to perform simple medical interventions. For this example,
additional constraints were added in order to avoid any collision of the moving parts with the
patient and with the internal wall of the MRI scanner. Using here a set of one hundred initial
solutions for the Multi-Start method, and after slightly more than eleven days of computation,
it was shown that three optimizations led to a geometry that fulfills more than 89% of the
prescribed requirements, and among these three, one slightly exceeded the requirements at
108.8%. These results proved that the synthesis program proposed in this chapter is a relevant
tool to dimensionally synthesize CDPMs, and, furthermore, that the design of a CDP that is
intended to be used inside the gantry of a MRI device is possible.

The main goal of this thesis was to develop tools that aim to facilitate the work of designers
when it comes to the synthesis of CDPs, and, by the same token, to the synthesis of single
CDPMs. By the nature of this task, as the reader may imagine, many modifications could have
been implemented as well as many different research directions could have been investigated in
order improve this work. The next section summarizes potential ideas for such improvements.

Future Work and Research Directions

As any long-term project, it is relatively easy, once at the end, to make a list of tasks that
could have been completed in order to improve its final outcomes. The objective of this
section is, consequently, to present this list to those who may be interested in pursuing the
work initiated in this thesis.

The following enumeration presents the proposed research avenues:

• A complete kinetostatic model for a generic n-DoF CDP should be explicitly defined.
This model would involve, without any doubt, more demanding mathematical formula-
tions than those presented in Sub-section 1.3.5, since it would include the end-effector
orientations;

• In order to complete the validation of the kinetostatic model for linear and planar CDPs
presented in Section 1.4, a prototype equipped with tension measuring instruments,
e.g., load cells, should be designed and built. This experimental setup would allow
the measurement of cable tensions while moving the master end-effector and applying
different forces at the slave end-effector;

• In order to improve the experimental outcomes presented in Sub-section 2.2.4, regarding
the level of neutral equilibrium reached at the CDP end-effector, one should equip the
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bench test with load cells to measure the tension profile, as a function of the cable
length, that each nonlinear spring assembly generates independently. The resulting
tension profile should be compared with the prescribed tension profile and parameters
should be adjusted towards a better tension profile generation. Once each nonlinear
spring assembly is proven to produce the desired behaviour, a new evaluation of the
level of neutral equilibrium should be made;

• The method proposed in Chapter 2 to approximate the static balancing of a planar CDP
over its workspace should be extrapolated to the spatial case, at least for a constant-
orientation end-effector pose. This application to the spatial case would involve the in-
tegration of a dimensionless scaling factor between the degrees of freedom in translation
and those in rotation, since they do not contain the same units inside the optimization
problems;

• In order to improve the performances of the passive nonlinear springs to approximate
the neutral equilibrium within the CDP workspace, it would be interesting to evaluate
a design based on the use of cams instead of a crank-rocker four-bar linkage. It would
then be possible to reduce the overall dimensions of the nonlinear spring assembly;

• The method proposed to geometrically determine the interference-free regions of a CDP
should be applied to the case of a mechanical interference between a cable or an end-
effector edge with an edge of a static object lying inside the mechanism workspace. This
object could represent an obstacle inside the CDP workspace such as the patient body
or a third-party tool. This could become an additional criterion to be integrated within
the algorithm to synthesize CDPM geometries in Chapter 4;

• In order to improve the geometric approach to determine mechanical interferences, it
would be interesting to evaluate the possibility of detecting collision between a cable and
a surface of the end effector rather than an edge. The use of edges in collision detection
requires an approximate wireframe model of the end effector. This sometimes leads to
false negatives because a cable passes through the end effector without touching any of
its edges;

• An additional verification method should be developed and integrated to the analysis
method in order to determine whether two entities cross each other between two different
evaluated constant orientations of the CDP end-effector. The common perpendicular
vector between two entities, e.g., a pair of cables, a cable and an end-effector edge, or a
cable and a surface belonging to the end-effector geometry, could be used as the index,
as its direction would change when the entity passes through the other;

• Also, the method proposed to detect the occurrence of mechanical interferences could
be extended to take into account given ranges of CDP end-effector attitudes. The
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resulting regions would line in the constant-point-position workspace, and, unlike the
regions obtained in this thesis they would not be polygons;

• In Chapter 4, it would be useful to generalize the ellipsoid formulation of Eq. (4.1)
in order to allow the definition of the prescribed workspace in translation with any
orientation, and not be restricted to the orientation where the principal axes of the
ellipsoid are parallel to those of the global frame;

• It would also be useful to replace the ellipsoid representing the workspace with a more
conventional shape such as a box. This would add more constraints to the synthesis
problem, but the workspace in translation would be more representative of the conven-
tional application for CDPs;

• Instead of using the wrench-closure workspace as a criterion for the dimensional synthesis
of CDPs, the integration of the wrench-feasible workspace (WFW) should be considered.
This approach would add a level of complexity to the optimization problem, but the final
solutions would be more practical, since a specific range for the cable tensions would
be defined. The design of a CDP or CDPM would consequently be better tailored to a
given set of tasks;

• With a generalized technique to approximate the neutral equilibrium over a CDP
workspace, it would be interesting to include this criterion within the CDP synthe-
sis problem in order to optimize the attachment points of each cable while reducing
the fluctuations of the system potential energy for a given passive nonlinear spring.
This tool, if found efficient regarding to the required computation time, would allow to
directly synthesize CDPMs and CDPs with improved mechanical properties;

• A prototype of an eight-cable seventeen-edge six-DoF CDP should be designed and built
in order to experimentally validate the practicability of the solution proposed for the
intended medical application. This prototype could also serve as a test bench to evaluate
different approaches to approximate a neutral equilibrium over the CDP workspace;

• With the objective of installing the CDP inside the bore of a cylindrical MRI scanner
and perform medical interventions such as simple biopsies and punctures, one should
be aware that many design steps still need to be completed first: To determine a set of
MRI-compatible materials in order to build the CDP device (for example, non-magnetic
and dielectric materials such as plastics, ceramics, and composites), to evaluate the best
scaling factor between the master and the slave parts for the intended application, to
design the end-effector tool that would allow the insertion and extraction of the needle,
to evaluate the haptic capabilities of the spatial CDP, to evaluate the dynamic properties
of the CDP device over a few metres, etc;
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• In the case of a CDP application different from medical interventions inside the bore of a
MRI scanner, the passive nonlinear springs could be used in parallel to electric actuators
in order to correct for the deviation from the neutral equilibrium of the mechanism. This
hybrid-type system would have the advantage of presenting a higher level of safety in
case of a power failure, since the system would be in a quasi-static equilibrium due to
the presence of the passive nonlinear springs. Thus, relatively small displacements of
the end effector should be expected in such a situation, instead of a complete loss of
control, which occurs when only electric actuators are used. In this way, only small
contributions from the electric motors would be necessary to better approximate the
static equilibrium;

• In a more general concept, it would be interesting to investigate the possibility of in-
cluding the number of cables used to constrain the pose of the CDP end-effectors as a
variable within the proposed synthesis problem. The pre-selected number of cables for
the design of a CDP may not be optimal in regards of the intended application;

• Finally, it would be interesting to code the synthesis program with a more efficient
programming language, such as C/C++, in order to decrease the computation time
required to solve the optimization problem.

As the reader may notice, a wide variety of interesting topics could be investigated by those
who are motivated to further understand and enhance the capabilities of this new type of
telemanipulators, now known as cable-driven pantographs.
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Appendix A

Jacobian Matrix of Cable-Driven
Parallel Mechanisms

This appendix presents the mathematical derivation leading to the determination of the
Jacobian matrix corresponding to two different types of cable-driven parallel mechanisms
(CDPMs). The Section A.1 shows the formulation of the Jacobian matrix associated to the
planarm-cable three-DoF CDPMs and Section A.2 focuses on the general case, i.e., the spatial
m-cable six-DoF CDPMs.

A.1 Planar Three-DoF Cable-Driven Parallel Mechanisms

Figure A.1 illustrates the kinematic model of a generic planar three-DoF CDPM. The vector ai
represents the position in two dimensions of the fixed-base eyelet Ai in the fixed frame A, the
vector bBi , expressed in frame B (attached to the moving platform), represents the position of
the attachment point Bi of cable i on the moving platform, the vector p, which is expressed
in A, represents the position of the reference point P on the moving platform with respect
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Figure A.1 – Kinematic modelling of a planar three-DoF CDPM.
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to point O, and the vector ci points from Bi to Ai, which represents the ith cable, i =
1, . . . ,m, and wherem is the total number of cables for the given CDPM. Finally, the following
expression, which is commonly called the loop-closure equation, represents the length ci of
the cable i:

ci = ||ci|| =
√

(ai − p−QbBi )T (ai − p−QbBi ). (A.1)

Moreover, we define the matrix Q, that rotates frame A onto frame B, as follows

Q =
[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]
, (A.2)

where φ is the variable representing the rotation motion of the PCDM’s end-effector, following
the right-hand method for its positive direction.

In order to derive the Jacobian matrix, we must first define the CDPM’s velocity relations.
We begin with the time derivative of the relation c2

i , which is equivalent to cTi ci based on
Eq. (A.1), that we express as follows:

ciċi = (ai − p−QbBi )T (−ṗ− Q̇bBi ), (A.3)

where
Q̇ = EQφ̇, (A.4)

and where φ̇ is the angular velocity component and E is the following matrix (a π/2 rad
rotation matrix):

E =
[

0 −1
1 0

]
. (A.5)

Then, the velocity equation is given by

ciċi = −(ai − p−QbBi )T ṗ− [(ai − p−QbBi )TEQbBi ]φ̇. (A.6)

This relation can be also expressed as follows:

Jṡ = Kċ, (A.7)

where matrix J is of dimension m× 3, its ith row being expressed as

ji =
[
−(ai − p−QbBi )T −(ai − p−QbBi )TEQbBi

]
, i = 1, . . . ,m, (A.8)

while matrix K is given by

K =


c1 0 0

0 . . . 0
0 0 cm

 , (A.9)
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and ṡ and ċ are the three-component Cartesian velocity vector and the m-component joint
velocity vector, respectively. These two vectors can be written as follows:

ṡ =
[

ṗT φ̇
]T
, and ċ =

[
ċ1 · · · ċi · · · ċm

]T
. (A.10)

In summary, Eq. (A.7) represents the relationship between the Cartesian velocity and the
joint velocity and it can be rearranged as

ċ = K−1Jṡ. (A.11)

Then, using the principle of virtual work, we know that

− tT δc + wT
p δs = 0, (A.12)

where δc and δs are the small virtual variations in the vector of cable lengths and in the
vector of Cartesian coordinates {x, y, φ} of the end-effector pose, respectively. The vector t
contains the magnitude of all cable tensions ti and vector wp represents the wrench exerted
by the surrounding on the CDPM’s end-effector, e.g., the gravity effect, the inertial effects and
any additional external wrenches. The first part of this equation, i.e., −tT δc, is the virtual
work produced by the cable tensions on the moving platform (the negative sign results from
the fact that the cable length ci increases following the opposite direction of vector ci) while
the second part, i.e., wT

p δs, is the virtual work produced by the surrounding on the moving
platform.

From Eq. (A.11), therefore, the following relationship can be established:

δc = K−1Jδs. (A.13)

By substituting Eq. (A.13) into Eq. (A.12), we finally obtain the following equation:

Wt = −wp, (A.14)

where W is the Jacobian matrix of a planar m-cable three-DoF CDPM, a rectangular matrix
of dimension 3×m, which is defined as follows:

W = −(K−1J)T . (A.15)

A.2 Spatial Six-DoF Cable-Driven Parallel Mechanisms

The determination of the Jacobian matrix corresponding to a spatial m-cable six-DoF CDPM
can be easily obtained by following the same approach used in the previous section for the
planar case.
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Figure A.2 – Kinematic modelling of a spatial six-DoF CDPM.

From Fig. A.2, which shows the kinematic model of a generic spatial six-DoF CDPM, we first
express the length ci of the ith cable as

ci = ||ci|| =
√

(ai − p−QbBi )T (ai − p−QbBi ), (A.16)

where the vector ai represents the position in three dimensions of the fixed-base eyelet Ai
in the fixed frame A, the vector bBi , expressed in frame B, represents the position of the
attachment point Bi of cable i on the moving platform, the vector p, which is expressed in
A, represents the position of the reference point P on the moving platform with respect to
point O, and the vector ci points from Bi to Ai. Moreover, let Q be the matrix that rotates
frame A onto frame B and expressed as

Q = QzIIQyIQx,

=


c(θx)c(θyI) −s(θx)c(θzII) + c(θx)s(θyI)s(θzII) s(θx)s(θzII) + c(θx)s(θyI)c(θzII)
s(θx)c(θyI) c(θx)c(θzII) + s(θx)s(θyI)s(θzII) −c(θx)s(θzII) + s(θx)s(θyI)c(θzII)
−s(θyI) c(θyI)s(θzII) c(θyI)c(θzII)

 ,
(A.17)

where c(θ) ≡ cos(θ), s(θ) ≡ sin(θ), and variables {θx, θyI , θzII} are the three components
of the vector θ defining the rotation motion of the CDPM end-effector, following the Euler
angles convention XY Z (three successive pure rotations along the axes X (X ≡ XB), Y I

(Y I ≡ the new Y B), ZII (ZII ≡ the new ZB), i.e., Qx, QyI , QzII , respectively. Note that
Eq. (A.16), evaluated for i = 1, . . . ,m, where m is the total number of cables, is commonly
called the loop-closure equations of the CDPM.

Then, in order to obtain the Jacobian matrix of a given CDPM, we must first define its
velocity relations. In this purpose, we begin with the time derivative of the relation c2

i , which
is equivalent to cTi ci based on Eq. (A.16), that we express as follows:

ciċi = (ai − p−QbBi )T (−ṗ− Q̇bBi ), (A.18)
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where
Q̇bBi = Q̇QTQbBi , (A.19)

because QTQ = 13×3 and where the matrix 13×3 is the three-dimensional identity matrix.
Moreover,

Q̇QT = Ω, (A.20)

where Ω is commonly known as the angular velocity tensor. This matrix is defined as

Ω = ∂(ω × x)/∂x, (A.21)

where ω is the angular velocity vector of the CDPM’s end-effector, expressed in frame A.

Then, the following equivalent relations can be obtained:

Q̇bBi = ΩQbBi = ω ×QbBi , (A.22)

and the velocity equation is given by

ciċi = −(ai − p−QbBi )T ṗ− [QbBi × (ai − p−QbBi )]Tω. (A.23)

This relation can be also expressed as follows:

Jṡ = Kċ, (A.24)

where matrix J is of dimension m× 6, its ith row being expressed as

ji =
[
−(ai − p−QbBi )T −[QbBi × (ai − p−QbBi )]T

]
, i = 1, . . . ,m, (A.25)

while matrix K is given by

K =


c1 0 0

0 . . . 0
0 0 cm

 , (A.26)

and ṡ and ċ are the six-component Cartesian velocity vector (a screw vector) and the m-
component joint velocity vector, respectively. These two vectors can be written as follows:

ṡ =
[

ṗT ωT
]T
, and ċ =

[
ċ1 · · · ċi · · · ċm

]T
. (A.27)

In summary, Eq. (A.24) represents the relationship between the Cartesian velocity and the
joint velocity of the CDPM and it can be rearranged as

ċ = K−1Jṡ. (A.28)

Then, using the principle of virtual work, we know that

− tT δc + wT
p δs = 0, (A.29)
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where δc and δs are the small virtual variations in the vector of cable lengths and in the
vector of Cartesian coordinates of the end-effector pose, respectively. The vector t contains
the magnitude of all cable tensions ti and vector wp represents the wrench exerted by the
surrounding on the CDPM’s end-effector, e.g., the gravity effect, the inertial effects and any
additional external wrenches. The first part of this equation, i.e., −tT δc, is the virtual work
produced by the cable tensions on the moving platform (the negative sign results from the fact
that the cable length ci increases following the opposite direction of vector ci) and the second
part, i.e., wT

p δs, is the virtual work produced by the surrounding on the moving platform.

From Eq. (A.28), therefore, the following relationship can now be established:

δc = K−1Jδs, (A.30)

and by substituting Eq. (A.30) into Eq. (A.29), we finally obtain the following equation:

Wt = −wp, (A.31)

where W is the Jacobian matrix of a spatial m-cable six-DoF CDPM, a rectangular matrix
of dimensions 6×m, which is defined as follows:

W = −(K−1J)T . (A.32)
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Appendix B

Dual Problems

This appendix contains the mathematical derivation of the dual problem associated to each
criterion selected to form the basis of the proposed synthesis program presented in Chapter 4.
The Section B.1 formulates the dual problem associated to the constant-orientation wrench-
closure workspace (COWCW) criterion, Section B.2 focuses on the dual of the constant-
orientation cable-cable interference (COCCI) problem and Section B.3 presents the dual of
the constant-orientation cable-edge interference (COCEI) problem.

B.1 Dual of the Constant-Orientation Wrench-Closure
Workspace Problem

Even though the primal of the constant-orientation wrench-closure workspace problem, for-
mulated in Eq. (4.14), is sufficient to the computation of the proposed technique in Chapter 4
for the synthesis of CDPMs, its dual has been mathematically formulated during the prelimi-
nary tentatives to determine the ideal approach. Thus, for the sake of completeness, the dual
problem associated to the COWCW is presented here.

In the case that it is relevant to determine if a pose of the CDPM’s end-effector is outside
the COWCW instead of inside—primal problem, the determination of its dual problem would
be required. To do so, the Lagrangian duality principle [235] states that since our primal
optimization constraints, i.e.,

∃t ≥ 0m|Wt = 0n,1Tmt = 1, (B.1)

can be expressed by the following minimization problem:

p?W = minimize
t

0,

subject to −t ≤ 0m,[
1Tm
W

]
t−

[
1
0n

]
= 0n+1,

(B.2)
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its corresponding dual problem can be then formulated as the following maximization problem:

d?W = maximize
ρ,ξ

g(ρ, ξ),

subject to ρ ≥ 0m,
(B.3)

where
g(ρ, ξ) = infimum

t
L(t,ρ, ξ), (B.4)

and where L(t,ρ, ξ) is the Lagrangian of the primal problem (Eq. (B.2)) and it is defined as

L(t,ρ, ξ) = −ρT t + ξT
([

1Tm
W

]
t−

[
1
0n

])
. (B.5)

We know that the infimum occurs when the ∂(L(t,ρ, ξ))/∂t = 0m and that the gradient of
L(t,ρ, ξ) is as follows:

∂(L(t,ρ, ξ))
∂t = −ρ+

[
1Tm
W

]T
ξ. (B.6)

Then, when solving it for ρ, we obtain

ρ =
[

1m WT
]
ξ, (B.7)

which is the value of ρ for the infimum of the Lagrangian L(t,ρ, ξ) to be reached.

By substituting Eq. (B.7) into Eq. (B.5), the dual problem of the COWCW criterion is
expressed as

d?W = maximize
ξ

g(ξ) = − ξT
[

1
0n

]
,

subject to
[

1m WT
]
ξ ≥ 0m.

(B.8)

If we choose ξ = [ δs0 δsT ]T , where δs0 is an arbitrary constant and δs is, due to the
nature of W and the principle of virtual work, the vector of the small virtual variations of the
n Cartesian coordinates representing the pose of the CDPM’s end-effector, we then obtain

d?W = maximize
δs0,δs

−δs0,

subject to WT δs ≥− 1mδs0.
(B.9)

Mathematically speaking, the problem of Eq. (B.9) has two possible solutions:

d?W =
{

0 for δs0 ≥ 0,
∞ for δs0 < 0.

(B.10)

Indeed, if δs0 ≥ 0, the maximum value of the objective function is reached when d?W = 0 and,
inherently, the corresponding solution is δs0 = 0 and δs = 0n. In this case, the dual problem
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is bounded and the primal problem is feasible, which means that the CDPM’s end-effector
pose is inside the COWCW. However, if δs0 < 0, the maximum is d?W = ∞ and this proves
the dual problem to be unbounded and also that the primal problem is infeasible, i.e., the
end-effector pose is outside the COWCW. This particular situation is in fact the information
we want the dual problem to provide about the evaluated CDPM.

Finally, based on the previous statements, we can then formulate the following constraints in
order to fully define the dual problem:

∃δs|WT δs ≥ 0m, 1TmWT δs = 1, (B.11)

where the condition 1TmWT δs = 1 ensures us that WT δs 6= 0m. Consequently, this means
that −1mδs0 > 0m and that, inherently, δs0 < 0. As expected, here, we see that δs0 ≥ 0 is
then discarded from the possible solutions as needed.

In summary, the primal problem of Eq. (B.1) says that for a given t such as t ≥ 0m and
1T t = 1, there must be at least one cable that can generate a wrench in the opposite direction
of the resulting wrench from all other cables for an end-effector pose to be in the COWCW. In
fact, this problem basically assesses the sum of all forces and torques applied on the moving
platform by the cables.

On the other hand, the dual problem presented in Eq. (B.11) rather ensures that all work
done on the moving platform by its surrounding is either null or positive, so that a given
CDPM’s end-effector pose is outside its COWCW. Note that to be inside the COWCW, there
must be at least one cable that can generate a negative work on the moving platform. Here,
for the need of the synthesis problem proposed in Chapter 4, the first approach is preferred.

B.2 Dual of the Constant-Orientation Cable-Cable
Interference Problem

From the Lagrangian duality method (see [235]), when a primal problem can be expressed by
a minimization problem such as the following (from Eq. (4.30) of Chapter 4):

p?C = minimize
γ

f(γ) = γTHi,j,kγ + 2hTi,j,kγ,

subject to −γ ≤ 02,
(B.12)

the dual problem can be determined by the following mathematical derivation. It should be
noted here that Eq. (B.12) represents a quadratic problem, which is convex by nature, in
regards to variables γ and, consequently, its global optimum is guaranteed.

First, the associated Lagrangian of Eq. (B.12) is:

L(γ,λ) = γTHi,j,kγ + 2hTi,j,kγ − λTγ, (B.13)
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and the corresponding dual problem can be formulated as the following maximization problem:

d?C = maximize
λ

g(λ),

subject to λ ≥ 02,
(B.14)

where
g(λ) = infimum

γ
L(γ,λ). (B.15)

We know that the infimum occurs when the ∂(L(γ,λ))/∂γ = 02 and that the gradient of
L(γ,λ) is as follows:

∂(L(γ,λ))
∂γ

= 2Hi,j,kγ + 2hi,j,k − λ. (B.16)

Then, when solving it for γ, we obtain

γ = 1
2H−1

i,j,k(λ− 2hi,j,k), (B.17)

which is the value of γ for the infimum of the Lagrangian L(γ,λ) to be reached.

Finally, by substituting Eq. (B.17) into Eq. (B.13), and after mathematical simplifications,
the dual problem of the COCCI criterion is expressed as

d?C = maximize
λ

g(λ) = − 1
4λ

TH−1
i,j,kλ+ hTi,j,kH−1

i,j,kλ− hTi,j,kH−1
i,j,khi,j,k,

subject to λ ≥ 02.

(B.18)

In summary, the primal problem presented in Eq. (B.12), when p?C ≤ −hi,j,k, allows one to
determine the minimum ellipsoid that limits the region where contacts between a pair of
cables (i, j) occurs. In contrast, the dual problem showed in Eq. (B.18), when d?C > −hi,j,k,
allows one to determine the maximum ellipsoid that limits the region where no contact between
the same pair of cables can occur. For the synthesis problem proposed in Chapter 4, the second
approach is chosen.

B.3 Dual of the Constant-Orientation Cable-Edge
Interference Problem

Similarly to Section B.2, when a primal problem can be expressed with a minimization problem
such as the following (from Eq. (4.43) of Chapter 4):

p?E = minimize
α

f(α) = αTNi,o,kα+ 2nTi,o,kα,

subject to Cα+ c ≤ 03,
(B.19)

the dual problem can be determined as below. It should be also noted that Eq. (B.19)
represents a quadratic problem, which is convex by nature, in regards to variables α and,
consequently, its global optimum is always guaranteed.
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First, the associated Lagrangian of Eq. (B.19) is:

L(α,φ) = αTNi,o,kα+ 2nTi,o,kα+ (Cα+ c)Tφ, (B.20)

and the corresponding dual problem can be formulated as the following maximization problem:

d?E = maximize
φ

g(φ),

subject to φ ≥ 03,
(B.21)

where
g(φ) = infimum

α
L(α,φ). (B.22)

We know that the infimum occurs when the ∂(L(α,φ))/∂α = 02 and that the gradient of
L(α,φ) is as follows:

∂(L(α,φ))
∂α

= 2Ni,o,kα+ 2ni,o,k + CTφ. (B.23)

Then, when solving it for α, we obtain

α = −1
2N−1

i,j,k(2ni,o,k + CTφ), (B.24)

which is the value of α for the infimum of the Lagrangian L(α,φ) to be reached.

Finally, by substituting Eq. (B.24) into Eq. (B.20), and after mathematical simplifications,
the dual problem of the COCEI criterion is expressed as

d?E = maximize
φ

g(φ) = − 1
4φ

TCN−1
i,o,kC

Tφ+ (cT − nTi,o,kN−1
i,o,kC

T )φ

− nTi,o,kN−1
i,o,kni,o,k,

subject to φ ≥ 03.

(B.25)

In summary, the primal problem presented in Eq. (B.19), when p?E ≤ −ni,k, allows one to
determine the minimum ellipsoid that limits the region where contacts between a cable i and
an edge o of a given geometry—CDPM’s end-effector and its payload—occurs. In contrast, the
dual problem showed in Eq. (B.25), when d?E > −ni,k, allows one to determine the maximum
ellipsoid that limits the region where no contact between a cable and an edge can occur. For
the synthesis problem proposed in Chapter 4, the second approach is preferred.
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Appendix C

Nonlinear Constraints of the
Synthesis Program and their
Derivatives

This appendix contains the details of the nonlinear inequality and equality constraints required
to the programming of the problem of the dimensional synthesis of cable-driven parallel
mechanisms (CDPMs), which is proposed in Chapter 4. Section C.1 presents each element
that constitutes the mathematical expression of these nonlinear constraints while Section C.2
is dedicated to the formulation of the first-order derivatives of these constraints.

C.1 Nonlinear Constraints

In order to simplify the reading of the mathematical formulas included in Section 4.3 of this
thesis, the presentation of the elements required to define the nonlinear constraints of the
CDPM’s synthesis problem are rather shown here. It should be noted that, by their nature,
the nonlinear inequality constraints cineq(v) represent both the satisfactory conditions corre-
sponding to the constant-orientation cable-cable interference criterion (see Sub-section 4.2.3)
and those related to the constant-orientation cable-edge interference criterion (see Sub-section
4.2.4). We recall that these constraints depend on v, which is the vector containing all of the
variables of the synthesis problem, and must be always satisfied while optimizing a CDPM’s
geometry.

First, the nonlinear inequality constraints cineq(v) are given by:

cineq(v) ≡


µ∗augHa

augµaug − 4Hd
aughc,aug

−µaug − 2haug
η∗augZaaugηaug − 4Nd

aug(Cc,augηaug + nc,aug)
−Daug(ηaug − 2zaug)

 , (C.1)

217



where

µ∗aug ≡



µT2,1,1 · · · 0T2 0T2 · · · 0T2
... . . . ...

...
...

0T2 · · · µTm,1,1 0T2 · · · 0T2
0T2 · · · 0T2 µT1,2,1 · · · 0T2
...

...
... . . . ...

0T2 · · · 0T2 0T2 · · · µTm−1,m,q


, (C.2)

Ha
aug ≡



adj(H2,1,1) · · · 02×2 02×2 · · · 02×2
... . . . ...

...
...

02×2 · · · adj(Hm,1,1) 02×2 · · · 02×2

02×2 · · · 02×2 adj(H1,2,1) · · · 02×2
...

...
... . . . ...

02×2 · · · 02×2 02×2 · · · adj(Hm−1,m,q)


, (C.3)

Hd
aug ≡



det(H2,1,1) · · · 0 0 · · · 0
... . . . ...

...
...

0 · · · det(Hm,1,1) 0 · · · 0
0 · · · 0 det(H1,2,1) · · · 0
...

...
... . . . ...

0 · · · 0 0 · · · det(Hm−1,m,q)


, (C.4)

haug ≡
[

hT2,1,1 · · · hTm,1,1 hT1,2,1 · · · hTm−1,m,q

]T
2(m2−m)q

, (C.5)

hc,aug ≡
[
h2,1,1 · · · hm,1,1 h1,2,1 · · · hm−1,m,q

]T
(m2−m)q

, (C.6)

η∗aug ≡



ηT1,1,1 · · · 0T3 0T3 · · · 0T3
... . . . ...

...
...

0T3 · · · ηT1,f,1 0T3 · · · 0T3
0T3 · · · 0T3 ηT2,1,1 · · · 0T3
...

...
... . . . ...

0T3 · · · 0T3 0T3 · · · ηTm,f,q


, (C.7)

Zaaug ≡



Za1,1,1 · · · 03×3 03×3 · · · 03×3
... . . . ...

...
...

03×3 · · · Za1,f,1 03×3 · · · 03×3

03×3 · · · 03×3 Za2,1,1 · · · 03×3
...

...
... . . . ...

03×3 · · · 03×3 03×3 · · · Zam,f,q


, (C.8)
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Nd
aug ≡



det(N1,1,1) · · · 0 0 · · · 0
... . . . ...

...
...

0 · · · det(N1,f,1) 0 · · · 0
0 · · · 0 det(N2,1,1) · · · 0
...

...
... . . . ...

0 · · · 0 0 · · · det(Nm,f,q)


, (C.9)

Cc,aug ≡


cT · · · 0T3
... . . . ...

0T3 · · · cT


mfq×3mfq

, (C.10)

Daug ≡


D−1 · · · 03×3
... . . . ...

03×3 · · · D−1


3mfq×3mfq

, (C.11)

zaug ≡
[

zT1,1,1 · · · zT1,f,1 zT2,1,1 · · · zTm,f,q
]T

3mfq
, (C.12)

nc,aug ≡
[

nTb,1 · · · nTb,k · · · nTb,q
]T
mfq

, (C.13)

nb,k ≡
[

nTa,k · · · nTa,k · · · nTa,k
]T
mf

, (C.14)

na,k ≡
[
n1,k · · · ni,k · · · nm,k

]T
m
, (C.15)

and where,

µ∗aug ∈ R(m2−m)q×2(m2−m)q, (C.16)

Ha
aug ∈ R2(m2−m)q×2(m2−m)q, (C.17)

Hd
aug ∈ R(m2−m)q×(m2−m)q, (C.18)

η∗aug ∈ Rmfq×3mfq, (C.19)

Zaaug ∈ R3mfq×3mfq, (C.20)

Nd
aug ∈ Rmfq×mfq. (C.21)

Finally, the nonlinear equality constraints ceq(v), which represent the nonlinear satisfactory
conditions corresponding to the constant-orientation wrench-closure workspace criterion (see
Sub-section 4.2.2), are expressed as follows:

ceq(v) ≡Waugtaug =



W1,1 · · · 0n×m · · · 0n×m
... . . . ...

...
0n×m · · · Wq,1 · · · 0n×m

...
... . . . ...

0n×m · · · 0n×m · · · Wq,nb


taug, (C.22)
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where
Waug ∈ Rnqnb×mqnb. (C.23)

C.2 Derivatives of the Nonlinear Constraints

The determination of the derivatives of nonlinear constraints can be required when the com-
puting of a nonlinearly constrained optimization program is relatively time consuming and
one desires to improve this aspect. In fact, if the resolving technique of an optimization
program is based on the use of gradient-like methods, in general, providing an analytical
formulation for the derivatives of the objective function and its associated constraints leads
to decreasing the computation time required to perform a single function evaluation. With
numerical tools such as the function fmincon from the Optimization Toolbox of the MAT-
LAB® software, the internal algorithms normally need to numerically compute the gradients
of the nonlinear problem in order to determine the direction of search for a given iteration.
Consequently, when one knows the analytical formulation of these gradients, the computation
time allocated to this sub-procedure can be dramatically reduced.

For the synthesis problem proposed in Chapter 4, for which the optimization function fmincon

is solved using the interior-point algorithm, the determination of the derivatives of the non-
linear inequality and equality constraints in regards to v, i.e., the gradients ∇cineq(v) and
∇ceq(v), respectively, where the vector v contains all of the variables of the synthesis problem,
is required since the optimization problem is strongly nonlinear and involves a large number
of variables. The mathematical formulation of ∇cineq(v) and ∇ceq(v) is then presented be-
low. Note that the gradient of the objective function f(v) is directly given in Chapter 4 with
Eq. (4.74) because of its simplicity of formulation.

As previously shown in Section C.1, the nonlinear inequality and equality constraints are
respectively expressed as follows:

cineq(v) ≡


µ∗augHa

augµaug − 4Hd
aughc,aug

−µaug − 2haug
η∗augZaaugηaug − 4Nd

aug(Cc,augηaug + nc,aug)
−Daug(ηaug − 2zaug)

 , (C.24)

and

ceq(v) ≡Waugtaug. (C.25)

Then, after applying the derivatives methods on the nonlinear inequality constraints cineq(v),
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and after multiple formulation simplifications, we obtain:

∇cineq(v) =

8κ(1T(m2−m)qHd
aug) 0T2(m2−m)q 8κ(1TmfqNd

aug) 0T3mfq
Ia1c
aug Ia2c

aug Ia1e
aug Ia2e

aug

Ib1caug Ib2caug Ib1eaug Ib2eaug
03nb×(m2−m)q 03nb×2(m2−m)q 03nb×mfq 03nb×3mfq

0mqnb×(m2−m)q 0mqnb×2(m2−m)q 0mqnb×mfq 0mqnb×3mfq

2(µ∗augHa
aug)T −12(m2−m)q×2(m2−m)q 02(m2−m)q×mfq 02(m2−m)q×3mfq

03mfq×(m2−m)q 03mfq×2(m2−m)q YT
aug −DT

aug


,

(C.26)

where
Yaug ≡ η∗augZaaug − 4Cc,augNd

aug, (C.27)

and where the eight matrices noted Iaug are cell matrices and their dimensions are as follows:

Ia1c
aug, Ia2c

aug, Ib1caug, Ib2caug ∈ Rm×(m2−m)q, (C.28)

Ia1e
aug, Ia2e

aug, Ib1eaug, Ib2eaug ∈ Rm×mfq. (C.29)

Note that each element of the cell matrices contains a sub-vector or a sub-matrix. Then, the
purpose of the following is to define these sub-elements.

Here, matrices Iaug represent the partial derivatives of the nonlinear inequality constraints
cineq(v) in regards to the geometric parameters ai and bBi of the CDPM. Since, in our di-
mensional synthesis program, each combination of two cables i and j and each combination
of a cable i and an edge o are evaluated separately in a loop, i.e., one combination after the
other, the structure of the cell matrices Iaug must be defined accordingly. Therefrom, for each
evaluated pair of a cable i and a cable j, the structure of the matrices are:

Ia1c
aug(row, col) ≡


oa1cj

3 when row = j,

oa1ci
3 when row = i,

03 otherwise,
(C.30)

Ia2c
aug(row, col) ≡


Oa2cj

3×2 when row = j,

Oa2ci
3×2 when row = i,

03×2 otherwise,
(C.31)

Ib1caug(row, col) ≡


ob1cj3 when row = j,

ob1ci3 when row = i,

03 otherwise,
(C.32)

Ib2caug(row, col) ≡


Ob2cj

3×2 when row = j,

Ob2ci
3×2 when row = i,

03×2 otherwise,
(C.33)
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where col represents each of all (m2 −m)q possible combinations of two cables, for each of
the q orientations. Vectors o3 and matrices O3×2 are defined as follows:

oa1cj
3 ≡ 2(iaa − 4det(Hi,j,k)(Πsi,j,k + f)− 2hi,j,kida), (C.34)

oa1ci
3 ≡ − 2(iaa − 2hi,j,kida), (C.35)

Oa2cj
3×2 ≡ − 2

[
(Πsi,j,k + ΠsS1

i,j,k + f) ΠsS2
i,j,k

]
, (C.36)

Oa2ci
3×2 ≡ 2

[
(Πsi,j,k + f) 03

]
, (C.37)

ob1cj3 ≡ − 2(iab + 2hi,j,kidb), (C.38)

ob1ci3 ≡ 2(iab + 4det(Hi,j,k)QT
k (Πsi,j,k + f) + 2hi,j,kidb), (C.39)

Ob2cj
3×2 ≡ − 2QT

k

[
03 (Πsi,j,k + f)

]
, (C.40)

Ob2ci
3×2 ≡ 2QT

k

[
ΠsS1

i,j,k (Πsi,j,k + ΠsS2
i,j,k + f)

]
, (C.41)

where sS1
i,j,k and sS2

i,j,k are defined from Eq. (4.24) as follows:

Si,j,k ≡
[

sS1
i,j,k sS2

i,j,k

]
, (C.42)

and

sS1
i,j,k ≡ aj − ai, (C.43)

sS2
i,j,k ≡ Qk(bBj − bBi ), (C.44)

and where Π, f and si,j,k are defined by Eqs. (4.4), (4.6) and (4.25), respectively. Finally,

iaa ≡ µ2
i,j,k,2ΠsS1

i,j,k − µi,j,k,1µi,j,k,2ΠsS2
i,j,k, (C.45)

ida ≡
[

2ΠsS1
i,j,k ΠsS2

i,j,k

]
ET
r h2 +

[
ΠsS2

i,j,k 03
]
Erh1, (C.46)

iab ≡ QT
k (µi,j,k,1µi,j,k,2ΠsS1

i,j,k − µ
2
i,j,k,1ΠsS2

i,j,k), (C.47)

idb ≡ QT
k (
[

03 ΠsS1
i,j,k

]
ET
r h2 +

[
ΠsS1

i,j,k 2ΠsS2
i,j,k

]
Erh1), (C.48)

where µi,j,k,1 and µi,j,k,2 are the two components of the vector µi,j,k, vectors h1 and h2

represent the column of the matrix defined with Eq. (4.27), i.e.,

Hi,j,k ≡
[

h1 h2
]
, (C.49)

and, finally, where matrix Er is defined as follows:

Er ≡
[

0 −1
1 0

]
. (C.50)
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Similarly, for each pair of a cable i and an edge o, the cells of the matrices from Eq. (C.29)
are structured such as:

Ia1e
aug(row, col) ≡

{
oa1ei

3 when row = i,

03 otherwise,
(C.51)

Ia2e
aug(row, col) ≡

{
Oa2ei

3×3 when row = i,

03×3 otherwise,
(C.52)

Ib1eaug(row, col) ≡
{

ob1ei3 when row = i,

03 otherwise,
(C.53)

Ib2eaug(row, col) ≡
{

Ob2ei
3×3 when row = i,

03×3 otherwise,
(C.54)

where col here represents each of all mfq possible combinations of a cable and an edge, for
each of the q orientations. Also, vectors o3 and matrices O3×3 are defined as follows:

oa1ei
3 ≡ − 8det(Ni,o,k)(Πri,k + f), (C.55)

Oa2ei
3×3 ≡ 2

[
03 ΠRi,o,k

]
D−T , (C.56)

ob1ei3 ≡ QT
k (2xab + 4(ηi,o,k,1 + ni,k)xdb − oa1ei

3 ), (C.57)

Ob2ei
3×3 ≡ − 2QT

k

[
03 (Πri,k + ΠrR1

i,o,k + f) (Πri,k + ΠrR2
i,o,k + f)

]
D−T , (C.58)

where rR1
i,o,k and rR2

i,o,k are defined from Eq. (4.35) as follows:

Ri,o,k ≡
[

rR1
i,o,k rR2

i,o,k

]
, (C.59)

and

rR1
i,o,k ≡ aj − ai, (C.60)

rR2
i,o,k ≡ Qk(bBj − bBi ). (C.61)

The elements ri,k and ni,k are defined by Eqs. (4.36) and (4.40), respectively, and ηi,o,k,1

represents the first component of the vector ηi,o,k. Finally,

xab ≡ − η2
i,o,k,2ΠrR2

i,o,k + ηi,o,k,2ηi,o,k,3Π(rR1
i,o,k + rR2

i,o,k)− η
2
i,o,k,3ΠrR1

i,o,k, (C.62)

xdb ≡
[

2ΠrR1
i,o,k Π(rR1

i,o,k + rR2
i,o,k)

]
ET
r n2 +

[
Π(rR1

i,o,k + rR2
i,o,k) 2ΠrR2

i,o,k

]
Ern1, (C.63)

where ηi,o,k,2 and ηi,o,k,3 are the second and the third components of the vector ηi,o,k and the
vectors n1 and n2 represent the columns of the matrix defined with Eq. (4.38), i.e.,

Ni,o,k ≡
[

n1 n2
]
. (C.64)

223



On the other hand, the mathematical derivatives of the nonlinear equality constraints ceq(v)
lead to the following expressions:

∇ceq(v) =



0Tnqnb
Wa

aug

Wb
aug

Wp
aug

WT
aug

0(2(m2−m)q+3mfq)×nqnb


, (C.65)

where Wa,b
aug are cell matrices of dimensions m× qnb and are defined as

Wa,b
aug =



Wa,b
1,1,1 · · · Wa,b

1,k,1 · · · Wa,b
1,q,1 · · · Wa,b

1,k,ε · · · Wa,b
1,q,nb

...
...

...
...

...
Wa,b

i,1,1 · · · Wa,b
i,k,1 · · · Wa,b

i,q,1 · · · Wa,b
i,k,ε · · · Wa,b

i,q,nb
...

...
...

...
...

Wa,b
m,1,1 · · · Wa,b

m,k,1 · · · Wa,b
m,q,1 · · · Wa,b

m,k,ε · · · Wa,b
m,q,nb


, (C.66)

and where matrix Wp
aug is of dimensions 3nb× nqnb and is expressed as follows:

Wp
aug =



[
Wp

1,1 · · · Wp
q,1

]
· · · 03×nq · · · 03×nq

... . . . ...
...

03×nq · · ·
[

Wp
1,ε · · · Wp

q,ε

]
· · · 03×nq

...
... . . . ...

03×nq · · · 03×nq · · ·
[

Wp
1,nb · · · Wp

q,nb

]


.

(C.67)

Furthermore, for the case of a spatial six-DoF CDPM,

Wa
i,k,ε = ti,k,ε

[
13×3 (cpm(QkbBi ))T

]
3×n

, (C.68)

Wb
i,k,ε =− ti,k,ε

[
QT
k (cpm(ai − pε)Qk)T

]
3×n

, (C.69)

Wp
k,ε =

[
−(1Tmtk,ε)13×3 −(cpm(QkBtk,ε))T

]
3×n

, (C.70)

where n = 6 and B has been defined with Eq. (4.18) in Chapter 4.
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Appendix D

Geometric Parameters of the
Cable-Driven Parallel Mechanisms

This appendix presents the geometric parameters, i.e., the attachment points ai and bBi ,
i = 1, . . . ,m, of the m cables of the cable-driven parallel mechanisms (CDPMs), before and
after their optimization with the dimensional synthesis program proposed in Section 4.3.
From the CDPM’s geometry optimizations contained in each sub-section of this appendix,
all CDPMs are presented by the mean of three different tables, except for the last one.
The first table shows the geometric parameters of the randomly-determined initial solution.
The second table, also illustrated in a figure, contains the geometry of the closest-feasible
initial solution, i.e., the projection of the randomized solution on the domain of the feasible
solutions. The last table, and its corresponding figure, presents the optimized geometric
parameters resulting from the dimensional synthesis problem. Finally, for the last trial of
each sub-section, only two tables are displayed, the initial and the final geometric parameters
(also illustrated in figures), since the initial solution is based on the designer’s intuition and
these initial geometric parameters are assumed to belong or to be close to the domain of
the feasible solutions. Moreover, for each trial, the final wrench-closure workspace of the
CDPM is shown with the final corresponding ellipsoid and, if κ ' 0.9, three additional views
are displayed for the final geometry in order to facilitate the analysis and comparison of the
solutions that fulfill or approximately fulfill the prescribed requirements. Note that, in figures,
each cable i is tagged with its associated number, for example, cable 1 is tagged by “c1”.

The Section D.1 presents the data corresponding to the fourteen CDPM’s geometries op-
timized for the first numerical application of the dimensional synthesis program, which is
described in Sub-section 4.3.1. Then, Section D.2 shows the twelve best sets of geometric pa-
rameters over a total of a hundred CDPM’s geometries generated for the envisioned medical
application described in Sub-section 4.3.2.
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D.1 Synthesis of Seven-Cable Nine-Edge Six-DoF
Cable-Driven Parallel Mechanisms

Table D.1 and Fig. D.1 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.4798) resulting from the
dimensional synthesis (Trial 1) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.9172 0.2858 0.7572 0.7537 0.3804 0.5678 0.0759
y (m) 0.0540 0.5308 0.7792 0.9340 0.1299 0.5688 0.4694
z (m) 0.0119 0.3371 0.1622 0.7943 0.3112 0.5285 0.1656

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) 0.0204 −0.0474 0.0308 0.0378 0.0496 −0.0099 −0.0832
yB (m) −0.0542 0.0827 −0.0695 0.0652 0.0077 0.0992 −0.0844
zB (m) −0.0115 −0.0787 0.0924 −0.0991 0.0550 0.0635 0.0737

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.9176 0.2808 0.7556 0.7388 0.3651 0.5629 0.0747
y (m) 0.0535 0.5342 0.7821 0.9320 0.1321 0.5918 0.4705
z (m) 0.0126 0.3401 0.1636 0.8071 0.3207 0.5253 0.1670

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) 0.0143 −0.0303 0.0346 0.0441 0.0540 −0.0059 −0.0803
yB (m) −0.0508 0.0745 −0.0614 0.0122 0.0247 0.0914 −0.0855
zB (m) −0.0161 −0.0772 0.1000 −0.0380 −0.0198 0.0713 0.0733

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.9995 0.0003 0.8224 0.5949 0.0006 0.9997 0.0896
y (m) 0.0007 0.9985 0.9997 0.6045 0.0002 0.7956 0.0512
z (m) 0.6276 0.5104 0.5740 0.9997 0.4457 0.7756 0.0003

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) 0.0457 −0.0998 0.0999 0.0999 0.0996 −0.0995 −0.0697
yB (m) −0.0878 0.0719 −0.0998 0.0166 −0.0568 0.0999 −0.0512
zB (m) 0.0337 0.0109 0.0999 −0.0836 −0.0785 0.0984 0.0881

(c) Final geometric parameters ai,f and bBi,f

Table D.1 – Geometric parameters of the CDPM corresponding to the Trial 1 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(a) The initial geometry of the CDPM
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.4798)

Figure D.1 – Illustration of different results obtained from the optimization of a CDPM
(Trial 1) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.2 and Fig. D.2 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.7679) resulting from the
dimensional synthesis (Trial 2) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.0844 0.3998 0.2599 0.8001 0.4314 0.9106 0.1818
y (m) 0.2638 0.1455 0.1361 0.8693 0.5797 0.5499 0.1450
z (m) 0.8530 0.6221 0.3510 0.5132 0.4018 0.0760 0.2399

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) −0.0753 −0.0632 −0.0520 −0.0165 −0.0901 0.0805 0.0890
yB (m) −0.0018 −0.0021 −0.0325 0.0800 −0.0262 −0.0778 0.0561
zB (m) −0.0221 −0.0517 −0.0192 −0.0807 −0.0736 0.0884 0.0912

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.0875 0.4070 0.2602 0.7995 0.4643 0.9106 0.1823
y (m) 0.2660 0.1422 0.1362 0.8699 0.5844 0.5501 0.1450
z (m) 0.8572 0.6178 0.3499 0.5137 0.4054 0.0760 0.2394

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) −0.0719 −0.0836 −0.0686 −0.0132 −0.0757 0.0805 0.0898
yB (m) −0.0169 −0.0067 −0.0221 0.0739 −0.0160 −0.0771 0.0560
zB (m) −0.0413 −0.0648 −0.0191 −0.0829 −0.0425 0.0885 0.0903

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.0043 0.0055 0.0002 0.9988 0.7419 0.9987 0.6675
y (m) 0.9983 0.0005 0.3560 0.9990 0.9998 0.0019 0.0007
z (m) 0.9989 0.4567 0.3006 0.9927 0.0000 0.0010 0.9990

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0998 −0.0986 −0.0671 0.0998 −0.0504 0.0998 0.0779
yB (m) 0.0076 0.0996 −0.0996 −0.0615 0.0365 −0.0894 −0.0998
zB (m) 0.0383 −0.0654 0.0995 0.0283 −0.0125 0.0895 0.0643

(c) Final geometric parameters ai,f and bBi,f

Table D.2 – Geometric parameters of the CDPM corresponding to the Trial 2 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(a) The initial geometry of the CDPM
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.7679)

Figure D.2 – Illustration of different results obtained from the optimization of a CDPM
(Trial 2) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.3 and Fig. D.3 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.4657) resulting from the
dimensional synthesis (Trial 3) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.5752 0.0598 0.2348 0.3532 0.8212 0.0154 0.0430
y (m) 0.1690 0.6491 0.7317 0.6477 0.4509 0.5470 0.2963
z (m) 0.7447 0.1890 0.6868 0.1835 0.3685 0.6256 0.7802

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) −0.0838 0.0859 0.0551 −0.0026 −0.0128 −0.0106 −0.0387
yB (m) 0.0017 0.0022 0.0635 0.0590 0.0289 −0.0243 0.0623
zB (m) 0.0066 −0.0299 0.0878 0.0752 0.0100 0.0245 0.0174

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.5758 0.0599 0.2357 0.3531 0.8283 0.0197 0.0436
y (m) 0.1705 0.6496 0.7321 0.6477 0.4702 0.5593 0.2971
z (m) 0.7465 0.1890 0.6887 0.1835 0.3839 0.6334 0.7818

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) −0.0857 0.0864 0.0530 −0.0032 −0.0079 −0.0162 −0.0333
yB (m) −0.0001 0.0018 0.0654 0.0587 −0.0020 −0.0227 0.0625
zB (m) 0.0064 −0.0319 0.0824 0.0754 −0.0010 −0.0038 0.0254

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.9983 0.2894 0.9987 0.0016 0.9979 0.0011 0.0453
y (m) 0.0013 0.8318 0.9975 0.9980 0.0016 0.9950 0.0023
z (m) 0.9969 0.0001 0.9976 0.0016 0.0013 0.9983 0.9989

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0699 0.0514 0.0997 −0.0996 0.0997 −0.0998 0.0435
yB (m) −0.0995 −0.0287 0.0996 0.0997 −0.0055 −0.0993 0.0993
zB (m) 0.0997 −0.0845 0.0303 0.0947 −0.0964 0.0585 0.0998

(c) Final geometric parameters ai,f and bBi,f

Table D.3 – Geometric parameters of the CDPM corresponding to the Trial 3 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.

230



x (m) y (m)

z
(m

)

c1

c2

c3

c4

c5 c6

c7

0
0.5

1
0

0.5
1

0

0.2

0.4

0.6

0.8

1

(a) The initial geometry of the CDPM

x (m) y (m)

z
(m

)

c1

c2

c3

c4

c5

c6

c7

0
0.5

1
0

0.5
1

0

0.2

0.4

0.6

0.8

1

(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.4657)

Figure D.3 – Illustration of different results obtained from the optimization of a CDPM
(Trial 3) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.4 and Fig. D.4 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.3240) resulting from the
dimensional synthesis (Trial 4) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.2077 0.3012 0.4709 0.2305 0.8443 0.1948 0.2259
y (m) 0.1707 0.2277 0.4357 0.3111 0.9234 0.4302 0.1848
z (m) 0.9049 0.9797 0.4389 0.1111 0.2581 0.4087 0.5949

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) −0.0476 0.0206 0.0422 −0.0557 −0.0765 −0.0407 −0.0362
yB (m) −0.0152 0.0016 −0.0829 −0.0475 0.0602 −0.0942 0.0858
zB (m) 0.0461 −0.0023 0.0157 −0.0525 −0.0082 0.0926 0.0094

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.2009 0.3004 0.4698 0.2284 0.8317 0.1938 0.2208
y (m) 0.1784 0.2284 0.4343 0.3118 0.9359 0.4339 0.1879
z (m) 0.9070 0.9797 0.4361 0.1121 0.2603 0.4097 0.5962

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) −0.0570 0.0135 0.0444 −0.0556 −0.0262 −0.0405 −0.0396
yB (m) −0.0193 −0.0009 −0.0806 −0.0402 0.0283 −0.0895 0.0913
zB (m) 0.0263 −0.0136 0.0141 −0.0552 0.0069 0.0919 0.0011

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.2534 0.2904 0.9992 0.8781 0.9989 0.0009 0.0012
y (m) 0.0003 0.0001 0.9983 0.0012 0.9992 0.9972 0.7343
z (m) 0.8841 0.8179 0.1857 0.0010 0.8307 0.0735 0.0007

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0995 0.0186 0.0753 0.0992 −0.0866 −0.0479 −0.0999
yB (m) −0.0996 0.0600 −0.0998 −0.0987 0.0985 −0.0256 0.0994
zB (m) 0.0994 −0.0998 −0.0492 −0.0986 0.0250 −0.0996 0.0997

(c) Final geometric parameters ai,f and bBi,f

Table D.4 – Geometric parameters of the CDPM corresponding to the Trial 4 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.3240)

Figure D.4 – Illustration of different results obtained from the optimization of a CDPM
(Trial 4) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.5 and Figs. D.5 and D.6 present and illustrate the geometric parameters and the final
wrench-closure workspace (WCW) as well as the final ellipsoidWt (κ = 1.0306) resulting from
the dimensional synthesis (Trial 5) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.5211 0.2316 0.4889 0.6241 0.6791 0.3955 0.3674
y (m) 0.9880 0.0377 0.8852 0.9133 0.7962 0.0987 0.2619
z (m) 0.3354 0.6797 0.1366 0.7212 0.1068 0.6538 0.4942

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) 0.0558 0.0430 0.0807 0.0782 −0.0332 0.0397 −0.0604
yB (m) −0.0939 0.0488 0.0000 −0.0040 0.0809 0.0220 0.0235
zB (m) 0.0719 0.0611 0.0153 −0.0634 −0.0520 0.0773 −0.0943

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.5174 0.2328 0.4936 0.6296 0.6909 0.4177 0.3572
y (m) 0.9878 0.0369 0.8821 0.9118 0.7948 0.0927 0.2700
z (m) 0.3356 0.6796 0.1326 0.7223 0.1118 0.6504 0.5118

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) 0.0452 0.0349 0.0873 0.0122 −0.0009 0.0469 −0.0534
yB (m) −0.0921 0.0538 0.0014 0.0148 0.0785 0.0090 0.0100
zB (m) 0.0753 0.0652 0.0127 −0.0502 −0.0286 0.0722 −0.1000

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.9970 0.0063 0.7629 0.9982 1.0000 0.0002 0.0002
y (m) 0.9995 0.0004 0.9998 0.9994 0.2402 0.2463 0.0615
z (m) 0.9778 0.8809 0.3282 0.9995 0.0826 0.6551 0.0002

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) 0.0999 −0.0992 0.0619 −0.0924 0.0093 0.0997 0.0400
yB (m) −0.0999 0.0998 −0.0973 0.0597 0.0729 −0.0999 −0.0397
zB (m) 0.0938 0.0997 −0.0999 0.0742 −0.0721 0.0999 −0.1000

(c) Final geometric parameters ai,f and bBi,f

Table D.5 – Geometric parameters of the CDPM corresponding to the Trial 5 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 1.0306)

Figure D.5 – Illustration of different results obtained from the optimization of a CDPM
(Trial 5) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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(a) An XY view of the final CDPM’s geom-
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(b) An XZ view of the final CDPM’s geom-
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(c) An Y Z view of the final CDPM’s geom-
etry

Figure D.6 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 5) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.1 (κ = 1.0306).
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Table D.6 and Fig. D.7 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6066) resulting from the
dimensional synthesis (Trial 6) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.4899 0.1679 0.9787 0.7127 0.5005 0.4711 0.0596
y (m) 0.6820 0.0424 0.0714 0.5216 0.0967 0.8181 0.8175
z (m) 0.7224 0.1499 0.6596 0.5186 0.9730 0.6490 0.8003

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) −0.0092 −0.0135 0.0651 −0.0833 −0.0734 −0.0653 −0.0218
yB (m) 0.0663 0.0607 −0.0879 −0.0201 0.0054 −0.0166 0.0314
zB (m) 0.0256 −0.0416 −0.0137 −0.0969 0.0968 −0.0666 −0.0788

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.4976 0.1794 0.9797 0.7157 0.5029 0.4881 0.0604
y (m) 0.6828 0.0542 0.0728 0.5335 0.0960 0.8342 0.8178
z (m) 0.7196 0.1241 0.6598 0.5005 0.9715 0.6100 0.8009

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) −0.0230 −0.0314 0.0658 −0.0682 −0.0928 −0.0390 −0.0339
yB (m) 0.0832 0.0163 −0.0900 0.0077 0.0044 −0.0076 0.0131
zB (m) 0.0254 −0.0268 −0.0196 −0.0490 0.0992 −0.0270 −0.0774

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.9995 0.0006 0.9992 0.9951 0.0025 0.0001 0.8922
y (m) 0.9015 0.0021 0.6027 0.0015 0.0027 0.9999 0.9987
z (m) 0.9833 0.2569 0.9981 0.0007 0.9982 0.0028 0.9989

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) 0.0786 0.0128 0.0646 −0.0422 −0.0998 −0.0165 −0.0999
yB (m) 0.0997 −0.0013 −0.0998 −0.0156 0.0994 0.0198 0.0783
zB (m) 0.0997 −0.0819 −0.0998 −0.0883 0.0893 −0.0548 −0.0609

(c) Final geometric parameters ai,f and bBi,f

Table D.6 – Geometric parameters of the CDPM corresponding to the Trial 6 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.6066)

Figure D.7 – Illustration of different results obtained from the optimization of a CDPM
(Trial 6) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.7 and Fig. D.8 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6063) resulting from the
dimensional synthesis (Trial 7) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.3724 0.1981 0.4897 0.3395 0.9516 0.9203 0.0527
y (m) 0.7379 0.2691 0.4228 0.5479 0.9427 0.4177 0.9831
z (m) 0.3015 0.7011 0.6663 0.5391 0.6981 0.6665 0.1781

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) −0.0744 0.0998 −0.0658 −0.0935 0.0122 0.0764 0.0338
yB (m) −0.0619 −0.0262 −0.0079 0.0963 −0.0687 0.0711 0.0290
zB (m) −0.0247 −0.0618 −0.0143 −0.0036 −0.0759 0.0179 −0.0548

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.3729 0.1992 0.4868 0.3593 0.9523 0.9295 0.0559
y (m) 0.7360 0.2660 0.4162 0.5334 0.9418 0.4159 0.9791
z (m) 0.2984 0.7010 0.6640 0.4729 0.6990 0.6376 0.1676

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) −0.0730 0.0995 −0.0654 −0.0929 0.0138 0.0565 0.0409
yB (m) −0.0619 −0.0346 0.0102 0.0927 −0.0737 0.0529 0.0411
zB (m) −0.0139 −0.0738 −0.0070 0.0364 −0.0685 0.0245 −0.0101

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.0048 0.0002 0.9988 0.0006 0.9992 0.9990 0.0055
y (m) 0.8958 0.0001 0.0018 0.4620 0.9980 0.0030 0.9993
z (m) 0.0015 0.5654 0.9976 0.2613 0.9979 0.0020 0.0011

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0996 0.0990 0.0025 −0.0997 0.0965 0.0997 0.0995
yB (m) −0.0994 −0.0681 −0.0561 0.0993 −0.0015 0.0162 0.0997
zB (m) −0.0996 −0.0858 0.0997 0.0995 −0.0630 −0.0994 −0.0996

(c) Final geometric parameters ai,f and bBi,f

Table D.7 – Geometric parameters of the CDPM corresponding to the Trial 7 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.6063)

Figure D.8 – Illustration of different results obtained from the optimization of a CDPM
(Trial 7) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.8 and Fig. D.9 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6468) resulting from the
dimensional synthesis (Trial 8) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.3846 0.5830 0.2518 0.2904 0.6171 0.2653 0.8244
y (m) 0.9827 0.7302 0.3439 0.5841 0.1078 0.9063 0.8797
z (m) 0.8178 0.2607 0.5944 0.0225 0.4253 0.3127 0.1615

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) −0.0642 −0.0154 −0.0812 0.0197 −0.0058 0.0392 0.0400
yB (m) 0.0277 −0.0933 −0.0862 −0.0361 0.0062 0.0309 −0.0185
zB (m) 0.0640 0.0437 0.0937 0.0063 −0.0350 −0.0789 0.0222

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.3845 0.5890 0.2493 0.2857 0.6203 0.2692 0.8244
y (m) 0.9823 0.7308 0.3408 0.5815 0.1082 0.9114 0.8802
z (m) 0.8184 0.2646 0.5889 0.0240 0.4362 0.3197 0.1622

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) −0.0307 −0.0376 −0.0631 0.0169 −0.0230 0.0339 0.0346
yB (m) 0.0105 −0.0887 −0.0862 −0.0294 0.0050 0.0436 0.0055
zB (m) 0.0014 0.0399 0.0999 0.0138 −0.0245 −0.0851 0.0375

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.0686 0.9806 0.0014 0.0155 0.9990 0.0005 0.9982
y (m) 0.4640 1.0000 0.0013 0.2928 0.0013 0.5052 0.9990
z (m) 0.9733 0.0000 0.9954 0.0004 0.0020 0.9996 0.8718

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.1000 −0.0993 −0.0962 −0.0948 −0.0988 −0.0999 0.0997
yB (m) −0.0998 −0.0792 −0.0972 −0.0765 −0.0764 0.0996 0.0809
zB (m) −0.1000 −0.0983 0.0994 −0.1000 −0.0995 −0.0999 −0.0789

(c) Final geometric parameters ai,f and bBi,f

Table D.8 – Geometric parameters of the CDPM corresponding to the Trial 8 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.6468)

Figure D.9 – Illustration of different results obtained from the optimization of a CDPM
(Trial 8) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.9 and Figs. D.10 and D.11 present and illustrate the geometric parameters and the
final wrench-closure workspace (WCW) as well as the final ellipsoidWt (κ = 1.4468) resulting
from the dimensional synthesis (Trial 9) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.7788 0.4235 0.0908 0.2665 0.1537 0.2810 0.4401
y (m) 0.5271 0.4574 0.8754 0.5181 0.9436 0.6377 0.9577
z (m) 0.2407 0.6761 0.2891 0.6718 0.6951 0.0680 0.2548

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) −0.0552 0.0336 0.0689 −0.0311 0.0561 0.0351 −0.0987
yB (m) 0.0204 −0.0226 0.0832 −0.0998 −0.0075 −0.0151 −0.0078
zB (m) 0.0540 −0.0355 0.0569 −0.0057 −0.0928 −0.0648 0.0444

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.7796 0.4302 0.0911 0.2677 0.1544 0.2833 0.4388
y (m) 0.5178 0.4440 0.8762 0.5156 0.9444 0.6363 0.9568
z (m) 0.2410 0.6745 0.2900 0.6743 0.6948 0.0664 0.2534

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) −0.0225 0.0081 0.0687 −0.0376 0.0564 0.0328 −0.0996
yB (m) −0.0007 0.0035 0.0885 −0.0987 −0.0039 −0.0093 −0.0079
zB (m) 0.0151 0.0107 0.0548 −0.0087 −0.0937 −0.0686 0.0420

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.9993 0.2521 0.0002 0.9997 0.0004 0.9998 0.0164
y (m) 0.0004 0.0002 0.9775 0.9997 0.9997 0.0013 0.9997
z (m) 0.0376 0.9999 0.0797 0.9999 0.8584 0.0002 0.0008

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0999 0.0446 0.0379 0.0177 −0.0131 0.0759 −0.0747
yB (m) −0.0993 0.0154 0.0998 0.0132 0.0476 0.0148 −0.0033
zB (m) −0.0756 0.0626 0.0837 0.0834 −0.0999 0.0998 0.0996

(c) Final geometric parameters ai,f and bBi,f

Table D.9 – Geometric parameters of the CDPM corresponding to the Trial 9 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 1.4468)

Figure D.10 – Illustration of different results obtained from the optimization of a CDPM
(Trial 9) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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(a) An XY view of the final CDPM’s geom-
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(b) An XZ view of the final CDPM’s geom-
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(c) An Y Z view of the final CDPM’s geom-
etry

Figure D.11 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 9) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.1 (κ = 1.4468).
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Table D.10 and Figs. D.12 and D.13 present and illustrate the geometric parameters and the
final wrench-closure workspace (WCW) as well as the final ellipsoidWt (κ = 1.4430) resulting
from the dimensional synthesis (Trial 10) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.4735 0.1527 0.3411 0.6074 0.1917 0.7384 0.2428
y (m) 0.9174 0.2691 0.7655 0.1887 0.2875 0.0911 0.5762
z (m) 0.6834 0.5466 0.4257 0.6444 0.6476 0.6790 0.6358

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) 0.0890 −0.0582 0.0419 −0.0528 −0.0761 0.0215 −0.0100
yB (m) −0.0083 0.0324 0.0541 −0.0300 0.0324 −0.0168 0.0684
zB (m) 0.0666 −0.0487 0.0227 0.0164 0.0081 0.0740 −0.0470

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.4683 0.1529 0.3750 0.6184 0.1907 0.7479 0.2438
y (m) 0.9156 0.2686 0.7760 0.1951 0.2854 0.0920 0.5772
z (m) 0.6857 0.5459 0.4061 0.6468 0.6419 0.6697 0.6369

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) 0.0984 −0.0554 0.0064 −0.0607 −0.0625 0.0234 −0.0097
yB (m) −0.0036 0.0317 0.0080 −0.0269 0.0357 0.0112 0.0678
zB (m) 0.0632 −0.0472 0.0190 0.0155 0.0318 0.0214 −0.0511

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.0713 0.0005 0.9998 0.9998 0.0006 0.9997 0.5205
y (m) 0.9998 0.0004 0.9997 0.0919 0.0002 0.0005 0.9998
z (m) 0.9999 0.0765 0.0005 0.9998 0.1849 0.9995 0.0004

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) 0.0179 0.0998 0.0341 −0.0998 −0.0997 0.0982 −0.0999
yB (m) 0.0192 −0.0665 0.0588 0.0048 0.0223 0.0337 −0.0652
zB (m) 0.0409 −0.0996 0.0891 0.0979 0.0901 −0.0995 −0.0999

(c) Final geometric parameters ai,f and bBi,f

Table D.10 – Geometric parameters of the CDPM corresponding to the Trial 10 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 1.4430)

Figure D.12 – Illustration of different results obtained from the optimization of a CDPM
(Trial 10) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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(c) An Y Z view of the final CDPM’s geom-
etry

Figure D.13 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 10) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.1 (κ = 1.4430).
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Table D.11 and Fig. D.14 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.5408) resulting from the
dimensional synthesis (Trial 11) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.3181 0.1192 0.9398 0.6456 0.4795 0.6393 0.5447
y (m) 0.6473 0.5439 0.7210 0.5225 0.9937 0.2187 0.1058
z (m) 0.1097 0.0636 0.4046 0.4484 0.3658 0.7635 0.6279

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) 0.0544 0.0866 0.0945 −0.0616 −0.0722 0.0393 −0.0812
yB (m) 0.0051 0.0061 0.0722 −0.0030 −0.0213 0.0343 0.0483
zB (m) 0.0040 −0.0305 −0.0700 0.0172 −0.0476 −0.0911 0.0510

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.3104 0.1086 0.9311 0.6482 0.4768 0.6261 0.5376
y (m) 0.6550 0.5604 0.7353 0.5249 0.9936 0.2401 0.1040
z (m) 0.1163 0.0797 0.4254 0.4625 0.3673 0.7827 0.6264

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) 0.0418 0.0658 0.1000 −0.0541 −0.0392 0.0452 −0.0842
yB (m) 0.0230 0.0086 0.0551 −0.0344 −0.0259 −0.0012 0.0452
zB (m) 0.0038 −0.0579 −0.0805 0.0103 −0.0463 −0.0871 0.0525

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.0704 0.0000 0.9999 0.9999 0.0000 0.9994 0.0679
y (m) 1.0000 0.7707 0.4249 1.0000 0.8143 0.0000 0.0000
z (m) 0.1297 0.1901 0.0003 0.7703 0.9864 0.9989 0.8254

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0481 0.0997 0.0971 0.0985 −0.0391 0.1000 −0.1000
yB (m) 0.0482 0.0427 0.0411 0.0361 −0.0195 0.0414 −0.0300
zB (m) −0.0043 −0.0220 −0.0221 −0.0250 −0.1000 −0.0216 0.0652

(c) Final geometric parameters ai,f and bBi,f

Table D.11 – Geometric parameters of the CDPM corresponding to the Trial 11 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 0.5408)

Figure D.14 – Illustration of different results obtained from the optimization of a CDPM
(Trial 11) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Table D.12 and Figs. D.15 and D.16 present and illustrate the geometric parameters and the
final wrench-closure workspace (WCW) as well as the final ellipsoidWt (κ = 1.4457) resulting
from the dimensional synthesis (Trial 12) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.2428 0.4424 0.6878 0.3592 0.7363 0.3947 0.6834
y (m) 0.7040 0.4423 0.0196 0.3309 0.4243 0.2703 0.1971
z (m) 0.8217 0.4299 0.8878 0.3912 0.7691 0.3968 0.8085

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) 0.0510 −0.0245 −0.0568 0.0581 0.0899 −0.0345 0.0343
yB (m) −0.0123 0.0667 0.0538 −0.0665 0.0724 0.0980 0.0029
zB (m) 0.0769 0.0176 −0.0690 −0.0600 −0.0186 0.0497 0.0651

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.2435 0.4943 0.6883 0.3598 0.7366 0.3948 0.6843
y (m) 0.7047 0.5174 0.0218 0.3308 0.4242 0.2704 0.1976
z (m) 0.8219 0.4808 0.8904 0.3907 0.7689 0.3967 0.8086

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) 0.0470 −0.0045 −0.0658 0.0593 0.0897 −0.0347 0.0321
yB (m) −0.0149 0.0027 0.0515 −0.0674 0.0724 0.0977 −0.0017
zB (m) 0.0751 −0.0081 −0.0645 −0.0610 −0.0184 0.0496 0.0644

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.0760 0.9998 0.0001 0.0003 0.5067 0.0011 0.9999
y (m) 0.9998 0.8442 0.0002 0.7069 0.9998 0.0701 0.0003
z (m) 0.0001 0.0003 0.6935 0.2855 0.9999 0.6539 0.7485

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0055 −0.0066 −0.0385 0.0014 −0.0024 0.0078 0.0009
yB (m) 0.0998 0.0840 0.0911 −0.0999 0.0912 0.0926 0.0892
zB (m) 0.0526 0.0479 −0.0865 −0.0998 0.0523 0.0999 0.0511

(c) Final geometric parameters ai,f and bBi,f

Table D.12 – Geometric parameters of the CDPM corresponding to the Trial 12 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 1.4457)

Figure D.15 – Illustration of different results obtained from the optimization of a CDPM
(Trial 12) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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(b) An XZ view of the final CDPM’s geom-
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(c) An Y Z view of the final CDPM’s geom-
etry

Figure D.16 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 12) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.1 (κ = 1.4457).
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Table D.13 and Figs. D.17 and D.18 present and illustrate the geometric parameters and the
final wrench-closure workspace (WCW) as well as the final ellipsoidWt (κ = 1.3924) resulting
from the dimensional synthesis (Trial 13) of the CDPM presented in Sub-section 4.3.1.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r

x (m) 0.7900 0.3185 0.5341 0.0900 0.1117 0.1363 0.6787
y (m) 0.4952 0.1897 0.4950 0.1476 0.0550 0.8507 0.5606
z (m) 0.9296 0.6967 0.5828 0.8154 0.8790 0.9889 0.0005

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r
xB (m) 0.0731 0.0225 0.0980 0.0055 −0.0041 0.0603 −0.0544
yB (m) −0.0004 0.0802 0.0149 0.0690 0.0477 0.0172 −0.0507
zB (m) 0.0333 −0.0833 0.0252 0.0322 0.0460 0.0782 0.0965

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.7923 0.3206 0.5282 0.0919 0.1127 0.1366 0.6826
y (m) 0.4904 0.1877 0.4861 0.1441 0.0558 0.8512 0.5585
z (m) 0.9278 0.6950 0.5847 0.8141 0.8815 0.9888 0.0017

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) 0.0258 0.0249 0.0904 0.0376 −0.0040 0.0056 0.0046
yB (m) 0.0181 0.0772 0.0069 0.0407 0.0548 −0.0063 0.0060
zB (m) 0.0700 −0.0849 0.0162 0.0364 0.0611 0.0562 0.0721

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.9999 0.2351 0.9999 0.0000 0.0095 0.0001 0.9998
y (m) 0.7469 0.0001 0.4921 0.0004 0.0688 0.9999 0.9999
z (m) 0.7075 0.0000 0.9997 0.3453 0.9997 0.8591 0.0000

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0905 −0.0498 0.0999 0.0257 −0.0998 −0.0386 0.0471
yB (m) 0.1000 0.0273 −0.0999 −0.1000 0.0956 −0.0918 −0.0626
zB (m) 0.0081 −0.0169 −0.0625 0.1000 −0.0448 0.0316 0.0083

(c) Final geometric parameters ai,f and bBi,f

Table D.13 – Geometric parameters of the CDPM corresponding to the Trial 13 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.1.
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 1.3924)

Figure D.17 – Illustration of different results obtained from the optimization of a CDPM
(Trial 13) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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(c) An Y Z view of the final CDPM’s geom-
etry

Figure D.18 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 13) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.1 (κ = 1.3924).
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Table D.14 and Figs. D.19 and D.20 present and illustrate the geometric parameters and the
final wrench-closure workspace (WCW) as well as the final ellipsoidWt (κ = 1.5192) resulting
from the dimensional synthesis (Trial 14) of the CDPM presented in Sub-section 4.3.1.

In contrast with the first thirteen trials, the initial CDPM’s geometry of Trial 14 was chosen
based on author’s intuition and experience1. These attachment points, i.e., ai,0 and bBi,0, have
been selected to ensure that the CDPM presents a WCW while avoiding the occurrence of
mechanical interferences between its moving parts.

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0

x (m) 0.5000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000
y (m) 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
z (m) 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0
xB (m) 0.0000 −0.0010 0.0010 −0.0500 −0.0500 0.0500 0.0500
yB (m) −0.1500 −0.1500 −0.1500 0.0500 0.0500 0.0500 0.0500
zB (m) 0.0010 0.0000 0.0000 −0.0010 0.0010 −0.0010 0.0010

(a) Designer-intuition initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f

x (m) 0.8353 0.0001 0.9988 0.7744 0.0001 0.9964 0.9996
y (m) 0.9994 0.9972 0.9983 0.0001 0.0002 0.0004 0.9986
z (m) 0.9998 0.0003 0.0007 0.0002 0.9997 0.0004 0.9997

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f
xB (m) −0.0364 −0.0416 0.0538 −0.0999 −0.0422 0.0996 −0.0359
yB (m) −0.0998 0.0059 −0.0996 −0.0078 0.0175 0.0490 0.0996
zB (m) 0.0996 −0.0234 −0.0758 −0.0999 −0.0229 0.0727 −0.0998

(b) Final geometric parameters ai,f and bBi,f

Table D.14 – Geometric parameters of the CDPM corresponding to the Trial 14 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.1.

1Simple rules were followed to design this initial CDPM’s geometry: In general, for maximizing the WCW,
direct the m cables in a uniform-distributed manner around the moving platform in order to fully constrain
the mechanism, at least at p0 and for Q0 (keep in mind that it must be possible to pull the end effector in all
directions for each desired pose); Take advantage of the available space to position attachment points ai on the
base frame (for instances, at vertices); Position attachment points bi in opposition to points ai, i.e., to cross
cables, in order to increase the range of accessible end-effector attitudes. Then, to minimize the occurrence of
mechanical interferences: Regroup attachment points together, which ensure that no other point along these
cables can be in contact, unless the two cables are collinear; Similarly, position points bi close to or on an
end-effector edge; The two sets of attachment points ai and bi must normally form two convex shapes. When
one follows these simple rules and find a “good” compromise, the resulting solution is generally close to or
represents a feasible initial solution to start the optimization program from.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the
final Wt (κ = 1.5192)

Figure D.19 – Illustration of different results obtained from the optimization of a CDPM
(Trial 14) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.1.
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Figure D.20 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 14) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.1 (κ = 1.5192).
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D.2 Synthesis of Eight-Cable Seventeen-Edge Six-DoF
Cable-Driven Parallel Mechanisms

Table D.15 and Fig. D.21 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6913) resulting from the
dimensional synthesis (Trial 6) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) 0.2892 0.1278 0.3127 −0.2806 0.0077 −0.2729 0.0317 0.1322
y (m) −0.5641 0.4441 −0.1615 0.6373 −0.3087 −0.7023 −0.4488 −0.6675
z (m) 0.3326 0.0057 0.0401 0.0043 0.0757 0.0040 0.2249 0.1809

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) −0.0204 −0.0245 −0.0327 −0.0105 −0.0394 0.0082 −0.0017 −0.0154
yB (m) 0.0196 0.0271 −0.0190 0.0011 −0.0043 −0.0127 0.0271 0.0386
zB (m) 0.1002 0.0290 0.0197 0.0928 0.0526 0.0429 0.0880 0.0289

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.1391 0.2009 0.1416 −0.0480 −0.1391 −0.2009 −0.1416 0.0480
y (m) −0.6007 0.3030 −0.3030 0.6007 0.1801 −0.1267 0.1267 −0.1801
z (m) 0.2072 0.0080 0.1342 0.2349 0.2072 0.0080 0.1342 0.2349

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) −0.0105 −0.0257 −0.0376 −0.0151 −0.0246 0.0098 −0.0009 −0.0164
yB (m) −0.0104 0.0243 −0.0215 0.0111 0.0111 −0.0153 0.0274 −0.0103
zB (m) 0.1013 0.0300 0.0282 0.0917 0.0320 0.0410 0.0865 0.0280

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.0587 0.3497 0.3477 0.0067 −0.0587 −0.3497 −0.3477 −0.0067
y (m) −0.7987 0.7974 −0.7974 0.7987 0.7998 −0.7534 0.7534 −0.7998
z (m) 0.3419 0.0006 0.0166 0.3477 0.3419 0.0006 0.0166 0.3477

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) −0.0066 −0.0399 −0.0399 −0.0398 −0.0400 0.0400 −0.0115 −0.0399
yB (m) −0.0388 0.0309 −0.0182 0.0260 0.0038 −0.0195 0.0228 −0.0199
zB (m) 0.1600 0.0001 0.0467 0.1599 0.0155 0.0489 0.0608 0.0470

(c) Final geometric parameters ai,f and bBi,f

Table D.15 – Geometric parameters of the CDPM corresponding to the Trial 6 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.6913)

Figure D.21 – Illustration of different results obtained from the optimization of a CDPM
(Trial 6) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.16 and Fig. D.22 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.8942) resulting from the
dimensional synthesis (Trial 7) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) 0.1249 −0.3110 −0.3262 −0.1494 −0.2958 0.2804 0.2426 −0.0730
y (m) −0.5293 −0.1113 −0.1341 0.3660 −0.1496 0.7229 0.6592 0.7223
z (m) 0.1211 0.1016 0.3103 0.0735 0.0458 0.1822 0.3169 0.1409

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) −0.0227 −0.0337 0.0346 0.0082 −0.0098 0.0132 0.0234 −0.0133
yB (m) 0.0154 −0.0237 0.0367 0.0169 −0.0266 −0.0046 0.0106 0.0344
zB (m) 0.0847 0.1002 0.1089 0.1477 0.0245 0.0649 0.0500 0.1110

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.2108 −0.1117 −0.1497 0.0276 −0.2108 0.1117 0.1497 −0.0276
y (m) −0.4469 0.0203 −0.0203 0.4469 −0.4339 0.0366 −0.0366 0.4339
z (m) 0.0717 0.3068 0.3498 0.1496 0.0717 0.3068 0.3498 0.1496

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) −0.0168 −0.0277 0.0373 −0.0227 −0.0030 0.0187 0.0218 0.0024
yB (m) −0.0103 0.0132 −0.0105 0.0105 −0.0102 0.0108 −0.0210 0.0105
zB (m) 0.1077 0.0700 0.1095 0.0993 0.0867 0.0873 0.0481 0.0951

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.3499 −0.1498 −0.0420 0.3471 −0.3499 0.1498 0.0420 −0.3471
y (m) −0.7998 0.7999 −0.7999 0.7998 −0.6903 0.7999 −0.7999 0.6903
z (m) 0.0002 0.3499 0.3383 0.0215 0.0002 0.3499 0.3383 0.0215

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) −0.0226 −0.0400 0.0400 −0.0400 −0.0345 0.0400 0.0400 0.0368
yB (m) −0.0183 0.0156 −0.0124 0.0249 0.0194 0.0026 −0.0085 0.0251
zB (m) 0.0695 0.0514 0.1280 0.0443 0.0226 0.0445 0.0000 0.0307

(c) Final geometric parameters ai,f and bBi,f

Table D.16 – Geometric parameters of the CDPM corresponding to the Trial 7 of the numerical
application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.8942)

Figure D.22 – Illustration of different results obtained from the optimization of a CDPM
(Trial 7) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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(c) An Y Z view of the final CDPM’s geometry

Figure D.23 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 7) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.2 (κ = 0.8942).
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Table D.17 and Fig. D.24 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.5384) resulting from the
dimensional synthesis (Trial 28) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) 0.2138 0.0537 −0.2220 −0.1820 0.2706 −0.3299 −0.0071 −0.2325
y (m) 0.7659 0.3403 0.0008 −0.0463 −0.7046 0.2912 −0.7321 −0.6857
z (m) 0.1826 0.0339 0.2864 0.2861 0.2529 0.0525 0.2309 0.1815

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) 0.0378 0.0119 0.0240 −0.0037 −0.0054 0.0260 −0.0333 −0.0293
yB (m) −0.0261 −0.0087 0.0265 0.0243 −0.0352 −0.0081 0.0022 −0.0067
zB (m) 0.1051 0.1005 0.0467 0.0691 0.0025 0.1575 0.0267 0.0170

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) −0.0249 0.1926 −0.0841 0.0329 0.0249 −0.1926 0.0841 −0.0329
y (m) 0.4061 0.1721 −0.1721 −0.4061 −0.0162 0.5117 −0.5117 0.0162
z (m) 0.2169 0.0443 0.2762 0.2314 0.2169 0.0443 0.2762 0.2314

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) 0.0167 0.0228 0.0333 0.0212 −0.0074 0.0206 −0.0377 −0.0281
yB (m) 0.0104 0.0105 −0.0103 −0.0103 −0.0358 0.0103 −0.0111 0.0120
zB (m) 0.1193 0.0664 0.0879 0.0913 0.0062 0.0774 0.0488 0.0252

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) −0.0087 0.3499 −0.1499 0.0185 0.0087 −0.3499 0.1499 −0.0185
y (m) 0.7998 0.3071 −0.3071 −0.7998 −0.7999 0.7995 −0.7995 0.7999
z (m) 0.2770 0.0000 0.3500 0.2756 0.2770 0.0000 0.3500 0.2756

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) 0.0211 0.0259 0.0315 0.0257 0.0400 0.0231 −0.0400 −0.0400
yB (m) 0.0188 0.0145 −0.0390 −0.0277 −0.0010 0.0105 −0.0172 0.0019
zB (m) 0.1552 0.0934 0.1577 0.1598 0.0099 0.1104 0.1379 0.0582

(c) Final geometric parameters ai,f and bBi,f

Table D.17 – Geometric parameters of the CDPM corresponding to the Trial 28 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.5384)

Figure D.24 – Illustration of different results obtained from the optimization of a CDPM
(Trial 28) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.18 and Fig. D.25 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6959) resulting from the
dimensional synthesis (Trial 29) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) 0.2271 0.3379 0.1612 −0.1093 0.0588 −0.2746 0.2844 0.2658
y (m) 0.5084 −0.3828 0.1510 −0.7640 −0.1196 −0.2996 −0.5416 −0.5140
z (m) 0.1480 0.0330 0.2095 0.1648 0.2436 0.2450 0.2235 0.0118

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) −0.0345 −0.0144 0.0025 0.0124 −0.0074 0.0256 0.0175 0.0375
yB (m) 0.0025 −0.0140 −0.0315 0.0089 0.0223 −0.0061 −0.0327 −0.0187
zB (m) 0.0246 0.0450 0.0704 0.0843 0.0732 0.1401 0.0829 0.1510

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.0861 0.2996 −0.0380 −0.0374 −0.0861 −0.2996 0.0380 0.0374
y (m) 0.6361 −0.2694 0.2694 −0.6361 0.1960 −0.0100 0.0100 −0.1960
z (m) 0.1892 0.1310 0.2254 0.2231 0.1892 0.1310 0.2254 0.2232

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) −0.0329 −0.0185 0.0081 −0.0026 0.0139 0.0226 0.0123 0.0292
yB (m) 0.0137 −0.0199 0.0074 −0.0100 0.0227 −0.0148 −0.0061 −0.0247
zB (m) 0.0473 0.0647 0.1101 0.0589 0.0644 0.1026 0.0976 0.1511

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.3384 0.3497 0.1780 −0.1496 −0.3384 −0.3497 −0.1780 0.1496
y (m) 0.7996 −0.7997 0.7997 −0.7996 0.7983 0.2303 −0.2303 −0.7983
z (m) 0.0866 0.0001 0.3007 0.3497 0.0866 0.0001 0.3007 0.3497

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) −0.0329. −0.0199 0.0400 0.0373 0.0400 −0.0362 −0.0399 0.0399
yB (m) 0.0397 −0.0392 0.0028 −0.0368 0.0322 0.0022 −0.0394 −0.0389
zB (m) 0.0263 0.0746 0.1431 0.0001 0.0284 0.0454 0.1600 0.1599

(c) Final geometric parameters ai,f and bBi,f

Table D.18 – Geometric parameters of the CDPM corresponding to the Trial 29 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.6959)

Figure D.25 – Illustration of different results obtained from the optimization of a CDPM
(Trial 29) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.19 and Fig. D.26 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6166) resulting from the
dimensional synthesis (Trial 36) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) −0.2253 −0.0983 −0.3103 0.0153 −0.1149 −0.2270 −0.2037 0.2836
y (m) 0.2806 −0.0505 0.6594 −0.6336 0.3929 0.3780 0.0990 −0.5053
z (m) 0.2090 0.1050 0.0469 0.0744 0.3132 0.0250 0.0849 0.0188

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) −0.0047 −0.0389 0.0318 −0.0243 −0.0325 −0.0154 −0.0035 −0.0319
yB (m) 0.0396 −0.0134 −0.0162 −0.0350 −0.0161 −0.0363 0.0004 0.0209
zB (m) 0.1010 0.0144 0.0129 0.1244 0.1448 0.0854 0.0175 0.1321

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) −0.0596 0.0873 0.0322 0.0087 0.0596 −0.0873 −0.0322 −0.0087
y (m) 0.4574 −0.3544 0.3544 −0.4574 0.4495 0.1394 −0.1394 −0.4495
z (m) 0.2606 0.0827 0.1445 0.1709 0.2606 0.0827 0.1445 0.1709

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) 0.0075 −0.0293 −0.0065 −0.0097 −0.0387 −0.0090 0.0133 −0.0350
yB (m) 0.0337 −0.0128 0.0105 −0.0313 0.0106 0.0105 −0.0118 −0.0106
zB (m) 0.0929 0.0227 0.0026 0.1239 0.1372 0.0815 0.0024 0.1288

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) −0.0433 0.3480 0.2302 0.2597 0.0433 −0.3480 −0.2302 −0.2597
y (m) 0.7429 −0.8000 0.8000 −0.7429 0.7996 0.7993 −0.7993 −0.7996
z (m) 0.3498 0.0141 0.0824 0.2315 0.3498 0.0141 0.0824 0.2315

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) 0.0398 −0.0400 −0.0039 0.0397 −0.0400 −0.0028 0.0400 −0.0351
yB (m) 0.0129 −0.0219 0.0007 −0.0398 0.0109 0.0317 −0.0398 0.0074
zB (m) 0.0346 0.0248 0.0000 0.1455 0.1176 0.0172 0.0000 0.1023

(c) Final geometric parameters ai,f and bBi,f

Table D.19 – Geometric parameters of the CDPM corresponding to the Trial 36 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(b) The final geometry of the CDPM

x (m)
y (m)

z
(m

)

c1 c2

c3

c4

c5

c6

c7
c8

-0.5
0

0.5
-0.5

0
0.5

-0.4

-0.2

0

0.2

0.4

0.6

(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.6166)

Figure D.26 – Illustration of different results obtained from the optimization of a CDPM
(Trial 36) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.20 and Fig. D.27 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6083) resulting from the
dimensional synthesis (Trial 39) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) −0.3084 −0.1289 0.1909 0.1375 −0.2623 −0.2589 −0.2854 −0.3445
y (m) −0.1230 0.2489 0.3567 0.0499 −0.6259 0.2108 −0.5976 −0.5851
z (m) 0.0345 0.0497 0.0589 0.0687 0.1111 0.1108 0.0761 0.0879

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) 0.0314 0.0163 0.0045 −0.0252 −0.0230 −0.0338 0.0331 0.0165
yB (m) 0.0046 −0.0149 −0.0267 0.0098 0.0390 −0.0264 −0.0194 −0.0083
zB (m) 0.0118 0.1095 0.0644 0.1573 0.0643 0.0993 0.0247 0.0610

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.0228 0.0760 0.2380 0.2412 −0.0228 −0.0759 −0.2380 −0.2412
y (m) −0.0847 −0.0626 0.0626 0.0847 −0.0100 0.4043 −0.4043 0.0100
z (m) 0.1549 0.0961 0.0782 0.0807 0.1549 0.0961 0.0782 0.0806

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) 0.0067 0.0116 0.0155 −0.0209 −0.0030 0.0083 0.0314 0.0212
yB (m) −0.0086 −0.0229 0.0065 0.0119 0.0081 0.0061 −0.0252 −0.0065
zB (m) 0.0170 0.1108 0.0127 0.1545 0.0174 0.0385 0.0390 0.0510

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.2489 0.3454 0.2402 0.2715 −0.2489 −0.3454 −0.2402 −0.2715
y (m) −0.7992 −0.7999 0.7999 0.7992 −0.3952 0.5046 −0.5046 0.3952
z (m) 0.2455 0.0341 0.1763 0.2160 0.2455 0.0341 0.1763 0.2160

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) 0.0100 0.0399 0.0211 0.0399 −0.0400 0.0398 0.0400 −0.0399
yB (m) −0.0209 0.0310 −0.0020 0.0397 0.0233 0.0362 −0.0399 0.0030
zB (m) 0.0219 0.0776 0.0000 0.1599 0.0415 0.0597 0.0282 0.1246

(c) Final geometric parameters ai,f and bBi,f

Table D.20 – Geometric parameters of the CDPM corresponding to the Trial 39 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.6083)

Figure D.27 – Illustration of different results obtained from the optimization of a CDPM
(Trial 39) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.21 and Fig. D.28 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6533) resulting from the
dimensional synthesis (Trial 41) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) 0.2164 0.1740 −0.2659 0.0175 −0.1219 0.0325 −0.0708 −0.0594
y (m) −0.5108 −0.3914 −0.7671 0.6779 0.2459 0.6922 −0.5384 0.6738
z (m) 0.2781 0.2021 0.1540 0.0902 0.2632 0.0800 0.0225 0.2686

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) 0.0137 0.0172 0.0114 −0.0065 −0.0087 0.0253 −0.0146 0.0252
yB (m) 0.0231 0.0282 0.0005 0.0109 0.0361 −0.0045 −0.0352 0.0293
zB (m) 0.1010 0.0568 0.1595 0.0359 0.1044 0.0968 0.0620 0.0227

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.1740 0.0708 0.0052 0.0418 −0.1740 −0.0708 −0.0052 −0.0418
y (m) −0.5941 0.1873 −0.1873 0.5941 −0.2138 0.6161 −0.6161 0.2138
z (m) 0.2650 0.1339 0.1750 0.1750 0.2650 0.1339 0.1750 0.1750

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) 0.0014 0.0108 0.0203 −0.0272 0.0086 0.0038 −0.0110 0.0299
yB (m) −0.0104 0.0208 −0.0113 0.0131 −0.0104 0.0106 −0.0285 0.0297
zB (m) 0.0911 0.0706 0.1552 0.0476 0.0870 0.1168 0.0520 0.0226

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.2168 0.3249 0.0720 0.2546 −0.2168 −0.3249 −0.0720 −0.2546
y (m) −0.5340 0.5755 −0.5755 0.5340 −0.6941 0.8000 −0.8000 0.6941
z (m) 0.2710 0.0603 0.0994 0.2382 0.2710 0.0603 0.0994 0.2382

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) 0.0384 0.0311 0.0338 −0.0400 0.0400 −0.0289 −0.0400 0.0280
yB (m) −0.0144 −0.0192 −0.0088 0.0238 −0.0169 0.0052 0.0135 0.0237
zB (m) 0.0850 0.0413 0.1415 0.0506 0.0850 0.0839 0.0000 0.0364

(c) Final geometric parameters ai,f and bBi,f

Table D.21 – Geometric parameters of the CDPM corresponding to the Trial 41 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.6533)

Figure D.28 – Illustration of different results obtained from the optimization of a CDPM
(Trial 41) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.22 and Fig. D.29 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6745) resulting from the
dimensional synthesis (Trial 45) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) −0.1097 0.3052 −0.2627 0.1614 0.1025 0.2332 −0.0712 0.1749
y (m) 0.5364 −0.2841 0.0836 0.7666 0.0789 −0.2713 0.1912 −0.2230
z (m) 0.2648 0.1449 0.1723 0.2432 0.3405 0.1147 0.2932 0.2587

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) 0.0363 −0.0374 −0.0115 0.0130 −0.0175 −0.0216 0.0169 0.0100
yB (m) 0.0072 0.0128 −0.0362 −0.0121 −0.0039 −0.0207 0.0172 0.0285
zB (m) 0.0450 0.1170 0.0220 0.1339 0.0222 0.0941 0.0586 0.1291

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) −0.1110 0.0473 −0.0709 0.0569 0.1110 −0.0472 0.0709 −0.0568
y (m) −0.0379 −0.0099 0.0099 0.0380 0.0836 −0.1842 0.1842 −0.0836
z (m) 0.3193 0.1272 0.2606 0.1333 0.3193 0.1273 0.2606 0.1333

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) 0.0351 −0.0397 0.0236 0.0366 −0.0395 −0.0398 0.0398 0.0390
yB (m) −0.0255 −0.0067 −0.0051 0.0026 0.0071 −0.0154 0.0065 −0.0370
zB (m) 0.0335 0.0428 0.0114 0.0562 0.1133 0.0790 0.1000 0.0808

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) −0.0648 0.3458 −0.0624 0.3498 0.0648 −0.3458 0.0624 −0.3498
y (m) −0.7992 −0.7994 0.7994 0.7992 0.7967 −0.7998 0.7998 −0.7967
z (m) 0.3168 0.0002 0.2688 0.0004 0.3168 0.0002 0.2688 0.0004

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) 0.0269 −0.0322 0.0159 0.0396 −0.0400 −0.0399 0.0400 0.0400
yB (m) −0.0389 −0.0219 −0.0204 −0.0192 0.0094 −0.0391 0.0057 −0.0399
zB (m) 0.0405 0.0802 0.0341 0.0002 0.0991 0.0500 0.1559 0.0772

(c) Final geometric parameters ai,f and bBi,f

Table D.22 – Geometric parameters of the CDPM corresponding to the Trial 45 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.6745)

Figure D.29 – Illustration of different results obtained from the optimization of a CDPM
(Trial 45) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.23 and Fig. D.30 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.9835) resulting from the
dimensional synthesis (Trial 64) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) 0.3194 0.0511 0.2448 −0.1566 0.0856 0.0619 0.3244 −0.2899
y (m) 0.0008 0.0345 −0.6557 0.6475 0.6150 −0.0976 0.4508 −0.5625
z (m) 0.2169 0.0912 0.1560 0.2954 0.0687 0.1063 0.1692 0.1182

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) 0.0239 0.0390 −0.0273 −0.0210 0.0162 −0.0100 0.0379 0.0378
yB (m) 0.0115 0.0288 −0.0078 0.0106 0.0388 0.0048 0.0347 0.0176
zB (m) 0.0774 0.1022 0.1420 0.0318 0.0633 0.1587 0.0644 0.1054

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.1367 0.0352 −0.0157 0.0554 −0.1367 −0.0352 0.0157 −0.0554
y (m) −0.0100 0.3309 −0.3309 0.0100 0.5128 −0.3046 0.3046 −0.5128
z (m) 0.1500 0.1411 0.1987 0.2184 0.1500 0.1411 0.1987 0.2184

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) 0.0258 0.0369 −0.0359 −0.0254 0.0092 −0.0016 0.0363 0.0232
yB (m) 0.0076 0.0273 −0.0134 0.0136 0.0120 −0.0104 0.0299 −0.0089
zB (m) 0.0802 0.1103 0.1350 0.0302 0.0722 0.1548 0.0713 0.0667

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.3499 0.3498 0.1988 0.1857 −0.3499 −0.3498 −0.1988 −0.1857
y (m) −0.7441 0.7999 −0.7999 0.7441 0.6948 −0.7999 0.7999 −0.6948
z (m) 0.0000 0.0000 0.2725 0.2949 0.0000 0.0000 0.2725 0.2949

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) 0.0307 0.0358 −0.0400 −0.0395 −0.0334 −0.0397 0.0398 0.0390
yB (m) −0.0004 0.0221 −0.0400 0.0203 −0.0118 −0.0061 0.0400 −0.0221
zB (m) 0.0106 0.1033 0.1012 0.0105 0.0219 0.0998 0.0838 0.0202

(c) Final geometric parameters ai,f and bBi,f

Table D.23 – Geometric parameters of the CDPM corresponding to the Trial 64 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.9835)

Figure D.30 – Illustration of different results obtained from the optimization of a CDPM
(Trial 64) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Figure D.31 – Three different two-dimensional points of view of the optimized CDPM’s geom-
etry (Trial 64) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.2 (κ = 0.9835).
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Table D.24 and Fig. D.32 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.6203) resulting from the
dimensional synthesis (Trial 66) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) −0.2744 −0.0281 −0.0344 0.0358 0.2138 0.1406 0.2606 −0.3135
y (m) −0.4485 −0.0646 0.7337 0.4641 −0.0770 −0.2665 −0.7054 0.3854
z (m) 0.1774 0.0700 0.1495 0.0590 0.2631 0.1289 0.3296 0.0060

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) 0.0263 0.0101 0.0031 0.0120 0.0181 −0.0324 0.0302 −0.0389
yB (m) −0.0165 −0.0256 0.0341 −0.0345 0.0065 0.0110 0.0121 0.0292
zB (m) 0.0090 0.1307 0.0846 0.1111 0.0340 0.0869 0.1124 0.1530

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) −0.1316 0.0190 −0.0957 0.2083 0.1316 −0.0190 0.0957 −0.2083
y (m) −0.5663 −0.2917 0.2917 0.5663 −0.2668 0.0100 −0.0100 0.2668
z (m) 0.3293 0.1593 0.2889 0.0342 0.3293 0.1593 0.2889 0.0342

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) −0.0073 0.0278 0.0378 0.0228 0.0085 −0.0332 0.0228 −0.0299
yB (m) −0.0092 −0.0086 0.0166 0.0078 −0.0085 0.0235 0.0079 0.0099
zB (m) 0.0249 0.1481 0.0584 0.0954 0.0373 0.0907 0.1114 0.0967

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) −0.1455 0.1601 −0.1471 0.3500 0.1455 −0.1601 0.1471 −0.3500
y (m) −0.7999 −0.7999 0.7999 0.7999 −0.6237 0.7875 −0.7875 0.6237
z (m) 0.3497 0.0001 0.3468 0.0000 0.3497 0.0001 0.3468 0.0000

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) −0.0343 0.0333 0.0400 0.0302 0.0257 −0.0399 0.0384 −0.0018
yB (m) −0.0076 −0.0026 −0.0090 −0.0035 −0.0397 −0.0146 0.0266 0.0275
zB (m) 0.0265 0.1368 0.0374 0.0735 0.0001 0.0000 0.1431 0.1402

(c) Final geometric parameters ai,f and bBi,f

Table D.24 – Geometric parameters of the CDPM corresponding to the Trial 66 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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x (m)
y (m)

z
(m

) c1

c2c3

c4

c5

c6

c7

c8

-0.5
0

0.5
-0.5

0
0.5

-0.4

-0.2

0

0.2

0.4

0.6

(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.6203)

Figure D.32 – Illustration of different results obtained from the optimization of a CDPM
(Trial 66) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.25 and Fig. D.33 present and illustrate the geometric parameters and the final wrench-
closure workspace (WCW) as well as the final ellipsoid Wt (κ = 0.7443) resulting from the
dimensional synthesis (Trial 81) of the CDPM presented in Sub-section 4.3.2.

a1,r a2,r a3,r a4,r a5,r a6,r a7,r a8,r

x (m) 0.2876 0.2697 0.2062 0.2981 −0.2248 0.0123 0.0889 0.2892
y (m) 0.2623 −0.1773 0.3840 0.5082 0.1606 −0.6640 0.6758 −0.7142
z (m) 0.1845 0.0416 0.1331 0.2845 0.0854 0.3095 0.2494 0.1324

bB1,r bB2,r bB3,r bB4,r bB5,r bB6,r bB7,r bB8,r
xB (m) −0.0201 −0.0198 0.0214 −0.0360 0.0148 0.0096 0.0197 0.0382
yB (m) −0.0093 −0.0192 0.0302 0.0245 −0.0031 −0.0327 0.0051 −0.0250
zB (m) 0.0851 0.0568 0.0504 0.1163 0.0825 0.1265 0.0327 0.1085

(a) Randomly-determined geometric parameters ai,r and bBi,r

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.2567 0.1282 0.0595 0.0086 −0.2567 −0.1282 −0.0595 −0.0086
y (m) −0.1249 −0.2811 0.2811 0.1249 0.4372 −0.6698 0.6698 −0.4372
z (m) 0.1320 0.1771 0.1894 0.2127 0.1320 0.1771 0.1894 0.2127

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) −0.0091 −0.0156 0.0000 −0.0294 0.0175 0.0006 0.0384 0.0214
yB (m) −0.0124 −0.0195 0.0253 0.0209 0.0108 −0.0300 0.0119 −0.0142
zB (m) 0.0935 0.0513 0.0528 0.1327 0.0744 0.1148 0.0548 0.0684

(b) Closest-feasible initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.3498 0.3213 0.2487 0.0447 −0.3498 −0.3213 −0.2487 −0.0447
y (m) −0.7999 −0.7659 0.7659 0.7999 0.7999 −0.7997 0.7997 −0.7999
z (m) 0.0000 0.0678 0.2458 0.3286 0.0000 0.0678 0.2458 0.3286

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) 0.0387 −0.0383 −0.0400 0.0003 −0.0004 −0.0337 0.0400 0.0399
yB (m) 0.0400 −0.0400 0.0334 0.0290 0.0228 −0.0253 0.0323 −0.0095
zB (m) 0.0635 0.0626 0.0013 0.1600 0.0769 0.0761 0.0010 0.0667

(c) Final geometric parameters ai,f and bBi,f

Table D.25 – Geometric parameters of the CDPM corresponding to the Trial 81 of the nu-
merical application of the dimensional synthesis program presented in Sub-section 4.3.2.
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 0.7443)

Figure D.33 – Illustration of different results obtained from the optimization of a CDPM
(Trial 81) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Table D.26 and Figs. D.34 and D.35 present and illustrate geometric parameters and the final
wrench-closure workspace (WCW) as well as the final ellipsoid Wt (κ = 1.0880) resulting
from the dimensional synthesis (Trial 100) of the CDPM presented in Sub-section 4.3.2.

Alike for previous Section D.1, here, the initial CDPM’s geometry of Trial 100 was chosen
based on author’s intuition and experience2. These attachment points, i.e., ai,0 and bBi,0, have
been selected to tend toward a CDPM that presents a WCW while avoiding the occurrence of
mechanical interferences between its moving parts. However, one should note that this initial
CDPM does not have a WCW, even at p0, because of its demanding geometrical constraints.

a1,0 a2,0 a3,0 a4,0 a5,0 a6,0 a7,0 a8,0

x (m) 0.3500 0.2600 0.2600 0.3500 −0.3500 −0.2600 −0.2600 −0.3500
y (m) −0.8000 −0.8000 0.8000 0.8000 −0.8000 −0.8000 0.8000 0.8000
z (m) 0.0000 0.2100 0.2100 0.0000 0.0000 0.2100 0.2100 0.0000

bB1,0 bB2,0 bB3,0 bB4,0 bB5,0 bB6,0 bB7,0 bB8,0
xB (m) −0.0300 −0.0300 −0.0300 −0.0300 0.0300 0.0300 0.0300 0.0300
yB (m) −0.0400 −0.0400 0.0400 0.0400 −0.0400 −0.0400 0.0400 0.0400
zB (m) 0.1500 0.0100 0.0000 0.1600 0.1600 0.0000 0.0100 0.1500

(a) Designer-intuition initial geometric parameters ai,0 and bBi,0

a1,f a2,f a3,f a4,f a5,f a6,f a7,f a8,f

x (m) 0.3154 0.2668 0.2668 0.3154 −0.3154 −0.2668 −0.2668 −0.3154
y (m) −0.7999 −0.8000 0.8000 0.7999 −0.7999 −0.8000 0.8000 0.7999
z (m) 0.0412 0.2203 0.2202 0.0412 0.0412 0.2203 0.2202 0.0412

bB1,f bB2,f bB3,f bB4,f bB5,f bB6,f bB7,f bB8,f
xB (m) −0.0144 −0.0055 −0.0052 −0.0150 0.0150 0.0052 0.0055 0.0144
yB (m) −0.0384 −0.0241 0.0243 0.0391 −0.0391 −0.0243 0.0241 0.0384
zB (m) 0.1531 0.0055 0.0038 0.1583 0.1583 0.0038 0.0055 0.1531

(b) Final geometric parameters ai,f and bBi,f

Table D.26 – Geometric parameters of the CDPM corresponding to the Trial 100 of the
numerical application of the dimensional synthesis program presented in Sub-section 4.3.2.

2Simple rules were followed to design this initial CDPM’s geometry: In general, for maximizing the WCW,
direct the m cables in a uniform-distributed manner around the moving platform in order to fully constrain
the mechanism, at least at p0 and for Q0 (keep in mind that it must be possible to pull the end effector in all
directions for each desired pose); Take advantage of the available space to position attachment points ai on the
base frame (for instances, at vertices); Position attachment points bi in opposition to points ai, i.e., to cross
cables, in order to increase the range of accessible end-effector attitudes. Then, to minimize the occurrence of
mechanical interferences: Regroup attachment points together, which ensure that no other point along these
cables can be in contact, unless the two cables are collinear; Similarly, position points bi close to or on an
end-effector edge; The two sets of attachment points ai and bi must normally form two convex shapes. When
one follows these simple rules and find a “good” compromise, the resulting solution is generally close to or
represents a feasible initial solution to start the optimization program from.
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(b) The final geometry of the CDPM
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(c) The WCW of the final CDPM’s geometry with the final Wt

(κ = 1.0880)

Figure D.34 – Illustration of different results obtained from the optimization of a CDPM
(Trial 100) for the numerical application of the dimensional synthesis program presented in
Sub-section 4.3.2.
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Figure D.35 – Three different two-dimensional points of view of the optimized CDPM’s geome-
try (Trial 100) from the numerical application of the dimensional synthesis program presented
in Sub-section 4.3.2 (κ = 1.0880).
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